CS 480

Translators (Compilers)

mov rax, Ox0a687f
push rax

xor rax, rax

mov rsi, rsp

mov rdi, 1

mov rdx, 8
call write

weeks 4: yacc, LR parsing

Instructor: Liang Huang

(some slides courtesy of David Beazley and Zhendong Su)

21

18

15

12

0~0.99

HW3 Distribution (coding part)

@® AC ¢ CE A ® RE

2~2.99

4~4.99 6~6.99 8~8.99 10~10.99 12~12.99

number of cases passed

14~14.99

16

40

30

20

10

ONLY on HWI cases (60% of grade)

0~0.99

@ AC

@ CE o WA

—— N

2~2.99

@ RE

4~4.99 6~6.99 8~8.99

HWI cases passed

10~10.99

ply.yacc preliminaries

® ply.yacc is a module for creating a parser

® Assumes you have defined a BNF grammar

assign
expr

term

factor

: NAME EQUALS expr
: expr PLUS term

¢+ term TIMES factor

compare with (ambiguity):

expr MINUS term expr : expr PLUS expr
teim | expr TIMES expr

| NUMBER

term DIVIDE factor
factor

: NUMBER

ply.yacc example

import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p assign(p):
'''assign : NAME EQUALS expr'''

def p expr(p):

''"'expr : expr PLUS term
| expr MINUS term
| term'"’

def p term(p):

'"'term : term TIMES factor
| term DIVIDE factor
| factor''"'

def p factor(p):
'''factor : NUMBER'''

yacc.yacc() # Build the parser

ply.yacc example

import mylexer token information
tokens = mylexer.tokens imported from lexer

ply.yacc example

g

def p expr(p): €« grammar rules encoded
as functions with names

/ . P_rUIename
def p term(p):

Note: Name doesn't
matter as long as it
starts with p_

def p factor(p):

ply.yacc example

'assign : NAME EQUALS expr'''

'expr : expr PLUS term

| expr MINUS termn‘\\\\\\\~(» N
| term' "’ docstrings contain

grammar rules

! (4
term : term TIMES factor €— from BNEF
| term DIVIDE factor
| factor'''

'factor : NUMBER'''

ply.yacc example

import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list

def p assign(p):
''"'assign : NAME EQUALS expr'''

def p expr(p):

''"'expr : expr PLUS term
| expr MINUS term
| term'''

def p term(p):

'""'term : term TIMES factor
| term DIVIDE factor
| factor'''

def p factor(p):
''"'factor : NUMBER'''

Builds the parser
using introspection

yacc.yacc () €

ply.yacc parsing

® yacc.parse() function

yacc.yacc() # Build the parser
data = "x = 3*4+5*6"
vacc.parse(data) # Parse some text

® T[his feeds data into lexer

® Parses the text and invokes grammar rules

A peek inside

PLY uses LR-parsing. LALR(I)
AKA: Shift-reduce parsing
Widely used parsing technique

Table driven

Bottom-Up Parsing

* Bottom-up parsing is more general than top-
down parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Preferred method in practice

* Also called LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

ECS 142 Lectures 7-8 3

An Introductory Example

* LR parsers
- Don’ t need left-factored grammars, and
- Can handle left-recursive grammars

» Consider the following grammar
E—-E+(E)]|int
- Why is this not LL(1)?

+ Consider the string: int + (int) + (int)

ECS 142 Lectures 7-8

The Idea

* LR parsing reduces a string to the start
symbol by inverting productions:

str < input string of terminals

repeat

- Identify p in str such that A — f is a production
(i.,e.,str=a py)
- Replace 3 by A in str (i.e., str becomes o A v)
until str= S

ECS 142 Lectures 7-8 5

E—-E+(E)]|int

A Bottom-up Parse in Detail (1)

int + (int) + (int)

nt + (int) + (Int)

ECS 142 Lectures 7-8 6

E—-E+(E)]|int

A Bottom-up Parse in Detail (2)

int + (int) + (int)
E + (int) + (int)

:
\

nt + (int) + (Int)

ECS 142 Lectures 7-8 7

E—-E+(E)]|int

A Bottom-up Parse in Detail (3)

int + (int) + (int)
E + (int) + (int)
E +(E)+ (int)

