
CS 480

Translators (Compilers)

Instructor: Liang Huang
(some slides courtesy of David Beazley and Zhendong Su)

weeks 4: yacc, LR parsing

HW3 Distribution (coding part)

number of cases passed

ONLY on HW1 cases (60% of grade)

HW1 cases passed

ply.yacc preliminaries

• ply.yacc is a module for creating a parser

• Assumes you have defined a BNF grammar

assign : NAME EQUALS expr
expr : expr PLUS term
 | expr MINUS term
 | term
term : term TIMES factor
 | term DIVIDE factor
 | factor
factor : NUMBER

compare with (ambiguity):

expr : expr PLUS expr
 | expr TIMES expr
 | NUMBER

ply.yacc example
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p_assign(p):
 '''assign : NAME EQUALS expr'''

def p_expr(p):
 '''expr : expr PLUS term
 | expr MINUS term
 | term'''
def p_term(p):
 '''term : term TIMES factor
 | term DIVIDE factor
 | factor'''
def p_factor(p):
 '''factor : NUMBER'''

yacc.yacc() # Build the parser

ply.yacc example
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p_assign(p):
 '''assign : NAME EQUALS expr'''

def p_expr(p):
 '''expr : expr PLUS term
 | expr MINUS term
 | term'''
def p_term(p):
 '''term : term TIMES factor
 | term DIVIDE factor
 | factor'''
def p_factor(p):
 '''factor : NUMBER'''

yacc.yacc() # Build the parser

token information
imported from lexer

ply.yacc example
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p_assign(p):
 '''assign : NAME EQUALS expr'''

def p_expr(p):
 '''expr : expr PLUS term
 | expr MINUS term
 | term'''
def p_term(p):
 '''term : term TIMES factor
 | term DIVIDE factor
 | factor'''
def p_factor(p):
 '''factor : NUMBER'''

yacc.yacc() # Build the parser

grammar rules encoded
as functions with names

p_rulename

Note: Name doesn't
matter as long as it

starts with p_

ply.yacc example
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p_assign(p):
 '''assign : NAME EQUALS expr'''

def p_expr(p):
 '''expr : expr PLUS term
 | expr MINUS term
 | term'''
def p_term(p):
 '''term : term TIMES factor
 | term DIVIDE factor
 | factor'''
def p_factor(p):
 '''factor : NUMBER'''

yacc.yacc() # Build the parser

docstrings contain
grammar rules

from BNF

ply.yacc example
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p_assign(p):
 '''assign : NAME EQUALS expr'''

def p_expr(p):
 '''expr : expr PLUS term
 | expr MINUS term
 | term'''
def p_term(p):
 '''term : term TIMES factor
 | term DIVIDE factor
 | factor'''
def p_factor(p):
 '''factor : NUMBER'''

yacc.yacc() # Build the parser
Builds the parser

using introspection

ply.yacc parsing

• yacc.parse() function

yacc.yacc() # Build the parser
...
data = "x = 3*4+5*6"
yacc.parse(data) # Parse some text

• This feeds data into lexer

• Parses the text and invokes grammar rules

A peek inside

• PLY uses LR-parsing. LALR(1)

• AKA: Shift-reduce parsing

• Widely used parsing technique

• Table driven

ECS 142 Lectures 7-8 3

Bottom-Up Parsing

•  Bottom-up parsing is more general than top-
down parsing
–  And just as efficient
–  Builds on ideas in top-down parsing
–  Preferred method in practice

•  Also called LR parsing
–  L means that tokens are read left to right
–  R means that it constructs a rightmost derivation

ECS 142 Lectures 7-8 4

An Introductory Example

•  LR parsers
–  Don�t need left-factored grammars, and
–  Can handle left-recursive grammars

•  Consider the following grammar

 E → E + (E) | int

–  Why is this not LL(1)?

•  Consider the string: int + (int) + (int)

ECS 142 Lectures 7-8 5

The Idea

•  LR parsing reduces a string to the start
symbol by inverting productions:

str Ã input string of terminals
repeat

–  Identify β in str such that A ! β is a production
 (i.e., str = α β γ)
–  Replace β by A in str (i.e., str becomes α A γ)

until str = S

ECS 142 Lectures 7-8 6

A Bottom-up Parse in Detail (1)

int + + int int ()

int + (int) + (int)

()

ECS 142 Lectures 7-8 7

A Bottom-up Parse in Detail (2)

E

int + + int int ()

int + (int) + (int)
E + (int) + (int)

()

ECS 142 Lectures 7-8 8

A Bottom-up Parse in Detail (3)

E

int + + int int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

()

E

ECS 142 Lectures 7-8 9

A Bottom-up Parse in Detail (4)

E

int + + int int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int) E

()

E

ECS 142 Lectures 7-8 10

A Bottom-up Parse in Detail (5)

