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ply.yacc preliminaries

• ply.yacc is a module for creating a parser

• Assumes you have defined a BNF grammar

assign : NAME EQUALS expr
expr   : expr PLUS term
       | expr MINUS term
       | term
term   : term TIMES factor
       | term DIVIDE factor
       | factor
factor : NUMBER

compare with (ambiguity):

expr : expr PLUS expr
     | expr TIMES expr
     | NUMBER



ply.yacc example
import ply.yacc as yacc
import mylexer            # Import lexer information
tokens = mylexer.tokens   # Need token list

def p_assign(p):
    '''assign : NAME EQUALS expr'''

def p_expr(p):
    '''expr : expr PLUS term
            | expr MINUS term
            | term'''
def p_term(p):
    '''term : term TIMES factor
            | term DIVIDE factor
            | factor'''
def p_factor(p):
    '''factor : NUMBER'''

yacc.yacc()            # Build the parser



ply.yacc example
import ply.yacc as yacc
import mylexer            # Import lexer information
tokens = mylexer.tokens   # Need token list

def p_assign(p):
    '''assign : NAME EQUALS expr'''

def p_expr(p):
    '''expr : expr PLUS term
            | expr MINUS term
            | term'''
def p_term(p):
    '''term : term TIMES factor
            | term DIVIDE factor
            | factor'''
def p_factor(p):
    '''factor : NUMBER'''

yacc.yacc()            # Build the parser

token information
imported from lexer



ply.yacc example
import ply.yacc as yacc
import mylexer            # Import lexer information
tokens = mylexer.tokens   # Need token list

def p_assign(p):
    '''assign : NAME EQUALS expr'''

def p_expr(p):
    '''expr : expr PLUS term
            | expr MINUS term
            | term'''
def p_term(p):
    '''term : term TIMES factor
            | term DIVIDE factor
            | factor'''
def p_factor(p):
    '''factor : NUMBER'''

yacc.yacc()            # Build the parser

grammar rules encoded
as functions with names

p_rulename

Note: Name doesn't 
matter as long as it 

starts with p_



ply.yacc example
import ply.yacc as yacc
import mylexer            # Import lexer information
tokens = mylexer.tokens   # Need token list

def p_assign(p):
    '''assign : NAME EQUALS expr'''

def p_expr(p):
    '''expr : expr PLUS term
            | expr MINUS term
            | term'''
def p_term(p):
    '''term : term TIMES factor
            | term DIVIDE factor
            | factor'''
def p_factor(p):
    '''factor : NUMBER'''

yacc.yacc()            # Build the parser

docstrings contain
grammar rules

from BNF



ply.yacc example
import ply.yacc as yacc
import mylexer            # Import lexer information
tokens = mylexer.tokens   # Need token list

def p_assign(p):
    '''assign : NAME EQUALS expr'''

def p_expr(p):
    '''expr : expr PLUS term
            | expr MINUS term
            | term'''
def p_term(p):
    '''term : term TIMES factor
            | term DIVIDE factor
            | factor'''
def p_factor(p):
    '''factor : NUMBER'''

yacc.yacc()            # Build the parser
Builds the parser

using introspection



ply.yacc parsing

• yacc.parse() function

yacc.yacc()      # Build the parser
...
data = "x = 3*4+5*6"
yacc.parse(data)   # Parse some text

• This feeds data into lexer

• Parses the text and invokes grammar rules



A peek inside

• PLY uses LR-parsing. LALR(1)

• AKA: Shift-reduce parsing

• Widely used parsing technique

• Table driven
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Bottom-Up Parsing 

•  Bottom-up parsing is more general than top-
down parsing 
–  And just as efficient 
–  Builds on ideas in top-down parsing 
–  Preferred method in practice 

•  Also called LR parsing 
–  L means that tokens are read left to right 
–  R means that it constructs a rightmost derivation 
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An Introductory Example 

•  LR parsers  
–  Don�t need left-factored grammars, and  
–  Can handle left-recursive grammars  

•  Consider the following grammar 
    

          E → E + ( E ) | int  
  

–  Why is this not LL(1)? 

•  Consider the string:  int + ( int ) + ( int ) 
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The Idea 

•  LR parsing reduces a string to the start 
symbol by inverting productions: 

str Ã input string of terminals  
repeat 

–  Identify β in str such that A ! β is a production 
   (i.e., str = α β γ) 
–  Replace β by A in str (i.e., str becomes α A γ) 

until str = S 
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A Bottom-up Parse in Detail (1) 

int + + int int ( )

int + (int) + (int) 

( )
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A Bottom-up Parse in Detail (2) 

E 

int + + int int ( )

int + (int) + (int) 
E + (int) + (int) 

( )
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A Bottom-up Parse in Detail (3) 

E 

int + + int int ( )

int + (int) + (int) 
E + (int) + (int) 
E  + (E) + (int) 
 

( )

E 
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A Bottom-up Parse in Detail (4) 