: F
\ \

nt + (int) + (Int)

ECS 142 Lectures 7-8 8

E—-E+(E)|int

A Bottom-up Parse in Detail (4)

int + (int) + (int)
E + (int) + (int)
E +(E) + (int)

E + (int)

: F
\ \

nt + (int) + (Int)

ECS 142 Lectures 7-8 9

E—-E+(E)|int

A Bottom-up Parse in Detail (5)

int + (int) + (int)
E + (int) + (int)
E +(E) + (int)

E + (int)

E + (E)

E E E
\ \ \

nt + (int) + (Int)

ECS 142 Lectures 7-8 10

E—-E+(E)]|int

A Bottom-up Parse in Detail (6)

t int + (int) + (int)
E + (int) + (int)
E +(E) + (int)

E + (int)

E + (E)

E

A rightmost -
derivation in reverse |

. . Nt +
(always rewrite the rightmost

nonterminal in each step) ECS 142 Lectures 7-8 1l

Important Fact #1

Important Fact #1 about bottom-up parsing:

An LR parser traces a rightmost
derivation in reverse

ECS 142 Lectures 7-8

12

Where Do Reductions Happen

Important Fact #1 has an interesting
consequence:

- Let apy be a step of a bottom-up parse
- Assume the next reduction is by A— 3

- Theny is a string of terminals |

Why? Because aAy — afy is a step in a right-
most derivation

ECS 142 Lectures 7-8 13

Notation

* Idea: Split the string into two substrings

- Right substring (a string of terminals) is as yet
unexamined by parser

- Left substring has terminals and non-terminals

* The dividing point is marked by a »
- The » is not part of the string

* Initially, all input is unexamined: »x;x, . . . X,

ECS 142 Lectures 7-8 14

Shift-Reduce Parsing

+ Bottom-up parsing uses only two kinds of
actions:

Shift

Reduce

ECS 142 Lectures 7-8

15

Shift

Shift: Move » one place to the right
- Shifts a terminal to the left string

E+(» int) = E+ (int»)

ECS 142 Lectures 7-8

16

Reduce

Reduce: Apply a production in reverse at the
right end of the left string

- IfE - E + (E)isaproduction, then

E+(E+(E)») =E+E»)

ECS 142 Lectures 7-8

17

Shift-Reduce Example

» int + (int) + (int)$ shift

nt + (int)+ (Int)

| !

Shift-Reduce Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ red. E — int

nt + (int)+ (Int)

| .

Shift-Reduce Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times

E

/

nt + (int)+ (Int)

| y

Shift-Reduce Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+ (int)$ red E — int

E

/

Nt +

(

int)+ |

|

INt

21

)

Shift-Reduce Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+ (int)$ red E — int
E+(E»)+(int)$ shift

Shift-Reduce Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+ (int)$ red E — int
E+E»)+ (int)$ shift

E+(E)» +(inH)$ red. E — E + (E)

E

/

Nt +

(

E

|

int)+ |

|

INt

23

)

Shift-Reduce Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+ (int)$ red E — int
E+E»)+ (int)$ shift

E+(E)» +(inH)$ red. E — E + (E)
E» + (int)$ shift 3 times

E

/

Nt +

(

E

|

int)+ |

|

INt

24

)

Shift-Reduce Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ red. E — int
E» +(int)+ (int)$ shift 3 times
E+(int»)+(int)$ red E — int
E+(E»)+ (int)$ shift

E+(E)» + (int)$ red. E — E + (E)
E» + (int)$ shift 3 times
E+(int»)$ red. E — int

E

/

Nt +

(

E

|

int)+ |

INt

25

)

|

Shift-Reduce Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+(int)$ red E — int
E+(E»)+ (int)$ shift

E+(E)» + (int)$ red. E — E + (E)
E» + (int)$ shift 3 times
E+(int»)$ red. E — int
E+(E»)$ shift

E

/

Nt +

(

E

|

int)+ |

E

INt

26

)

|

Shift-Reduce Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+(int)$ red E — int
E+(E»)+ (int)$ shift

E+(E)» + (int)$ red. E — E + (E)
E» + (int)$ shift 3 times
E+(int»)$ red. E — int
E+(E»)$ shift

E+E)» $ red. E — E + (E)