E

int + + int int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)

E

()

E E

ECS 142 Lectures 7-8 11

A Bottom-up Parse in Detail (6)

E

E

int + + int int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
E

E

()

E E A rightmost
derivation in reverse

(always rewrite the rightmost
nonterminal in each step)

ECS 142 Lectures 7-8 12

Important Fact #1

Important Fact #1 about bottom-up parsing:

An LR parser traces a rightmost
derivation in reverse

ECS 142 Lectures 7-8 13

Where Do Reductions Happen

Important Fact #1 has an interesting
consequence:
–  Let αβγ be a step of a bottom-up parse
–  Assume the next reduction is by A→ β
–  Then γ is a string of terminals !

Why? Because αAγ → αβγ is a step in a right-
most derivation

ECS 142 Lectures 7-8 14

Notation

•  Idea: Split the string into two substrings
–  Right substring (a string of terminals) is as yet

unexamined by parser
–  Left substring has terminals and non-terminals

•  The dividing point is marked by a I
–  The I is not part of the string

•  Initially, all input is unexamined: Ix1x2 . . . xn

ECS 142 Lectures 7-8 15

Shift-Reduce Parsing

•  Bottom-up parsing uses only two kinds of
actions:

Shift

Reduce

ECS 142 Lectures 7-8 16

Shift

Shift: Move I one place to the right
–  Shifts a terminal to the left string

E + (I int) ⇒ E + (int I)

ECS 142 Lectures 7-8 17

Reduce

Reduce: Apply a production in reverse at the
right end of the left string
–  If E → E + (E) is a production, then

E + (E + (E) I) ⇒ E +(E I)

Shift-Reduce Example

I int + (int) + (int)$ shift

int ++ int int () ()

18

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int

int ++ int int () ()

19

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times

E

int ++ int int () ()

20

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int

E

int ++ int int () ()

21

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift

E

int ++ int int () ()

E

22

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E ! E + (E)

E

int ++ int int () ()

E

23

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E ! E + (E)
E I + (int)$ shift 3 times

E

int ++ int int ()

E

()

E

24

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E ! E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E ! int

E

int ++ int int ()

E

()

E

25

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E ! E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E ! int
E + (E I)$ shift

E

int ++ int int ()

E

()

E E

26

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E ! E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E ! int
E + (E I)$ shift
E + (E) I $ red. E ! E + (E) E

int ++ int int ()

E

()

E E

27

Shift-Reduce Example

I int + (int) + (int)$ shift
int I + (int) + (int)$ red. E ! int
E I + (int) + (int)$ shift 3 times
E + (int I) + (int)$ red. E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ red. E ! E + (E)
E I + (int)$ shift 3 times
E + (int I)$ red. E ! int
E + (E I)$ shift
E + (E) I $ red. E ! E + (E)
E I $ accept

E

E

int ++ int int ()

E

()

E E

28

ECS 142 Lectures 7-8 70

A Hierarchy of Grammar Classes

From Andrew Appel,
�Modern Compiler
Implementation in Java�

ECS 142 Lectures 7-8 52

Shift/Reduce Conflicts

•  If a DFA state contains both
 [X ! α•aβ, b] and [Y ! γ•, a]

•  Then on input �a� we could either
–  Shift into state [X ! αa•β, b], or
–  Reduce with Y ! γ

•  This is called a shift-reduce conflict

ECS 142 Lectures 7-8 53

Shift/Reduce Conflicts

•  Typically due to ambiguities in the grammar
•  Classic example: the dangling else
 S → if E then S | if E then S else S | OTHER
•  Will have DFA state containing
 [S → if E then S•, else]
 [S → if E then S• else S, x]
•  If else follows then we can shift or reduce
•  Default (bison, CUP, etc.) is to shift

–  Default behavior is as needed in this case

ECS 142 Lectures 7-8 29

The Stack

•  Left string can be implemented as a stack
–  Top of the stack is the I

•  Shift pushes a terminal on the stack

•  Reduce
–  Pops 0 or more symbols off the stack: production rhs
–  Pushes a non-terminal on the stack: production lhs

ECS 142 Lectures 7-8 30

Key Issue: When to Shift or Reduce?