E 

int + + int int ( )

int + (int) + (int) 
E + (int) + (int) 
E  + (E) + (int) 
E + (int) E 

( )

E 
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A Bottom-up Parse in Detail (5) 

E 

int + + int int ( )

int + (int) + (int) 
E + (int) + (int) 
E  + (E) + (int) 
E + (int) 
E + (E) 

E 

( )

E E 
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A Bottom-up Parse in Detail (6) 

E 

E 

int + + int int ( )

int + (int) + (int) 
E + (int) + (int) 
E  + (E) + (int) 
E + (int) 
E + (E) 
E 

E 

( )

E E A rightmost 
derivation in reverse 

(always rewrite the rightmost 
nonterminal in each step)
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Important Fact #1 

 
Important Fact #1 about bottom-up parsing: 
 

An LR parser traces a rightmost 
derivation in reverse 
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Where Do Reductions Happen 

Important Fact #1 has an interesting 
consequence: 
–  Let αβγ be a step of a bottom-up parse 
–  Assume the next reduction is by A→ β 
–  Then γ is a string of terminals ! 

Why? Because αAγ → αβγ is a step in a right-
most derivation  
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Notation 

•  Idea: Split the string into two substrings 
–  Right substring (a string of terminals) is as yet 

unexamined by parser 
–  Left substring has terminals and non-terminals 

•  The dividing point is marked by a I 
–  The I is not part of the string 

•  Initially, all input is unexamined: Ix1x2 . . . xn 
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Shift-Reduce Parsing 

•  Bottom-up parsing uses only two kinds of 
actions: 

 
Shift 

 
Reduce 
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Shift 

Shift: Move I one place to the right 
–  Shifts a terminal to the left string 

E + (I int )  ⇒ E + (int I )  
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Reduce 

Reduce: Apply a production in reverse at the 
right end of the left string 
–  If E → E + ( E ) is a production, then 

E + (E + ( E ) I )  ⇒ E +(E I )  



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 

int ++ int int ( ) ( )

18 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 

int ++ int int ( ) ( )

19 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 

E 

int ++ int int ( ) ( )

20 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 

E 

int ++ int int ( ) ( )

21 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  

E 

int ++ int int ( ) ( )

E 

22 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      red. E ! E + (E)   

E 

int ++ int int ( ) ( )

E 

23 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      red. E ! E + (E)   
E I + (int)$             shift 3 times  

E 

int ++ int int ( ) 

E 

( )

E 

24 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      red. E ! E + (E)   
E I + (int)$             shift 3 times  
E + (int I )$              red. E ! int 

E 

int ++ int int ( ) 

E 

( )

E 

25 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      red. E ! E + (E)   
E I + (int)$             shift 3 times  
E + (int I )$              red. E ! int 
E + (E I )$                shift 

E 

int ++ int int ( ) 

E 

( )

E E 

26 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      red. E ! E + (E)   
E I + (int)$             shift 3 times  
E + (int I )$              red. E ! int 
E + (E I )$                shift 
E + (E) I $                red. E ! E + (E)  E 

int ++ int int ( ) 

E 

( )

E E 

27 



Shift-Reduce Example 

 
I int + (int) + (int)$   shift 
int I + (int) + (int)$   red. E ! int 
E I + (int) + (int)$     shift 3 times 
E + (int I ) + (int)$    red. E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      red. E ! E + (E)   
E I + (int)$             shift 3 times  
E + (int I )$              red. E ! int 
E + (E I )$                shift 
E + (E) I $                red. E ! E + (E)  
E I $                        accept 

E 

E 

int ++ int int ( ) 

E 

( )

E E 

28 
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A Hierarchy of Grammar Classes 

From Andrew Appel,  
�Modern Compiler  
Implementation in Java� 
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Shift/Reduce Conflicts 

•  If a DFA state contains both 
    [X ! α•aβ, b]  and  [Y ! γ•, a]  

•  Then on input �a� we could either 
–  Shift into state [X ! αa•β, b], or 
–  Reduce with Y ! γ 

•  This is called a shift-reduce conflict 
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Shift/Reduce Conflicts 

•  Typically due to ambiguities in the grammar 
•  Classic example: the dangling else 
         S → if E then S  |  if E then S else S  |  OTHER 
•  Will have DFA state containing 
           [S → if E then S•,               else] 
           [S → if E then S• else S,    x] 
•  If else follows then we can shift or reduce 
•  Default (bison, CUP, etc.) is to shift 

–  Default behavior is as needed in this case 
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The Stack 

•  Left string can be implemented as a stack 
–  Top of the stack is the I 

•  Shift pushes a terminal on the stack 

•  Reduce  
–  Pops 0 or more symbols off the stack: production rhs 
–  Pushes a non-terminal on the stack: production lhs 
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Key Issue: When to Shift or Reduce? 