E

/

Nt +

(

E

|

int)+ |

E

INt

27

)

|

Shift-Reduce Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ red. E — int
E» +(int) + (int)$ shift 3 times
E+(int»)+(int)$ red E — int
E+(E»)+ (int)$ shift

E+(E)» +(inH)$ red. E — E + (E)

E» + (int)$ shift 3 times
E+(int»)$ red. E — int
E+(E»)$ shift

E+E)» $ red. E — E + (E)
Er $ accept

E

/

Nt +

(

E

|

int)+ |

A Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous
Grammars

LALR(1) From Andrew Appel,
“Modern Compiler
Implementation in Java”

ECS 142 Lectures 7-8 70

Shift/Reduce Conflicts

- If a DFA state contains both
[X — oeaf, b] and [Y — vye, a]

» Then on input “a” we could either
- Shift into state [X — aaep, b], or
- Reduce with Y — vy

- This is called a shift-reduce conflict

ECS 142 Lectures 7-8

52

Shift/Reduce Conflicts

+ Typically due to ambiguities in the grammar

» Classic example: the dangling else
S—ifEthenS | ifEthenSelse S | OTHER

» Will have DFA state containing
[S — if E then Se, else]
[S — if Ethen Secelse S, x]

- If else follows then we can shift or reduce

- Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

ECS 142 Lectures 7-8 53

The Stack

* Left string can be implemented as a stack
- Top of the stack is the »

» Shift pushes a terminal on the stack

» Reduce
- Pops O or more symbols of f the stack: production rhs
- Pushes a non-terminal on the stack: production lhs

ECS 142 Lectures 7-8 29

Key Issue: When to Shift or Reduce?

* Decide based on the left string (the stack)

»+ Idea: use a finite automaton (DFA) to decide
when to shift or reduce

- The DFA input is the stack

- The language consists of terminals and non-terminals

+ We run the DFA on the stack and examine the
resulting state X and the token tok after »

- ITf X has a transition labeled tok then shift

- If X is labeled with “A — B on tok” then reduce

ECS 142 Lectures 7-8 30

LR(1) Parsing: An Example

Representing the DFA

* Parsers represent the DFA as a 2D table
- Recall table-driven lexical analysis

» Lines correspond to DFA states

* Columns correspond to terminals and non-
terminals

+ Typically columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

ECS 142 Lectures 7-8

32

Representing the DFA. Example

The table for a fragment of our DFA

ECS 142 Lectures 7-8

The LR Parsing Algorithm

- After a shift or reduce action we rerun the
DFA on the entire stack

- This is wasteful, since most of the work is
repeated

- Remember for each stack element to which
state it brings the DFA

* LR parser maintains a stack
(sym,, state,;) ... (sym,, state,)
state, is the final state of the DFA on sym, ... sym,

34

The LR Parsing Algorithm

et I = w$ be initial input
et j=0
_et DFA state O be the start state
_et stack = (dummy, O)
repeat
case action[top_state(stack), I[j]] of
shift ki push (I[j++], k)
reduce X — o
- pop |a| pairs of f the stack
- push (X, Goto[top_state(stack), X])
accept: halt normally
error: halt and report error

ECS 142 Lectures 7-8 35

LR Parsing Notes

» Can be used to parse more grammars than LL
* Most programming languages grammars are LR
» Can be described as a simple table

* There are tools for building the table

- How is the table constructed?

ECS 142 Lectures 7-8 36

Recap ...

* A bottom-up parser rewrites the input string
to the start symbol

+ The state of the parser is described as

o> Y
- ais a stack of tferminals and non-terminals
- vy is the string of terminals not yet examined

* Initially: » xx, ... x,

ECS 142 Lectures 7-8 37

The Shift and Reduce Actions

- Recall the CFG: E — int | E + (E)

* A bottom-up parser uses two kinds of actions
- Shift pushes a terminal from input on the stack

E+(»int) = E+(int»)

- Reduce pops O or more symbols off of the stack
(production rhs) and pushes a non-terminal on the
stack (production lhs)

E+(E+(E)») =E+E»)

ECS 142 Lectures 7-8 38

Key Issue: When to Shift or Reduce?