•  Decide based on the left string (the stack)
•  Idea: use a finite automaton (DFA) to decide

when to shift or reduce
–  The DFA input is the stack
–  The language consists of terminals and non-terminals

•  We run the DFA on the stack and examine the
resulting state X and the token tok after I
–  If X has a transition labeled tok then shift
–  If X is labeled with �A ! β on tok� then reduce

LR(1) Parsing: An Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift
int I + (int) + (int)$ E ! int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E ! int
E + (E I) + (int)$ shift
E + (E) I + (int)$ E ! E+(E)
E I + (int)$ shift (x3)
E + (int I)$ E ! int
E + (E I)$ shift
E + (E) I $ E ! E+(E)
E I $ accept

int

E

) 31

ECS 142 Lectures 7-8 32

Representing the DFA

•  Parsers represent the DFA as a 2D table
–  Recall table-driven lexical analysis

•  Lines correspond to DFA states
•  Columns correspond to terminals and non-

terminals
•  Typically columns are split into:

–  Those for terminals: action table
–  Those for non-terminals: goto table

ECS 142 Lectures 7-8 33

Representing the DFA. Example

The table for a fragment of our DFA

int + () $ E
…
3 s4
4 s5 g6
5 rE! int rE! int
6 s8 s7
7 rE! E+(E) rE! E+(E)
…

E ! int
on), +

E ! E + (E)
on $, +

(

int
3 4

56

7

)

E

34

The LR Parsing Algorithm

•  After a shift or reduce action we rerun the
DFA on the entire stack
–  This is wasteful, since most of the work is

repeated
•  Remember for each stack element to which

state it brings the DFA
•  LR parser maintains a stack

〈 sym1, state1 〉 . . . 〈 symn, staten 〉(
statek is the final state of the DFA on sym1 … symk

ECS 142 Lectures 7-8 35

The LR Parsing Algorithm

Let I = w$ be initial input
Let j = 0
Let DFA state 0 be the start state
Let stack = 〈 dummy, 0 〉(

(repeat
 case action[top_state(stack), I[j]] of
 shift k: push 〈 I[j++], k 〉
 reduce X → α:
 - pop |α| pairs off the stack
 - push 〈X, Goto[top_state(stack), X]〉(
(((accept: halt normally
 error: halt and report error(

ECS 142 Lectures 7-8 36

LR Parsing Notes

•  Can be used to parse more grammars than LL

•  Most programming languages grammars are LR

•  Can be described as a simple table

•  There are tools for building the table

•  How is the table constructed?

ECS 142 Lectures 7-8 37

Recap …

•  A bottom-up parser rewrites the input string
to the start symbol

•  The state of the parser is described as
 α I γ
–  α is a stack of terminals and non-terminals
–  γ is the string of terminals not yet examined

•  Initially: I x1x2 . . . xn

ECS 142 Lectures 7-8 38

The Shift and Reduce Actions

•  Recall the CFG: E ! int | E + (E)
•  A bottom-up parser uses two kinds of actions

–  Shift pushes a terminal from input on the stack
 E + (I int) ⇒ E + (int I)

–  Reduce pops 0 or more symbols off of the stack
(production rhs) and pushes a non-terminal on the
stack (production lhs)

 E + (E + (E) I) ⇒ E +(E I)

ECS 142 Lectures 7-8 39

Key Issue: When to Shift or Reduce?

•  Idea: use a finite automaton (DFA) to decide
when to shift or reduce
–  The input is the stack
–  The language consists of terminals and non-terminals

•  We run the DFA on the stack and we examine
the resulting state X and the token tok after I
–  If X has a transition labeled tok then shift
–  If X is labeled with �A ! β on tok� then reduce

ECS 142 Lectures 7-8 40

Key Issue: How is the DFA Constructed?

•  The stack describes the context of the parse
–  What non-terminal we are looking for
–  What production rhs we are looking for
–  What we have seen so far from the rhs

•  Each DFA state describes several such
contexts
–  E.g., when we are looking for non-terminal E, we

might be looking either for an int or an E + (E) rhs

ECS 142 Lectures 7-8 41

LR(1) Items

•  An LR(1) item is a pair
 X → α•β, a
–  X ! αβ is a production
–  a is a terminal (the lookahead terminal)
–  LR(1) means 1 lookahead terminal

•  [X → α•β, a] describes a context of the parser
–  We are trying to find an X followed by an a, and
–  We have α already on top of the stack
–  Thus we need to see next a prefix derived from βa

ECS 142 Lectures 7-8 42

Note

•  The symbol I was used before to separate the
stack from the rest of input
–  α I γ, where α is the stack and γ is the remaining

string of terminals
•  In LR(1) items • is used to mark a prefix of a

production rhs:
 X → α•β, a
–  Here β might contain non-terminals as well

•  In both case the stack is on the left

ECS 142 Lectures 7-8 43

Convention

•  We add to our grammar a fresh new start
symbol S and a production S ! E
–  Where E is the old start symbol

•  The initial parsing context contains:
 S ! •E, $
–  Trying to find an S as a string derived from E$
–  The stack is empty

ECS 142 Lectures 7-8 44

LR(1) Items (Cont.)