•  Decide based on the left string (the stack) 
•  Idea: use a finite automaton (DFA) to decide 

when to shift or reduce 
–  The DFA input is the stack 
–  The language consists of terminals and non-terminals 

•  We run the DFA on the stack and examine the 
resulting state X and the token tok after I 
–  If X has a transition labeled tok then shift 
–  If X is labeled with �A ! β on tok� then reduce 



LR(1) Parsing: An Example  
int 

E ! int  
on $, + 

accept  
on $ 

E ! int 
on ), + 

E ! E + (E) 
on $, + 

E ! E + (E) 
on ), + 

( + 
E 

int 

10 

9

11 

0 1

2 3 4

56

8

7

+ E 

+ 

) 

( 

I int + (int) + (int)$   shift 
int I + (int) + (int)$   E ! int 
E I + (int) + (int)$     shift(x3) 
E + (int I ) + (int)$    E ! int 
E + (E I ) + (int)$      shift  
E + (E) I + (int)$      E ! E+(E)   
E I + (int)$             shift (x3)  
E + (int I )$              E ! int 
E + (E I )$                shift 
E + (E) I $                E ! E+(E)  
E I $                        accept 

int 

E 

) 31 
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Representing the DFA 

•  Parsers represent the DFA as a 2D table 
–  Recall table-driven lexical analysis 

•  Lines correspond to DFA states 
•  Columns correspond to terminals and non-

terminals 
•  Typically columns are split into: 

–  Those for terminals: action table 
–  Those for non-terminals: goto table 
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Representing the DFA. Example 

The table for a fragment of our DFA 

int + ( ) $ E 
… 
3 s4 
4 s5 g6 
5 rE! int rE! int 
6 s8 s7 
7 rE! E+(E) rE! E+(E) 
… 

E ! int 
on ), + 

E ! E + (E) 
on $, + 

( 

int 
3 4

56

7

) 

E 
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The LR Parsing Algorithm 

•  After a shift or reduce action we rerun the 
DFA on the entire stack 
–  This is wasteful, since most of the work is 

repeated 
•  Remember for each stack element to which 

state it brings the DFA 
•  LR parser maintains a stack 

〈 sym1, state1 〉 . . . 〈 symn, staten 〉(
statek is the final state of the DFA on sym1 … symk 
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The LR Parsing Algorithm 

Let I = w$ be initial input 
Let j = 0 
Let DFA state 0 be the start state 
Let stack = 〈 dummy, 0 〉(

(repeat 
  case action[top_state(stack), I[j]] of 
   shift k:  push 〈 I[j++], k 〉 
   reduce X → α:  
         - pop |α| pairs off the stack 
         - push 〈X, Goto[top_state(stack), X]〉(
( ( (accept: halt normally 
   error: halt and report error(
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LR Parsing Notes 

•  Can be used to parse more grammars than LL 

•  Most programming languages grammars are LR 

•  Can be described as a simple table 

•  There are tools for building the table 

•  How is the table constructed? 
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Recap … 

•  A bottom-up parser rewrites the input string 
to the start symbol  

•  The state of the parser is described as  
                     α I γ 
–   α is a stack of terminals and non-terminals 
–   γ is the string of terminals not yet examined 

•  Initially: I x1x2 . . . xn 
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The Shift and Reduce Actions 

•  Recall the CFG: E ! int | E + (E) 
•  A bottom-up parser uses two kinds of actions 

–  Shift pushes a terminal from input on the stack 
         E + (I int )  ⇒ E + (int I ) 

–  Reduce pops 0 or more symbols off of the stack 
(production rhs) and pushes a non-terminal on the 
stack (production lhs) 

       E + (E + ( E ) I )  ⇒ E +(E I ) 
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Key Issue: When to Shift or Reduce? 

•  Idea: use a finite automaton (DFA) to decide 
when to shift or reduce 
–  The input is the stack 
–  The language consists of terminals and non-terminals 

•  We run the DFA on the stack and we examine 
the resulting state X and the token tok after I 
–  If X has a transition labeled tok then shift 
–  If X is labeled with �A ! β on tok� then reduce 
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Key Issue: How is the DFA Constructed? 

•  The stack describes the context of the parse 
–  What non-terminal we are looking for 
–  What production rhs we are looking for 
–  What we have seen so far from the rhs 

•  Each DFA state describes several such 
contexts 
–  E.g., when we are looking for non-terminal E, we 

might be looking either for an int or an E + (E) rhs 
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LR(1) Items 

•  An LR(1) item is a pair 
             X → α•β, a 
–  X ! αβ is a production 
–  a is a terminal (the lookahead terminal) 
–  LR(1) means 1 lookahead terminal 

 

•  [X → α•β, a] describes a context of the parser   
–  We are trying to find an X followed by an a, and  
–  We have  α already on top of the stack 
–  Thus we need to see next a prefix derived from βa 
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Note 

•  The symbol I was used before to separate the 
stack from the rest of input 
–   α I γ, where α is the stack and γ is the remaining 

string of terminals 
•  In LR(1) items • is used to mark a prefix of a 

production rhs: 
               X → α•β, a 
–  Here β might contain non-terminals as well 

•  In both case the stack is on the left 
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Convention 

•  We add to our grammar a fresh new start 
symbol S and a production S ! E 
–  Where E is the old start symbol 

•  The initial parsing context contains: 
               S ! •E, $ 
–  Trying to find an S as a string derived from E$ 
–  The stack is empty 
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LR(1) Items (Cont.) 