»+ Tdea: use a finite automaton (DFA) to decide
when to shift or reduce

- The input is the stack

- The language consists of terminals and non-terminals

+ We run the DFA on the stack and we examine
the resulting state X and the token tok after »
- ITf X has a transition labeled tok then shift
- If X is labeled with “A — B on tok” then reduce

ECS 142 Lectures 7-8 39

Key Issue: How is the DFA Constructed?

» The stack describes the context of the parse
- What non-terminal we are looking for
- What production rhs we are looking for
- What we have seen so far from the rhs

- Each DFA state describes several such
contexts

- E.g., when we are looking for non-terminal E, we
might be looking either for an int or an E + (E) rhs

ECS 142 Lectures 7-8 40

LR(1) Items

+ An LR(1) item is a pair
X — aef3, a
- X — af} is a production
- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal

* [X — aef3, a] describes a context of the parser
- We are trying to find an X followed by an a, and

- We have o already on top of the stack

- Thus we need to see next a prefix derived from pa

ECS 142 Lectures 7-8 41

Note

»+ The symbol » was used before to separate the
stack from the rest of input

- o » v, where a is the stack and y is the remaining
string of terminals

»* InLR(1) items o is used to mark a prefix of a
production rhs:

X — oef3, a
- Here 3 might contain non-terminals as well

- Tn both case the stack is on the left

ECS 142 Lectures 7-8 42

Convention

+ We add to our grammar a fresh new start
symbol S and a production S — E

- Where E is the old start symbol

» The initial parsing context contains:

S = eE, $
- Trying to find an S as a string derived from E$
- The stack is empty

ECS 142 Lectures 7-8 43

LR(1) Items (Cont.)

- In context containing
E—-E+e(E), +

- If (follows then we can perform a shift to context
containing

E—-E+(eE),+
- In a context containing
E—-E+(E)o., +
- We can perform a reduction with E — E + (E)
- But only if a + follows

ECS 142 Lectures 7-8 44

LR(1) Items (Cont.)

» Consider a context with the item
E—-E+(eE),+
+ We expect next a string derived from E) +

» There are two productions for E
E—int and E— E+(E)

+ We describe this by extending the context
with Two more items:

E%.in’r,)
E—eE+(E),)

ECS 142 Lectures 7-8 45

The Closure Operation

» The operation of extending the context with
items is called the closure operation

Closure(Items) =
repeat
for each [X — aeYp, a] in Items
for each production Y — vy
for each b € First(pa)
add [Y ,b] to Items
until Items is unchanged

ECS 142 Lectures 7-8 46

Constructing the Parsing DFA (1)

+ Construct the start context: Closure({s — ¢E, $})

S > eE, $

E — oE+(E), $
E — eint, $

E — oE+(E), +
E — eint, +

- We abbreviate as

S > eE, $
E — oE+(E), $/+
E — eint, $/+

ECS 142 Lectures 7-8 47

Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- This means that we performed Closure

+ The start state contains [S — oE, $]

+ A state that contains [X — «e, b] is labeled
with “reduce with X — aon b”

- And now the transitions ..

ECS 142 Lectures 7-8 48

The DFA Transitions

+ A state “State” that contains [X — aeyf, b]
has a transition labeled y to a state that
contains the items “Transition(State, y)~
- y can be a terminal or a hon-terminal

Transition(State, y)
Items «+ O
for each [X — aeyp, b] € State
add [X ye[3, b] fo Items
return Closure(Items)

ECS 142 Lectures 7-8 49

Constructing the Parsing DFA: An Example

N

S—eE $ O : : +| E—int
E s oE+(E), §/+i—p LE inte $/+] 00T

E — eint, $/+

; \E /E%E+O(E),$/+ 3
S > Ee, $ 1(

E - E'+(E) b/ E — E+(eE), $/+|4

accept E E — oE+(E),)/+

on $ / E — eint,)/+

6 E — E+(Ee), $/+ int 5
E — Ee+(E),)/+ E inte,)/+| E—int

on), +
ECS 142 Lectures 7-8 50

and so on...

LR Parsing Tables. Notes

» Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

* But we still need to understand the
construction to work with parser generators

- E.g., they report errors in terms of sets of items

* What kind of errors can we expect?