•  In context containing
 E ! E + • (E), +
–  If (follows then we can perform a shift to context

containing
 E ! E + (• E), +

•  In a context containing
 E ! E + (E) •, +
–  We can perform a reduction with E ! E + (E)
–  But only if a + follows

ECS 142 Lectures 7-8 45

LR(1) Items (Cont.)

•  Consider a context with the item
 E ! E + (• E) , +

•  We expect next a string derived from E) +
•  There are two productions for E

 E ! int and E ! E + (E)
•  We describe this by extending the context

with two more items:
 E ! • int,)
 E ! • E + (E) ,)

ECS 142 Lectures 7-8 46

The Closure Operation

•  The operation of extending the context with
items is called the closure operation

Closure(Items) =
 repeat
 for each [X ! α•Yβ, a] in Items
 for each production Y ! γ
 for each b 2 First(βa)
 add [Y ! •γ, b] to Items
 until Items is unchanged

ECS 142 Lectures 7-8 47

Constructing the Parsing DFA (1)

•  Construct the start context: Closure({S ! •E, $})

S ! •E, $
E ! •E+(E), $
E ! •int, $
E ! •E+(E), +
E ! •int, +

S ! •E, $
E ! •E+(E), $/+
E ! •int, $/+

•  We abbreviate as

ECS 142 Lectures 7-8 48

Constructing the Parsing DFA (2)

•  A DFA state is a closed set of LR(1) items
–  This means that we performed Closure

•  The start state contains [S ! •E, $]

•  A state that contains [X ! α•, b] is labeled
with �reduce with X ! α on b�

•  And now the transitions …

ECS 142 Lectures 7-8 49

The DFA Transitions

•  A state �State� that contains [X ! α•yβ, b]
has a transition labeled y to a state that
contains the items �Transition(State, y)�
–  y can be a terminal or a non-terminal

Transition(State, y)
 Items Ã ∅
 for each [X ! α•yβ, b] 2 State
 add [X ! αy•β, b] to Items
 return Closure(Items)

ECS 142 Lectures 7-8 50

Constructing the Parsing DFA: An Example

E ! E+• (E), $/+

E ! int
on $, +

accept
on $

E ! E+(•E), $/+
E ! •E+(E),)/+
E ! •int,)/+

E ! int•,)/+ E ! int
on), +

E ! E+(E•), $/+
E ! E•+(E),)/+

and so on…

S ! •E, $
E ! •E+(E), $/+
E ! •int, $/+

0

3

4

5 6

E ! int•, $/+
1

S ! E•, $
E ! E•+(E), $/+

2

int

E +
(

E

int

ECS 142 Lectures 7-8 51

LR Parsing Tables. Notes

•  Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

•  But we still need to understand the
construction to work with parser generators
–  E.g., they report errors in terms of sets of items

•  What kind of errors can we expect?

ECS 142 Lectures 7-8 52

Shift/Reduce Conflicts

•  If a DFA state contains both
 [X ! α•aβ, b] and [Y ! γ•, a]

•  Then on input �a� we could either
–  Shift into state [X ! αa•β, b], or
–  Reduce with Y ! γ

•  This is called a shift-reduce conflict

ECS 142 Lectures 7-8 53

Shift/Reduce Conflicts

•  Typically due to ambiguities in the grammar
•  Classic example: the dangling else
 S → if E then S | if E then S else S | OTHER
•  Will have DFA state containing
 [S → if E then S•, else]
 [S → if E then S• else S, x]
•  If else follows then we can shift or reduce
•  Default (bison, CUP, etc.) is to shift

–  Default behavior is as needed in this case

ECS 142 Lectures 7-8 54

More Shift/Reduce Conflicts

•  Consider the ambiguous grammar
 E → E + E | E * E | int
•  We will have the states containing
 [E → E * • E, +] [E → E * E•, +]
 [E → • E + E, +] ⇒E [E → E • + E, +]
 … …
•  Again we have a shift/reduce on input +

–  We need to reduce (* binds more tightly than +)
–  Recall solution: declare the precedence of * and +

ECS 142 Lectures 7-8 55

More Shift/Reduce Conflicts

•  In bison declare precedence and associativity:
 %left +!
 %left *!

•  Precedence of a rule = that of its last terminal
–  See bison manual for ways to override this default

•  Context-dependent precedence (Section 5.4, pp 70)

•  Resolve shift/reduce conflict with a shift if:
–  no precedence declared for either rule or terminal
–  input terminal has higher precedence than the rule
–  the precedences are the same and right associative

ECS 142 Lectures 7-8 56

Using Precedence to Solve S/R Conflicts

•  Back to our example:
 [E → E * • E, +] [E →E * E•, +]
 [E → • E + E, +] ⇒E [E →E • + E, +]
 … …

•  Will choose reduce because precedence of
rule E → E * E is higher than of terminal +