•  In context containing 
             E ! E + • ( E ), + 
–  If ( follows then we can perform a shift to context 

containing 
             E ! E + (• E ), + 

•  In a context containing 
            E ! E + ( E ) •, + 
–  We can perform a reduction with E ! E + ( E )  
–  But only if a + follows   
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LR(1) Items (Cont.) 

•  Consider a context with the item 
         E ! E + (• E ) , + 

•  We expect next a string derived from E ) + 
•  There are two productions for E 

          E ! int   and   E ! E + ( E) 
•  We describe this by extending the context  

with two more items: 
        E ! • int, ) 
        E ! • E + ( E ) , ) 
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The Closure Operation 

•  The operation of extending the context with 
items is called the closure operation 

Closure(Items) = 
   repeat 
      for each [X ! α•Yβ, a] in Items 
          for each production Y ! γ  
               for each b 2 First(βa) 
                    add [Y ! •γ, b] to Items 
   until Items is unchanged 
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Constructing the Parsing DFA (1)  

•  Construct the start context: Closure({S ! •E, $}) 

S ! •E, $ 
E ! •E+(E), $ 
E ! •int, $ 
E ! •E+(E), + 
E ! •int, + 

S ! •E, $ 
E ! •E+(E), $/+ 
E ! •int, $/+ 

•  We abbreviate as 
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Constructing the Parsing DFA (2) 

•  A DFA state is a closed set of LR(1) items 
–  This means that we performed Closure 

•  The start state contains [S ! •E, $] 

•  A state that contains [X ! α•, b] is labeled 
with �reduce with X ! α on b� 

•  And now the transitions … 
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The DFA Transitions 

•  A state �State� that contains [X ! α•yβ, b] 
has a transition labeled y to a state that 
contains the items �Transition(State, y)� 
–  y can be a terminal or a non-terminal 

 
Transition(State, y)  
   Items Ã ∅ 
   for each [X ! α•yβ, b] 2 State  
        add [X ! αy•β, b] to Items 
   return Closure(Items) 
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Constructing the Parsing DFA: An Example 

E ! E+• (E), $/+ 

E ! int  
on $, + 

accept  
on $ 

E ! E+(•E), $/+ 
E ! •E+(E), )/+ 
E ! •int, )/+ 

E ! int•, )/+ E ! int  
on ), + 

E ! E+(E•), $/+ 
E ! E•+(E), )/+ 

and so on… 

S ! •E, $ 
E ! •E+(E), $/+ 
E ! •int, $/+ 

0 

3 

4 

5 6 

E ! int•, $/+ 
1 

S ! E•, $ 
E ! E•+(E), $/+ 

2 

int 

E + 
( 

E 

int 
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LR Parsing Tables. Notes 

•  Parsing tables (i.e. the DFA) can be 
constructed automatically for a CFG 

•  But we still need to understand the 
construction to work with parser generators 
–  E.g., they report errors in terms of sets of items 

•  What kind of errors can we expect? 
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Shift/Reduce Conflicts 

•  If a DFA state contains both 
    [X ! α•aβ, b]  and  [Y ! γ•, a]  

•  Then on input �a� we could either 
–  Shift into state [X ! αa•β, b], or 
–  Reduce with Y ! γ 

•  This is called a shift-reduce conflict 
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Shift/Reduce Conflicts 

•  Typically due to ambiguities in the grammar 
•  Classic example: the dangling else 
         S → if E then S  |  if E then S else S  |  OTHER 
•  Will have DFA state containing 
           [S → if E then S•,               else] 
           [S → if E then S• else S,    x] 
•  If else follows then we can shift or reduce 
•  Default (bison, CUP, etc.) is to shift 

–  Default behavior is as needed in this case 
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More Shift/Reduce Conflicts 

•  Consider the ambiguous grammar 
                   E → E + E | E * E | int 
•  We will have the states containing 
           [E → E * • E,  +]            [E → E * E•,    +] 
           [E → • E + E,  +]    ⇒E    [E → E • + E,  +] 
                 …                                   … 
•  Again we have a shift/reduce on input + 

–  We need to reduce (* binds more tightly than +) 
–  Recall solution: declare the precedence of * and + 
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More Shift/Reduce Conflicts 

•  In bison declare precedence and associativity:             
                %left +!
                %left *!