ECS 142 Lectures 7-8 51

Shift/Reduce Conflicts

- If a DFA state contains both
[X — oeaf, b] and [Y — vye, a]

» Then on input “a” we could either
- Shift into state [X — aaep, b], or
- Reduce with Y — vy

- This is called a shift-reduce conflict

ECS 142 Lectures 7-8

52

Shift/Reduce Conflicts

+ Typically due to ambiguities in the grammar

» Classic example: the dangling else
S—ifEthenS | ifEthenSelse S | OTHER

» Will have DFA state containing
[S — if E then Se, else]
[S — if Ethen Secelse S, x]

- If else follows then we can shift or reduce

- Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

ECS 142 Lectures 7-8 53

More Shift/Reduce Conflicts

» Consider the ambiguous grammar
E—-E+E|E*E|int
+ We will have the states containing
[E—=E*eE, + [E—=E > Ee, +]
[E—>eE+E, +] =E [E—>Ee+E, +]

* Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Recall solution: declare the precedence of * and +

ECS 142 Lectures 7-8 54

More Shift/Reduce Conflicts

* In bison declare precedence and associativity:
sleft +
sleft *

- Precedence of a rule = that of its last terminal

- See bison manual for ways to override this default
» Context-dependent precedence (Section 5.4, pp 70)

- Resolve shift/reduce conflict with a shift if:

- nho precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

ECS 142 Lectures 7-8 55

Using Precedence to Solve S/R Conflicts

» Back to our example:
[E—=E™>eE,+] [E —E * Eo, +]
[E—>eE+E +] =5 [E—Ee+E, +]

» Will choose reduce because precedence of
rule E — E * E is higher than of terminal +

ECS 142 Lectures 7-8 56

Using Precedence to Solve S/R Conflicts

+ Same grammar as before
E—-E+E|E*E|int
+ We will also have the states
[E—>E+eE,+] [E —E + Ee, +]
[E—>eE+E,+] —=E [E—>Ee+E,+]

* Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

ECS 142 Lectures 7-8 57

Using Precedence to Solve S/R Conflicts

* Back to our dangling else example

'S — if E then Se, else]

'S — if Ethen Seelse S, x]

» Can eliminate conflict by declaring else with
higher precedence than then
- Or just rely on the default shift action

» But this starts to look like “hacking the parser”

+ Best to avoid overuse of precedence declarations
or you'll end with unexpected parse trees

ECS 142 Lectures 7-8 58

Reduce/Reduce Conflicts
- If a DFA state contains both

[X — ae,a]land [Y — Pe, a]

- Then on input “a” we don’ t know which
production to reduce

- This is called a reduce/reduce conflict

ECS 142 Lectures 7-8 59

Reduce/Reduce Conflicts

* Usually due to gross ambiguity in the grammar

+ Example: a sequence of identifiers
S—¢|id | idS

* There are two parse trees for the string id
S —id
S—idS—id
How does this confuse the parser?

ECS 142 Lectures 7-8 60

More on Reduce/Reduce Conflicts

- Consider the states

[S —eS, 9]
[S — e, $
[S —>eid, $]
[S—eid S, $]

_id

S —ide, $]
S—ide S, $

(S — e, $.
S —eid, %]
S—eidS, $]

+ Reduce/reduce conflict on input $

S -S—id
S -S—-idS—id

* Better rewrite the grammar: S —¢ |idS

ECS 142 Lectures 7-8

61

Using Parser Generators

* Parser generators construct the parsing DFA
given a CFG

- Use precedence declarations and default
conventions to resolve conflicts

- The parser algorithm is the same for all grammars
(and is provided as a library function)

* But most parser generators do not construct
the DFA as described before

- Because the LR(1) parsing DFA has 1000s of states
even for a simple language

ECS 142 Lectures 7-8 62

LR(1) Parsing Tables are Big

* But many states are similar, e.qg.