ECS 142 Lectures 7-8 57

Using Precedence to Solve S/R Conflicts

•  Same grammar as before
 E → E + E | E * E | int
•  We will also have the states
 [E → E + • E, +] [E → E + E•, +]
 [E → • E + E, +] ⇒E [E → E • + E, +]
 … …
•  Now we also have a shift/reduce on input +

–  We choose reduce because E → E + E and + have
the same precedence and + is left-associative

ECS 142 Lectures 7-8 58

Using Precedence to Solve S/R Conflicts

•  Back to our dangling else example
 [S → if E then S•, else]
 [S → if E then S• else S, x]
•  Can eliminate conflict by declaring else with

higher precedence than then
–  Or just rely on the default shift action

•  But this starts to look like �hacking the parser�
•  Best to avoid overuse of precedence declarations

or you’ll end with unexpected parse trees

ECS 142 Lectures 7-8 59

Reduce/Reduce Conflicts

•  If a DFA state contains both
 [X ! α•, a] and [Y ! β•, a]
–  Then on input �a� we don�t know which

production to reduce

•  This is called a reduce/reduce conflict

ECS 142 Lectures 7-8 60

Reduce/Reduce Conflicts

•  Usually due to gross ambiguity in the grammar
•  Example: a sequence of identifiers

 S → ε | id | id S

•  There are two parse trees for the string id
 S → id
 S → id S → id
•  How does this confuse the parser?

ECS 142 Lectures 7-8 61

More on Reduce/Reduce Conflicts

•  Consider the states [S → id •, $]
 [S��→ • S, $] [S → id • S, $]
 [S → •, $] ⇒id [S → •, $]
 [S → • id, $] [S → • id, $]
 [S → • id S, $] [S → • id S, $]
•  Reduce/reduce conflict on input $
 S��→ S → id
 S��→ S → id S → id
•  Better rewrite the grammar: S → ε | id S

ECS 142 Lectures 7-8 62

Using Parser Generators

•  Parser generators construct the parsing DFA
given a CFG
–  Use precedence declarations and default

conventions to resolve conflicts
–  The parser algorithm is the same for all grammars

(and is provided as a library function)
•  But most parser generators do not construct

the DFA as described before
–  Because the LR(1) parsing DFA has 1000s of states

even for a simple language

ECS 142 Lectures 7-8 63

LR(1) Parsing Tables are Big

•  But many states are similar, e.g.

 and

•  Idea: merge the DFA states whose items
differ only in the lookahead tokens
–  We say that such states have the same core

•  We obtain

E ! int
on $, + E ! int•, $/+ E ! int•,)/+ E ! int

on), +

5 1

E ! int
on $, +,) E ! int•, $/+/)

1�

ECS 142 Lectures 7-8 64

The Core of a Set of LR Items

•  Definition: The core of a set of LR items is
the set of first components
–  Without the lookahead terminals

•  Example: the core of
 { [X → α•β, b], [Y → γ•δ, d]}
 is
 {X → α•β, Y → γ•δ}

ECS 142 Lectures 7-8 65

LALR States

•  Consider for example the LR(1) states
 {[X → α•, a], [Y → β•, c]}
 {[X → α•, b], [Y → β•, d]}
•  They have the same core and can be merged
•  And the merged state contains:
 {[X → α•, a/b], [Y → β•, c/d]}
•  These are called LALR(1) states

–  Stands for LookAhead LR
–  Typically 10 times fewer LALR(1) states than LR(1)

ECS 142 Lectures 7-8 66

A LALR(1) DFA

•  Repeat until all states have distinct core
–  Choose two distinct states with same core
–  Merge the states by creating a new one with the

union of all the items
–  Point edges from predecessors to new state
–  New state points to all the previous successors

A

E D

C B

F

A
BE

D

C

F

Conversion LR(1) to LALR(1). Example.
int

E ! int
on $, +

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(
int

E

)

accept
on $

int
E ! int
on $, +,)

E ! E + (E)
on $, +,)

(

E
int

0 1,5

2 3,8 4,9

6,10 7,11

+

+

)

E

accept
on $

67

ECS 142 Lectures 7-8 68

The LALR Parser Can Have Conflicts

•  Consider for example the LR(1) states
 {[X → α•, a], [Y → β•, b]}
 {[X → α•, b], [Y → β•, a]}
•  And the merged LALR(1) state
 {[X → α•, a/b], [Y → β•, a/b]}
•  Has a new reduce-reduce conflict
•  In practice such cases are rare

•  However, no new shift/reduce conflicts. Why?