•  Precedence of a rule = that of its last terminal 
–  See bison manual for ways to override this default 

•  Context-dependent precedence (Section 5.4, pp 70) 

•  Resolve shift/reduce conflict with a shift if: 
–  no precedence declared for either rule or terminal 
–  input terminal has higher precedence than the rule 
–  the precedences are the same and right associative 
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Using Precedence to Solve S/R Conflicts 

•  Back to our example: 
           [E → E * • E, +]           [E →E * E•, +] 
           [E → • E + E, +]  ⇒E    [E →E • + E, +] 
                 …                                   … 

•  Will choose reduce because precedence of 
rule E → E * E is higher than of terminal + 
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Using Precedence to Solve S/R Conflicts 

•  Same grammar as before 
                   E → E + E | E * E | int 
•  We will also have the states 
           [E → E + • E, +]            [E → E + E•, +] 
           [E → • E + E, +]    ⇒E    [E → E • + E, +] 
                 …                                   … 
•  Now we also have a shift/reduce on input + 

–  We choose reduce because E → E + E and + have 
the same precedence and + is left-associative 
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Using Precedence to Solve S/R Conflicts 

•  Back to our dangling else example 
           [S → if E then S•,             else] 
           [S → if E then S• else S,   x] 
•  Can eliminate conflict by declaring else with 

higher precedence than then 
–  Or just rely on the default shift action 

•  But this starts to look like �hacking the parser� 
•  Best to avoid overuse of precedence declarations 

or you’ll end with unexpected parse trees 
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Reduce/Reduce Conflicts 

•  If a DFA state contains both 
        [X ! α•, a] and [Y ! β•, a] 
–  Then on input �a� we don�t know which 

production to reduce 

•  This is called a reduce/reduce conflict 
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Reduce/Reduce Conflicts 

•  Usually due to gross ambiguity in the grammar 
•  Example: a sequence of identifiers 

                S → ε  |  id  |  id S 

•  There are two parse trees for the string id 
                  S → id 
                  S → id S → id    
•   How does this confuse the parser? 
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More on Reduce/Reduce Conflicts 

•  Consider the states             [S → id •,     $] 
           [S��→ • S,     $]                   [S → id • S,  $] 
           [S → •,         $]        ⇒id       [S → •,         $] 
           [S → • id,     $]                    [S → • id,     $] 
           [S → • id S,  $]                    [S → • id S,  $] 
•  Reduce/reduce conflict on input $ 
                     S��→ S → id 
                     S��→ S → id S → id 
•  Better rewrite the grammar:   S → ε  | id S 
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Using Parser Generators 

•  Parser generators construct the parsing DFA 
given a CFG 
–  Use precedence declarations and default 

conventions to resolve conflicts 
–  The parser algorithm is the same for all grammars 

(and is provided as a library function) 
•  But most parser generators do not construct 

the DFA as described before 
–  Because the LR(1) parsing DFA has 1000s of states 

even for a simple language 
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LR(1) Parsing Tables are Big 

•  But many states are similar, e.g. 

                                  and  

•  Idea: merge the DFA states whose items 
differ only in the lookahead tokens 
–  We say that such states have the same core 

•  We obtain 

E ! int  
on $, + E ! int•, $/+ E ! int•, )/+ E ! int  

on ), + 

5 1 

E ! int  
on $, +, ) E ! int•, $/+/) 

1� 
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The Core of a Set of LR Items 

•  Definition: The core of a set of LR items is 
the set of first components 
–  Without the lookahead terminals 

•  Example: the core of  
            { [X → α•β, b], [Y → γ•δ, d]} 
   is 
            {X → α•β,  Y → γ•δ} 
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LALR States 

•  Consider for example the LR(1) states 
             {[X → α•, a], [Y → β•, c]} 
             {[X → α•, b], [Y → β•, d]} 
•  They have the same core and can be merged 
•  And the merged state contains: 
             {[X → α•, a/b], [Y → β•, c/d]} 
•  These are called LALR(1) states  

–  Stands for LookAhead LR 
–  Typically 10 times fewer LALR(1) states than LR(1) 
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A LALR(1) DFA 

•  Repeat until all states have distinct core 
–  Choose two distinct states with same core 
–  Merge the states by creating a new one with the 

union of all the items 
–  Point edges from predecessors to new state 
–  New state points to all the previous successors 

A 

E D 

C B 

F 

A 
BE 

D 

C 

F 



Conversion LR(1) to LALR(1). Example. 
int 

E ! int  
on $, + 

E ! int 
on ), + 

E ! E + (E) 
on $, + 

E ! E + (E) 
on ), + 

( + 
E 

int 

10 

9

11 

0 1

2 3 4

56

8

7

+ E 

+ 

) 

( 
int 

E 

) 

accept  
on $ 

int 
E ! int  
on $, +, ) 

E ! E + (E) 
on $, +, ) 

( 

E 
int 

0 1,5 

2 3,8 4,9 

6,10 7,11 

+ 

+ 

) 

E 

accept  
on $ 

67 
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The LALR Parser Can Have Conflicts 

•  Consider for example the LR(1) states 
             {[X → α•, a], [Y → β•, b]} 
             {[X → α•, b], [Y → β•, a]} 
•  And the merged LALR(1) state 
             {[X → α•, a/b], [Y → β•, a/b]} 
•  Has a new reduce-reduce conflict 
•  In practice such cases are rare 