1

E — inte, $/+

E — int
on$, +

and

5

E — inte,)/+

E — int
on), +

+ Idea: merge the DFA states whose items
differ only in the lookahead tokens
- We say that such states have the same core

- We obtain

17

E — inte, $/+/)

E — int

on$,+,)

ECS 142 Lectures 7-8

63

The Core of a Set of LR Items

+ Definition: The core of a set of LR items is
the set of first components

- Without the lookahead terminals

+ Example: the core of
{ [X = aef, b], [Y — ved, d]}
1S
{X = aefl, ¥ — yed}

ECS 142 Lectures 7-8 64

LALR States

+ Consider for example the LR(1) states

{[

X — e, C(_,

{[

X —o0e, b

-/

Y — Be,]}

Y — Pe, d]}

* They have the same core and can be merged
* And the merged state contains:
{[X = ae, a/b], [Y — Pe, c/d]}

» These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

ECS 142 Lectures 7-8 65

A LALR(1) DFA

* Repeat until all states have distinct core
- Choose two distinct states with same core

- Merge the states by creating a new one with the
union of all the items

- Point edges from predecessors to hew state
- New state points to all the previous successors

©O—E—®

ECS 142 Lectures 7-8 66

Conversion LR(1) to LALR(1). Example.

int @

E — int

67

The LALR Parser Can Have Conflicts

» Consider for example the LR(1) states
{FX%OLO a 1, FY%[S. b]}
{[X = ae, b], [Y — Be, a]}
* And the merged LALR(I) state
{[X = ae, a/b], [Y — Be, a/b]}
» Has a new reduce-reduce conflict
* In practice such cases are rare

* However, no new shift/reduce conflicts. Why?

ECS 142 Lectures 7-8 68

LALR vs. LR Parsing

* LALR languages are not natural
- They are an efficiency hack on LR languages

* Any reasonable programming language has a
LALR(1) grammar

» LALR(1) has become a standard for
programming languages and for parser
generators

ECS 142 Lectures 7-8 69

A Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous
Grammars

LALR(1) From Andrew Appel,
“Modern Compiler
Implementation in Java”

ECS 142 Lectures 7-8 70

Notes on Parsing

» Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- LALR(1) parser generators
- Didn't discuss another variant: SLR(1)

* Now we move on to semantic analysis

ECS 142 Lectures 7-8

71

General ldea

® |nput tokens are shifted onto a parsing stack

Stack Input

«— X =3 * 4 + 5
NAME «—— =3 % 4 + 5
NAME = «—— 3 % 4 + 5
NAME = NUM * 4 + 5

® This continues until a complete grammar rule
appears on the top of the stack

General ldea

® |f rules are found, a "reduction” occurs

Stack Input

«—— X =3 % 4 + 5
NAME «—— =3 * 4 + 5
NAME = «— 3 * 4 + 5
NAME = NUM * 4 + 5

l reduce <—(factor : NUM)

NAME = factor

® RHS of grammar rule replaced with LHS

Rule Functions

® During reduction, rule functions are invoked

def p factor(p):
‘factor : NUMBER'

® Parameter p contains grammar symbol values

def p factor(p):
‘factor : NUMBER'

t t

p[0] pll]

Using an LR Parser

Rule functions generally process values on
right hand side of grammar rule

Result is then stored in left hand side
Results propagate up through the grammar

Bottom-up parsing

Example: Calculator

def p assign(p):
‘'"’"assign : NAME EQUALS expr''’'’

vars[p[1l]] = p[3]

def p expr plus(p):
'TTexpr : expr PLUS term’ '’

p[0] = p[1l] + p[3]

def p term mul(p):
‘7 T'term : term TIMES factor’’’

p[0] = p[1l] * p[3]

def p term factor(p):
""'term : factor'

p[0] = p[1]

def p factor(p):
‘*"factor : NUMBER'''

P[0] = p[1]

Example: Parse Tree

def p assign(p):
‘''assign : NAME EQUALS expr''’’
p[0] = ('ASSIGN’,p[l1l],p[3])

def p expr plus(p):
'"'"expr : expr PLUS term’’’

p(0] = ('+',p[1],pP[3])

def p term mul(p):
‘TTterm : term TIMES factor’'’

p[0] = (**’,p[1],pP[3])

def p term factor(p):
'"'"term : factor'

p[0] = p[1]

def p factor(p):
‘*r"factor : NUMBER'''

p[0] = ('NUM’,p[1])

Example: Parse Tree

>>> t = yacc.parse("x = 3*4 + 5*%6")
>>> ¢
("ASSIGN', 'x', ('+",
('*',('NUM",3),('NUM",4)),
('*",('NUM",5),('NUM",6))
)

>>>

(ASSIGN

Why use PLY?

® There are many Python parsing tools
® Some use more powerful parsing algorithms

® [sn't parsing a "solved” problem anyways?