ECS 142 Lectures 7-8 69

LALR vs. LR Parsing

•  LALR languages are not natural
–  They are an efficiency hack on LR languages

•  Any reasonable programming language has a
LALR(1) grammar

•  LALR(1) has become a standard for
programming languages and for parser
generators

ECS 142 Lectures 7-8 70

A Hierarchy of Grammar Classes

From Andrew Appel,
�Modern Compiler
Implementation in Java�

ECS 142 Lectures 7-8 71

Notes on Parsing

•  Parsing
–  A solid foundation: context-free grammars
–  A simple parser: LL(1)
–  A more powerful parser: LR(1)
–  An efficiency hack: LALR(1)
–  LALR(1) parser generators
–  Didn’t discuss another variant: SLR(1)

•  Now we move on to semantic analysis

General Idea

• Input tokens are shifted onto a parsing stack

X = 3 * 4 + 5
= 3 * 4 + 5

3 * 4 + 5
* 4 + 5

NAME
NAME =
NAME = NUM

Stack Input

• This continues until a complete grammar rule
appears on the top of the stack

General Idea

• If rules are found, a "reduction" occurs

X = 3 * 4 + 5
= 3 * 4 + 5

3 * 4 + 5
 * 4 + 5

NAME
NAME =
NAME = NUM

Stack Input

NAME = factor

reduce factor : NUM

• RHS of grammar rule replaced with LHS

Rule Functions

• During reduction, rule functions are invoked

def p_factor(p):
 ‘factor : NUMBER’

• Parameter p contains grammar symbol values

def p_factor(p):
 ‘factor : NUMBER’

 p[0] p[1]

Using an LR Parser

• Rule functions generally process values on
right hand side of grammar rule

• Result is then stored in left hand side

• Results propagate up through the grammar

• Bottom-up parsing

def p_assign(p):
 ‘’’assign : NAME EQUALS expr’’’
 vars[p[1]] = p[3]

def p_expr_plus(p):
 ‘’’expr : expr PLUS term’’’
 p[0] = p[1] + p[3]

def p_term_mul(p):
 ‘’’term : term TIMES factor’’’
 p[0] = p[1] * p[3]

def p_term_factor(p):
 '''term : factor'''
 p[0] = p[1]

def p_factor(p):
 ‘’’factor : NUMBER’’’
 p[0] = p[1]

Example: Calculator

def p_assign(p):
 ‘’’assign : NAME EQUALS expr’’’
 p[0] = (‘ASSIGN’,p[1],p[3])

def p_expr_plus(p):
 ‘’’expr : expr PLUS term’’’
 p[0] = (‘+’,p[1],p[3])

def p_term_mul(p):
 ‘’’term : term TIMES factor’’’
 p[0] = (‘*’,p[1],p[3])

def p_term_factor(p):
 '''term : factor'''
 p[0] = p[1]

def p_factor(p):
 ‘’’factor : NUMBER’’’
 p[0] = (‘NUM’,p[1])

Example: Parse Tree

>>> t = yacc.parse("x = 3*4 + 5*6")
>>> t
('ASSIGN','x',('+',
 ('*',('NUM',3),('NUM',4)),
 ('*',('NUM',5),('NUM',6))
)
)
>>>

Example: Parse Tree

ASSIGN

'x' '+'

'*''*'

3 4 5 6

Why use PLY?

• There are many Python parsing tools

• Some use more powerful parsing algorithms

• Isn't parsing a "solved" problem anyways?

PLY is Informative

• Compiler writing is hard

• Tools should not make it even harder

• PLY provides extensive diagnostics

• Major emphasis on error reporting

• Provides the same information as yacc

PLY Diagnostics
• PLY produces the same diagnostics as yacc

• Yacc
% yacc grammar.y
4 shift/reduce conflicts
2 reduce/reduce conflicts

• PLY
% python mycompiler.py
yacc: Generating LALR parsing table...
4 shift/reduce conflicts
2 reduce/reduce conflicts

• PLY also produces the same debugging output

Debugging Output
Grammar

Rule 1 statement -> NAME = expression
Rule 2 statement -> expression
Rule 3 expression -> expression + expression
Rule 4 expression -> expression - expression
Rule 5 expression -> expression * expression
Rule 6 expression -> expression / expression
Rule 7 expression -> NUMBER

Terminals, with rules where they appear

* : 5
+ : 3
- : 4
/ : 6
= : 1
NAME : 1
NUMBER : 7
error :

Nonterminals, with rules where they appear

expression : 1 2 3 3 4 4 5 5 6 6
statement : 0

Parsing method: LALR

state 0

 (0) S' -> . statement
 (1) statement -> . NAME = expression
 (2) statement -> . expression
 (3) expression -> . expression + expression
 (4) expression -> . expression - expression
 (5) expression -> . expression * expression
 (6) expression -> . expression / expression
 (7) expression -> . NUMBER

 NAME shift and go to state 1
 NUMBER shift and go to state 2

 expression shift and go to state 4
 statement shift and go to state 3

state 1

 (1) statement -> NAME . = expression

 = shift and go to state 5

state 10

 (1) statement -> NAME = expression .
 (3) expression -> expression . + expression
 (4) expression -> expression . - expression
 (5) expression -> expression . * expression
 (6) expression -> expression . / expression