•  However, no new shift/reduce conflicts. Why? 
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LALR vs. LR Parsing 

•  LALR languages are not natural 
–  They are an efficiency hack on LR languages 

•  Any reasonable programming language has a 
LALR(1) grammar 

•  LALR(1) has become a standard for 
programming languages and for parser 
generators 
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A Hierarchy of Grammar Classes 

From Andrew Appel,  
�Modern Compiler  
Implementation in Java� 
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Notes on Parsing 

•  Parsing 
–  A solid foundation: context-free grammars 
–  A simple parser: LL(1) 
–  A more powerful parser: LR(1) 
–  An efficiency hack: LALR(1) 
–  LALR(1) parser generators 
–  Didn’t discuss another variant: SLR(1) 

 
•  Now we move on to semantic analysis 



General Idea

• Input tokens are shifted onto a parsing stack

X = 3 * 4 + 5
= 3 * 4 + 5

3 * 4 + 5
* 4 + 5

 
NAME
NAME =
NAME = NUM

Stack Input

• This continues until a complete grammar rule 
appears on the top of the stack



General Idea

• If rules are found, a "reduction" occurs

X = 3 * 4 + 5
= 3 * 4 + 5

3 * 4 + 5
  * 4 + 5

NAME 
NAME =
NAME = NUM

Stack Input

NAME = factor 

reduce factor : NUM

• RHS of grammar rule replaced with LHS



Rule Functions

• During reduction, rule functions are invoked

def p_factor(p):
    ‘factor : NUMBER’

• Parameter p contains grammar symbol values

def p_factor(p):
    ‘factor : NUMBER’

      p[0]     p[1]



Using an LR Parser

• Rule functions generally process values on 
right hand side of grammar rule

• Result is then stored in left hand side

• Results propagate up through the grammar

• Bottom-up parsing



def p_assign(p):
    ‘’’assign : NAME EQUALS expr’’’
    vars[p[1]] = p[3]

def p_expr_plus(p):
    ‘’’expr : expr PLUS term’’’
    p[0] = p[1] + p[3]

def p_term_mul(p):
    ‘’’term : term TIMES factor’’’
    p[0] = p[1] * p[3]

def p_term_factor(p):
    '''term : factor'''
    p[0] = p[1]

def p_factor(p):
    ‘’’factor : NUMBER’’’
    p[0] = p[1]

Example: Calculator



def p_assign(p):
    ‘’’assign : NAME EQUALS expr’’’
    p[0] = (‘ASSIGN’,p[1],p[3])

def p_expr_plus(p):
    ‘’’expr : expr PLUS term’’’
    p[0] = (‘+’,p[1],p[3])

def p_term_mul(p):
    ‘’’term : term TIMES factor’’’
    p[0] = (‘*’,p[1],p[3])

def p_term_factor(p):
    '''term : factor'''
    p[0] = p[1]

def p_factor(p):
    ‘’’factor : NUMBER’’’
    p[0] = (‘NUM’,p[1])

Example: Parse Tree



>>> t = yacc.parse("x = 3*4 + 5*6")
>>> t
('ASSIGN','x',('+',
                  ('*',('NUM',3),('NUM',4)),
                  ('*',('NUM',5),('NUM',6))
               )
)
>>>

Example: Parse Tree

ASSIGN

'x' '+'

'*''*'

3 4 5 6



Why use PLY?

• There are many Python parsing tools

• Some use more powerful parsing algorithms

• Isn't parsing a "solved" problem anyways?



PLY is Informative

• Compiler writing is hard

• Tools should not make it even harder

• PLY provides extensive diagnostics

• Major emphasis on error reporting

• Provides the same information as yacc



PLY Diagnostics
• PLY produces the same diagnostics as yacc

• Yacc
% yacc grammar.y
4 shift/reduce conflicts
2 reduce/reduce conflicts

• PLY
% python mycompiler.py
yacc: Generating LALR parsing table...
4 shift/reduce conflicts
2 reduce/reduce conflicts

• PLY also produces the same debugging output



Debugging Output
Grammar

Rule 1     statement -> NAME = expression
Rule 2     statement -> expression
Rule 3     expression -> expression + expression
Rule 4     expression -> expression - expression
Rule 5     expression -> expression * expression
Rule 6     expression -> expression / expression
Rule 7     expression -> NUMBER

Terminals, with rules where they appear

*                    : 5
+                    : 3
-                    : 4
/                    : 6
=                    : 1
NAME                 : 1
NUMBER               : 7
error                : 

Nonterminals, with rules where they appear

expression           : 1 2 3 3 4 4 5 5 6 6
statement            : 0

Parsing method: LALR

state 0

    (0) S' -> . statement
    (1) statement -> . NAME = expression
    (2) statement -> . expression
    (3) expression -> . expression + expression
    (4) expression -> . expression - expression
    (5) expression -> . expression * expression
    (6) expression -> . expression / expression
    (7) expression -> . NUMBER