PLY is Informative

Comepiler writing is hard

Tools should not make it even harder
PLY provides extensive diagnostics
Major emphasis on error reporting

Provides the same information as yacc

PLY Diagnostics

® PLY produces the same diaghostics as yacc

® Yacc

% yacc grammar.y
4 shift/reduce conflicts
2 reduce/reduce conflicts

o PLY

% python mycompiler.py

yacc: Generating LALR parsing table...
4 shift/reduce conflicts

2 reduce/reduce conflicts

® PLY also produces the same debugging output

Grammar

Rule
Rule
Rule
Rule
Rule
Rule
Rule

N o0 WwWN

statement

expression
expression
expression
expression
expression

Terminals, with rules

+ *

I~

NAME
NUMB
erro

ER
r

Debugging Output

state 10

-> NAME = expression
statement -> expression

-> expression
-> expression
-> expression
-> expression
-> NUMBER

expression
expression
expression
expression

where they appear

N R o0 wu,

Nonterminals, with rules where they appear

expression
statement

Parsing method: LALR

stat

stat

1233445566

0

NAME = expression

expression
. expression
. expression
. expression
. expression
. NUMBER

expression
expression
expression
expression

shift and go to state 1

e 0

(0) S' -> . statement
(1) statement ->
(2) statement ->
(3) expression ->
(4) expression ->
(5) expression ->
(6) expression ->
(7) expression ->
NAME

NUMBER
expression
statement

el

(1)

shift and go to state 2

shift and go to state 4
shift and go to state 3

statement -> NAME . = expression

shift and go to state 5

(1) statement
(3) expressio
(4) expressio
(5) expressio
(6) expressio

state 11

(4) expressio
(3) expressio
(4) expressio
(5) expressio

-> NAME = expression .

n -> expression . + expression
n -> expression . - expression
n -> expression . * expression
n -> expression . / expression

reduce using rule 1 (statement -> NAME = expression .)

shift and go to state 7
shift and go to state 6
shift and go to state 8
shift and go to state 9

n -> expression - expression .
n -> expression . + expression
n -> expression . - expression
n -> expression . * expression

(6) expression -> expression . / expression

shift/reduce
shift/reduce
shift/reduce
shift/reduce
Send

+

*

/

conflict for + resolved as shift.
conflict for - resolved as shift.
conflict for * resolved as shift.
conflict for / resolved as shift.

reduce using rule 4 (expression -> expression -

shift and go to state 7
shift and go to state 6
shift and go to state 8
shift and go to state 9

reduce using rule 4 (expression ->
reduce using rule 4 (expression ->
reduce using rule 4 (expression ->
reduce using rule 4 (expression ->

—_——

expression
expression
expression
expression

expression .)

- expression .)
- expression .)
- expression .)
- expression .)

Debugging Outp

ut

state 11

(4)
(3)
(4)
(3)
(6)

! shif

! shif

! shif

! shif
Send
+

*

/

expression - expression .

expression ->
expression -> expression
expression -> expression
expression -> expression
expression -> expression
t/reduce conflict for +
t/reduce conflict for -
t/reduce conflict for *
t/reduce conflict for /
reduce using
shift and go
shift and go
shift and go
shift and go
[reduce usi
[reduce usi
[reduce usi
[reduce usi

res
res
res
res

+

*

/

expression
expression
expression
expression

olved
olved
olved
olved

shift.
shift.
shift.
shift.

as
as
as
as

rule 4 (expression -> expression -

to
to
to
to

ng
ng
ng
ng

state
state
state
state

rule
rule
rule
rule

I

7
6
8
9

(expression
(expression
(expression
(expression

expression
expression
expression
expression

expression .)

expression
expression
expression
expression

L] L] L] L]
. e e’

d b b)

shift and go to state 5

PLY Validation

PLY validates all token/grammar specs
Duplicate rules

Malformed regexs and grammars
Missing rules and tokens

Unused tokens and rules

Improper function declarations

Infinite recursion

Error Example

t MINUS = r’'-'

t MINUS = r'-' example.py:12: Rule t MINUS redefined.
Previously defined on line 6

import ply.
tokens = |

t _ignore
t PLUS

t MINUS
t TIMES
t DIVIDE =
t EQUALS =
t NAME
t MINUS
t POWER

def t NUMBER():

r’\d+’

t.value

return

lex.lex()