 $end reduce using rule 1 (statement -> NAME = expression .)
 + shift and go to state 7
 - shift and go to state 6
 * shift and go to state 8
 / shift and go to state 9

state 11

 (4) expression -> expression - expression .
 (3) expression -> expression . + expression
 (4) expression -> expression . - expression
 (5) expression -> expression . * expression
 (6) expression -> expression . / expression

 ! shift/reduce conflict for + resolved as shift.
 ! shift/reduce conflict for - resolved as shift.
 ! shift/reduce conflict for * resolved as shift.
 ! shift/reduce conflict for / resolved as shift.
 $end reduce using rule 4 (expression -> expression - expression .)
 + shift and go to state 7
 - shift and go to state 6
 * shift and go to state 8
 / shift and go to state 9

 ! + [reduce using rule 4 (expression -> expression - expression .)]
 ! - [reduce using rule 4 (expression -> expression - expression .)]
 ! * [reduce using rule 4 (expression -> expression - expression .)]
 ! / [reduce using rule 4 (expression -> expression - expression .)]

Debugging Output
Grammar

Rule 1 statement -> NAME = expression
Rule 2 statement -> expression
Rule 3 expression -> expression + expression
Rule 4 expression -> expression - expression
Rule 5 expression -> expression * expression
Rule 6 expression -> expression / expression
Rule 7 expression -> NUMBER

Terminals, with rules where they appear

* : 5
+ : 3
- : 4
/ : 6
= : 1
NAME : 1
NUMBER : 7
error :

Nonterminals, with rules where they appear

expression : 1 2 3 3 4 4 5 5 6 6
statement : 0

Parsing method: LALR

state 0

 (0) S' -> . statement
 (1) statement -> . NAME = expression
 (2) statement -> . expression
 (3) expression -> . expression + expression
 (4) expression -> . expression - expression
 (5) expression -> . expression * expression
 (6) expression -> . expression / expression
 (7) expression -> . NUMBER

 NAME shift and go to state 1
 NUMBER shift and go to state 2

 expression shift and go to state 4
 statement shift and go to state 3

state 1

 (1) statement -> NAME . = expression

 = shift and go to state 5

state 10

 (1) statement -> NAME = expression .
 (3) expression -> expression . + expression
 (4) expression -> expression . - expression
 (5) expression -> expression . * expression
 (6) expression -> expression . / expression

 $end reduce using rule 1 (statement -> NAME = expression .)
 + shift and go to state 7
 - shift and go to state 6
 * shift and go to state 8
 / shift and go to state 9

state 11

 (4) expression -> expression - expression .
 (3) expression -> expression . + expression
 (4) expression -> expression . - expression
 (5) expression -> expression . * expression
 (6) expression -> expression . / expression

 ! shift/reduce conflict for + resolved as shift.
 ! shift/reduce conflict for - resolved as shift.
 ! shift/reduce conflict for * resolved as shift.
 ! shift/reduce conflict for / resolved as shift.
 $end reduce using rule 4 (expression -> expression - expression .)
 + shift and go to state 7
 - shift and go to state 6
 * shift and go to state 8
 / shift and go to state 9

 ! + [reduce using rule 4 (expression -> expression - expression .)]
 ! - [reduce using rule 4 (expression -> expression - expression .)]
 ! * [reduce using rule 4 (expression -> expression - expression .)]
 ! / [reduce using rule 4 (expression -> expression - expression .)]

...
state 11

 (4) expression -> expression - expression .
 (3) expression -> expression . + expression
 (4) expression -> expression . - expression
 (5) expression -> expression . * expression
 (6) expression -> expression . / expression

 ! shift/reduce conflict for + resolved as shift.
 ! shift/reduce conflict for - resolved as shift.
 ! shift/reduce conflict for * resolved as shift.
 ! shift/reduce conflict for / resolved as shift.
 $end reduce using rule 4 (expression -> expression - expression .)
 + shift and go to state 7
 - shift and go to state 6
 * shift and go to state 8
 / shift and go to state 9

 ! + [reduce using rule 4 (expression -> expression - expression .)]
 ! - [reduce using rule 4 (expression -> expression - expression .)]
 ! * [reduce using rule 4 (expression -> expression - expression .)]
 ! / [reduce using rule 4 (expression -> expression - expression .)]
...