    NAME            shift and go to state 1
    NUMBER          shift and go to state 2

    expression                     shift and go to state 4
    statement                      shift and go to state 3

state 1

    (1) statement -> NAME . = expression

    =               shift and go to state 5

state 10

    (1) statement -> NAME = expression .
    (3) expression -> expression . + expression
    (4) expression -> expression . - expression
    (5) expression -> expression . * expression
    (6) expression -> expression . / expression

    $end            reduce using rule 1 (statement -> NAME = expression .)
    +               shift and go to state 7
    -               shift and go to state 6
    *               shift and go to state 8
    /               shift and go to state 9

state 11

    (4) expression -> expression - expression .
    (3) expression -> expression . + expression
    (4) expression -> expression . - expression
    (5) expression -> expression . * expression
    (6) expression -> expression . / expression

  ! shift/reduce conflict for + resolved as shift.
  ! shift/reduce conflict for - resolved as shift.
  ! shift/reduce conflict for * resolved as shift.
  ! shift/reduce conflict for / resolved as shift.
    $end            reduce using rule 4 (expression -> expression - expression .)
    +               shift and go to state 7
    -               shift and go to state 6
    *               shift and go to state 8
    /               shift and go to state 9

  ! +               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! -               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! *               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! /               [ reduce using rule 4 (expression -> expression - expression .) ]



Debugging Output
Grammar

Rule 1     statement -> NAME = expression
Rule 2     statement -> expression
Rule 3     expression -> expression + expression
Rule 4     expression -> expression - expression
Rule 5     expression -> expression * expression
Rule 6     expression -> expression / expression
Rule 7     expression -> NUMBER

Terminals, with rules where they appear

*                    : 5
+                    : 3
-                    : 4
/                    : 6
=                    : 1
NAME                 : 1
NUMBER               : 7
error                : 

Nonterminals, with rules where they appear

expression           : 1 2 3 3 4 4 5 5 6 6
statement            : 0

Parsing method: LALR

state 0

    (0) S' -> . statement
    (1) statement -> . NAME = expression
    (2) statement -> . expression
    (3) expression -> . expression + expression
    (4) expression -> . expression - expression
    (5) expression -> . expression * expression
    (6) expression -> . expression / expression
    (7) expression -> . NUMBER

    NAME            shift and go to state 1
    NUMBER          shift and go to state 2

    expression                     shift and go to state 4
    statement                      shift and go to state 3

state 1

    (1) statement -> NAME . = expression

    =               shift and go to state 5

state 10

    (1) statement -> NAME = expression .
    (3) expression -> expression . + expression
    (4) expression -> expression . - expression
    (5) expression -> expression . * expression
    (6) expression -> expression . / expression

    $end            reduce using rule 1 (statement -> NAME = expression .)
    +               shift and go to state 7
    -               shift and go to state 6
    *               shift and go to state 8
    /               shift and go to state 9

state 11

    (4) expression -> expression - expression .
    (3) expression -> expression . + expression
    (4) expression -> expression . - expression
    (5) expression -> expression . * expression
    (6) expression -> expression . / expression

  ! shift/reduce conflict for + resolved as shift.
  ! shift/reduce conflict for - resolved as shift.
  ! shift/reduce conflict for * resolved as shift.
  ! shift/reduce conflict for / resolved as shift.
    $end            reduce using rule 4 (expression -> expression - expression .)
    +               shift and go to state 7
    -               shift and go to state 6
    *               shift and go to state 8
    /               shift and go to state 9

  ! +               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! -               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! *               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! /               [ reduce using rule 4 (expression -> expression - expression .) ]

...
state 11

    (4) expression -> expression - expression .
    (3) expression -> expression . + expression
    (4) expression -> expression . - expression
    (5) expression -> expression . * expression
    (6) expression -> expression . / expression

  ! shift/reduce conflict for + resolved as shift.
  ! shift/reduce conflict for - resolved as shift.
  ! shift/reduce conflict for * resolved as shift.
  ! shift/reduce conflict for / resolved as shift.
    $end            reduce using rule 4 (expression -> expression - expression .)
    +               shift and go to state 7
    -               shift and go to state 6
    *               shift and go to state 8
    /               shift and go to state 9

  ! +               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! -               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! *               [ reduce using rule 4 (expression -> expression - expression .) ]
  ! /               [ reduce using rule 4 (expression -> expression - expression .) ]
...