Error Example

lex as lex

‘NAME '’ , 'NUMBER', 'PLUS’, 'MINUS', 'TIMES’,
"DIVIDE’, EQUALS'’]

Y] \tr

r’'\+’

rr—

r’'*’

r'/’'

rr="

= r'[a-2A-Z][a-2zA-Z0-9]*’

r'-
r'\"' lex: Rule 't POWER' defined for an

unspecified token POWER

t

int(t.value)

Build the lexer

import ply.
tokens = |

t ignore =
t PLUS =
t MINUS =
t TIMES =
t DIVIDE =
t EQUALS =
t NAME
t MINUS =
t POWER =

t.value

return

lex.lex()

Error Example

lex as lex

‘NAME '’ , 'NUMBER', 'PLUS’, 'MINUS', 'TIMES’,
"DIVIDE’, EQUALS'’]

Y] \tr

r’'\+’

rr—

r’'*’

r'/’'

rr="

= r'[a-2A-Z][a-2zA-Z0-9]*’

r' -
rl\/\l

: €—
an argument.

example.py:15: Rule 't NUMBER'

requires

= int(t.value)
t

Build the lexer

PLY is Yacc

PLY supports all of the major features of
Unix lex/yacc

Syntax error handling and synchronization
Precedence specifiers

Character literals

Start conditions

Inherited attributes

Precedence Specifiers

® Yacc

%$left PLUS MINUS
$left TIMES DIVIDE
gnonassoc UMINUS

expr : MINUS expr %prec UMINUS {
$$ = -$81;
}

o PLY

precedence = (
('left', '"PLUS', '"MINUS'"),
('left', "TIMES', 'DIVIDE'),
('nonassoc', '"UMINUS'),

)

def p expr uminus(p):
'expr : MINUS expr $%$prec UMINUS'
p[0] = -p[1]

Character Literals

® Yacc
expr : expr
expr
expr
expr

e PLY

~ % I +

def p expr(p):

''expr :

expr
expr
expr
expr

~ % 1| +

expr { S$$
expr { S$$
expr { S$§
expr { $§

expr
expr
expr

S
S
S
$1 /

+ $3;
$3;
$3;
$3;

* |

N N

e}{p]:.l "1

Error Productions

® Yacc

funcall err : ID LPAREN error RPAREN {
printf("Syntax error in arguments\n");

}

°
4

o PLY

def p funcall err(p):
'''"ID LPAREN error RPAREN'''
print "Syntax error in arguments\n"

PLY is Simple

Two pure-Python modules. That's it.

Not part of a "parser framework”

Use doesn't involve exotic design patterns
Doesn't rely upon C extension modules

Doesn't rely on third party tools

PLY is Fast

For a parser written entirely in Python
Underlying parser is table driven

Parsing tables are saved and only regenerated if
the grammar changes

Considerable work went into optimization
from the start (developed on 200Mhz PC)

PLY Performance

® Parse file with 1000 random expressions
(805KB) and build an abstract syntax tree

® PLY-23 :295sec, 10.2MB (Python)

® DParser :0.71sec, 72MB (Python/C)
® BisonGen :0.25sec, [3MB (Python/C)
® Bison : 0.063 sec, 79MB (C)

® |2x slower than BisonGen (mostly C)

® 47x slower than pure C

® System: MacPro 2.66Ghz Xeon, Python-2.5

Class Example

import ply.yacc as yacc

class MyParser:
def p assign(self,p):
‘’'assign : NAME EQUALS expr'’’’
def p expr(self,p):
'"Texpr : expr PLUS term
| expr MINUS term
| term’ '’
def p term(self,p):
‘"'term : term TIMES factor
| term DIVIDE factor
| factor'’’
def p factor(self,p):
‘*'factor : NUMBER'''
def build(self):
self.parser = yacc.yacc(object=self)

Limitations

® | ALR(I) parsing

® Not easy to work with very complex grammars
(e.g., C++ parsing)

® Retains all of yacc's black magic

® Not as powerful as more general parsing
algorithms (ANTLR, SPARK, etc.)

® Tradeoff : Speed vs. Generality