PLY Validation

• PLY validates all token/grammar specs

• Duplicate rules

• Malformed regexs and grammars

• Missing rules and tokens

• Unused tokens and rules

• Improper function declarations

• Infinite recursion

Error Example
import ply.lex as lex
tokens = [‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,
 ’DIVIDE’, EQUALS’]
t_ignore = ‘ \t’
t_PLUS = r’\+’
t_MINUS = r’-’
t_TIMES = r’*’
t_DIVIDE = r’/’
t_EQUALS = r’=’
t_NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’
t_MINUS = r'-'
t_POWER = r'\^'

def t_NUMBER():
 r’\d+’
 t.value = int(t.value)
 return t

lex.lex() # Build the lexer

example.py:12: Rule t_MINUS redefined.
 Previously defined on line 6

Error Example
import ply.lex as lex
tokens = [‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,
 ’DIVIDE’, EQUALS’]
t_ignore = ‘ \t’
t_PLUS = r’\+’
t_MINUS = r’-’
t_TIMES = r’*’
t_DIVIDE = r’/’
t_EQUALS = r’=’
t_NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’
t_MINUS = r'-'
t_POWER = r'\^'

def t_NUMBER():
 r’\d+’
 t.value = int(t.value)
 return t

lex.lex() # Build the lexer

lex: Rule 't_POWER' defined for an
unspecified token POWER

Error Example
import ply.lex as lex
tokens = [‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,
 ’DIVIDE’, EQUALS’]
t_ignore = ‘ \t’
t_PLUS = r’\+’
t_MINUS = r’-’
t_TIMES = r’*’
t_DIVIDE = r’/’
t_EQUALS = r’=’
t_NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’
t_MINUS = r'-'
t_POWER = r'\^'

def t_NUMBER():
 r’\d+’
 t.value = int(t.value)
 return t

lex.lex() # Build the lexer

example.py:15: Rule 't_NUMBER' requires
an argument.

PLY is Yacc

• PLY supports all of the major features of
Unix lex/yacc

• Syntax error handling and synchronization

• Precedence specifiers

• Character literals

• Start conditions

• Inherited attributes

Precedence Specifiers
• Yacc

%left PLUS MINUS
%left TIMES DIVIDE
%nonassoc UMINUS
...
expr : MINUS expr %prec UMINUS {
 $$ = -$1;
}

• PLY
precedence = (
 ('left','PLUS','MINUS'),
 ('left','TIMES','DIVIDE'),
 ('nonassoc','UMINUS'),
)
def p_expr_uminus(p):
 'expr : MINUS expr %prec UMINUS'
 p[0] = -p[1]

Character Literals
• Yacc

expr : expr '+' expr { $$ = $1 + $3; }
 | expr '-' expr { $$ = $1 - $3; }
 | expr '*' expr { $$ = $1 * $3; }
 | expr '/' expr { $$ = $1 / $3; }
 ;

• PLY

def p_expr(p):
 '''expr : expr '+' expr
 | expr '-' expr
 | expr '*' expr
 | expr '/' expr'''
 ...

Error Productions

• Yacc

funcall_err : ID LPAREN error RPAREN {
 printf("Syntax error in arguments\n");
 }
 ;

• PLY
def p_funcall_err(p):
 '''ID LPAREN error RPAREN'''
 print "Syntax error in arguments\n"

PLY is Simple

• Two pure-Python modules. That's it.

• Not part of a "parser framework"

• Use doesn't involve exotic design patterns

• Doesn't rely upon C extension modules

• Doesn't rely on third party tools

PLY is Fast

• For a parser written entirely in Python

• Underlying parser is table driven

• Parsing tables are saved and only regenerated if
the grammar changes

• Considerable work went into optimization
from the start (developed on 200Mhz PC)

PLY Performance
• Parse file with 1000 random expressions

(805KB) and build an abstract syntax tree

• PLY-2.3 : 2.95 sec, 10.2 MB (Python)

• DParser : 0.71 sec, 72 MB (Python/C)

• BisonGen : 0.25 sec, 13 MB (Python/C)

• Bison : 0.063 sec, 7.9 MB (C)

• System: MacPro 2.66Ghz Xeon, Python-2.5

• 12x slower than BisonGen (mostly C)

• 47x slower than pure C

Class Example
import ply.yacc as yacc

class MyParser:
 def p_assign(self,p):
 ‘’’assign : NAME EQUALS expr’’’
 def p_expr(self,p):
 ‘’’expr : expr PLUS term
 | expr MINUS term
 | term’’’
 def p_term(self,p):
 ‘’’term : term TIMES factor
 | term DIVIDE factor
 | factor’’’
 def p_factor(self,p):
 ‘’’factor : NUMBER’’’
 def build(self):
 self.parser = yacc.yacc(object=self)

Limitations

• LALR(1) parsing

• Not easy to work with very complex grammars
(e.g., C++ parsing)

• Retains all of yacc's black magic

• Not as powerful as more general parsing
algorithms (ANTLR, SPARK, etc.)

• Tradeoff : Speed vs. Generality