PLY Validation

• PLY validates all token/grammar specs

• Duplicate rules

• Malformed regexs and grammars

• Missing rules and tokens

• Unused tokens and rules

• Improper function declarations

• Infinite recursion



Error Example
import ply.lex as lex
tokens = [ ‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,
           ’DIVIDE’, EQUALS’ ]
t_ignore = ‘ \t’         
t_PLUS   = r’\+’
t_MINUS  = r’-’
t_TIMES  = r’\*’
t_DIVIDE = r’/’
t_EQUALS = r’=’
t_NAME   = r’[a-zA-Z_][a-zA-Z0-9_]*’
t_MINUS  = r'-'
t_POWER  = r'\^'

def t_NUMBER():
    r’\d+’
    t.value = int(t.value)
    return t

lex.lex()         # Build the lexer

example.py:12: Rule t_MINUS redefined. 
               Previously defined on line 6



Error Example
import ply.lex as lex
tokens = [ ‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,
           ’DIVIDE’, EQUALS’ ]
t_ignore = ‘ \t’         
t_PLUS   = r’\+’
t_MINUS  = r’-’
t_TIMES  = r’\*’
t_DIVIDE = r’/’
t_EQUALS = r’=’
t_NAME   = r’[a-zA-Z_][a-zA-Z0-9_]*’
t_MINUS  = r'-'
t_POWER  = r'\^'

def t_NUMBER():
    r’\d+’
    t.value = int(t.value)
    return t

lex.lex()         # Build the lexer

lex: Rule 't_POWER' defined for an 
unspecified token POWER



Error Example
import ply.lex as lex
tokens = [ ‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,
           ’DIVIDE’, EQUALS’ ]
t_ignore = ‘ \t’         
t_PLUS   = r’\+’
t_MINUS  = r’-’
t_TIMES  = r’\*’
t_DIVIDE = r’/’
t_EQUALS = r’=’
t_NAME   = r’[a-zA-Z_][a-zA-Z0-9_]*’
t_MINUS  = r'-'
t_POWER  = r'\^'

def t_NUMBER():
    r’\d+’
    t.value = int(t.value)
    return t

lex.lex()         # Build the lexer

example.py:15: Rule 't_NUMBER' requires 
an argument.



PLY is Yacc

• PLY supports all of the major features of 
Unix lex/yacc

• Syntax error handling and synchronization

• Precedence specifiers

• Character literals

• Start conditions

• Inherited attributes



Precedence Specifiers
• Yacc

%left PLUS MINUS
%left TIMES DIVIDE
%nonassoc UMINUS
...
expr : MINUS expr %prec UMINUS {
    $$ = -$1;
}

• PLY
precedence = (
   ('left','PLUS','MINUS'),
   ('left','TIMES','DIVIDE'),
   ('nonassoc','UMINUS'),
)
def p_expr_uminus(p):
   'expr : MINUS expr %prec UMINUS'
   p[0] = -p[1]



Character Literals
• Yacc

expr : expr '+' expr { $$ = $1 + $3; }
     | expr '-' expr { $$ = $1 - $3; }
     | expr '*' expr { $$ = $1 * $3; }
     | expr '/' expr { $$ = $1 / $3; }
     ;

• PLY

def p_expr(p):
   '''expr : expr '+' expr
           | expr '-' expr
           | expr '*' expr
           | expr '/' expr'''
   ...



Error Productions

• Yacc

funcall_err : ID LPAREN error RPAREN {
         printf("Syntax error in arguments\n");
     }  
     ;

• PLY
def p_funcall_err(p):
   '''ID LPAREN error RPAREN'''
   print "Syntax error in arguments\n"



PLY is Simple

• Two pure-Python modules.  That's it.

• Not part of a "parser framework"

• Use doesn't involve exotic design patterns

• Doesn't rely upon C extension modules

• Doesn't rely on third party tools



PLY is Fast

• For a parser written entirely in Python

• Underlying parser is table driven

• Parsing tables are saved and only regenerated if 
the grammar changes

• Considerable work went into optimization 
from the start (developed on 200Mhz PC)



PLY Performance
• Parse file with 1000 random expressions 

(805KB) and build an abstract syntax tree

• PLY-2.3     :  2.95 sec,     10.2 MB    (Python)

• DParser    : 0.71 sec,      72 MB      (Python/C)

• BisonGen  : 0.25 sec,      13 MB      (Python/C)

• Bison        :  0.063 sec,   7.9 MB     (C) 

• System:  MacPro 2.66Ghz Xeon, Python-2.5

• 12x slower than BisonGen (mostly C)

• 47x slower than pure C



Class Example
import ply.yacc as yacc

class MyParser:
    def p_assign(self,p):
        ‘’’assign : NAME EQUALS expr’’’
    def p_expr(self,p):
        ‘’’expr : expr PLUS term
                | expr MINUS term
                | term’’’
    def p_term(self,p):
        ‘’’term : term TIMES factor
                | term DIVIDE factor
                | factor’’’
    def p_factor(self,p):
        ‘’’factor : NUMBER’’’
    def build(self):
        self.parser = yacc.yacc(object=self)



Limitations

• LALR(1) parsing

• Not easy to work with very complex grammars 
(e.g., C++ parsing)

• Retains all of yacc's black magic

• Not as powerful as more general parsing 
algorithms (ANTLR, SPARK, etc.)

• Tradeoff : Speed vs. Generality


