CS 480

Translators (Compilers)

weeks 4: yacc, LR parsing

Instructor: Liang Huang

(some slides courtesy of David Beazley and Zhendong Su)

HW3 Distribution (coding part)

ONLY on HWI cases (60\% of grade)
 - AC
 - CE
 - WA
 - RE

ply.yacc preliminaries

- ply.yacc is a module for creating a parser
- Assumes you have defined a BNF grammar

```
assign : NAME EQUALS expr
    compare with (ambiguity):
expr : expr PLUS term
    | expr MINUS term
        term
term : term TIMES factor
        term DIVIDE factor
        factor
factor : NUMBER
```


ply.yacc example

```
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list
def p_assign(p):
    '''assign : NAME EQUALS expr'''
def p_expr(p):
    '''expr : expr PLUS term
                                expr MINUS term
                                term'''
def p_term(p):
    ''term : term TIMES factor
                                    term DIVIDE factor
                        factor'''
def p_factor(p):
    ''factor : NUMBER''
yacc.yacc() # Build the parser
```


ply.yacc example


```
def p_assign(p):
    ''assign : NAME EQUALS expr'''
```

def p_expr(p):
' ' 'expr : expr PLUS term
expr MINUS term
term'''
def p _term(p$):$
''term : term TIMES factor
term DIVIDE factor
factor' ''
def p_factor(p):
'factor : NUMBER''
yacc.yacc ()
\# Build the parser

ply.yacc example

ply.yacc example

ply.yacc example

```
import ply.yacc as yacc
import mylexer # Import lexer information
tokens = mylexer.tokens # Need token list
def p_assign(p):
    ''assign : NAME EQUALS expr'''
def p_expr(p):
    '''expr : expr PLUS term
                                    expr MINUS term
                                term'''
def p_term(p):
    ''term : term TIMES factor
        term DIVIDE factor
                        factor'''
def p_factor(p):
    ''factor : NUMBER'
```


ply.yacc parsing

- yacc.parse() function

```
yacc.yacc() # Build the parser
data = "x = 3*4+5*6"
yacc.parse(data) # Parse some text
```

- This feeds data into lexer
- Parses the text and invokes grammar rules

A peek inside

- PLY uses LR-parsing. LALR(I)
- AKA:Shift-reduce parsing
- Widely used parsing technique
- Table driven

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Preferred method in practice
- Also called LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

An Introductory Example

- LR parsers
- Don'† need left-factored grammars, and
- Can handle left-recursive grammars
- Consider the following grammar

$$
E \rightarrow E+(E) \mid \mathrm{int}
$$

- Why is this not $\operatorname{LL}(1)$?
- Consider the string: int + (int) + (int)

The Idea

- LR parsing reduces a string to the start symbol by inverting productions:
str \leftarrow input string of terminals repeat
- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str $=\alpha \beta \gamma$)
- Replace β by A in str (i.e., str becomes $\alpha A \gamma$) until str $=S$

$E \rightarrow E+(E) \mid$ int

A Bottom-up Parse in Detail (1)

int + (int) + (int)

$E \rightarrow E+(E) \mid$ int

A Bottom-up Parse in Detail (2)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+(\text { int })
\end{aligned}
$$

$E \rightarrow E+(E) \mid$ int

A Bottom-up Parse in Detail (3)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+(\text { int }) \\
& E+(E)+(\text { int })
\end{aligned}
$$

$E \rightarrow E+(E) \mid$ int

A Bottom-up Parse in Detail (4)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) + (int) } \\
& E+(\text { E })+\text { (int) } \\
& E+(\text { int })
\end{aligned}
$$

$E \rightarrow E+(E) \mid$ int

A Bottom-up Parse in Detail (5)

$$
\begin{aligned}
& \text { int + (int) }+ \text { (int) } \\
& E+\text { (int })+ \text { (int) } \\
& E+(E)+\text { (int }) \\
& E+(\text { int }) \\
& E+(E)
\end{aligned}
$$

$E \rightarrow E+(E) \mid$ int

A Bottom-up Parse in Detail (6)

$$
\left\{\begin{array}{l}
\text { int + (int) }+ \text { (int) } \\
E+(\text { int })+(\text { int }) \\
E+(E)+(\text { int }) \\
E+(\text { int }) \\
E+(E) \\
E
\end{array}\right.
$$

A rightmos \dagger derivation in reverse
(always rewrite the rightmost nonterminal in each step)

Important Fact \#1

Important Fact \#1 about bottom-up parsing:

An $L R$ parser traces a rightmost derivation in reverse

Where Do Reductions Happen

Important Fact \#1 has an interesting
consequence:

- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by $A \rightarrow \beta$
- Then γ is a string of terminals !

Why? Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a rightmost derivation

Notation

- Idea: Split the string into two substrings
- Right substring (a string of terminals) is as yet unexamined by parser
- Left substring has terminals and non-terminals
- The dividing point is marked by a
- The \triangleright is not part of the string
- Initially, all input is unexamined: $\Delta x_{1} x_{2} \ldots x_{n}$

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

Shift: Move - one place to the right

- Shifts a terminal to the left string

$$
E+(\triangleright \text { int }) \Rightarrow E+(\text { int } \triangleright)
$$

Reduce

Reduce: Apply a production in reverse at the right end of the left string

- If $E \rightarrow E+(E)$ is a production, then

$$
E+(\underline{E}+(E) \triangleright) \Rightarrow E+(\underline{E} \triangleright)
$$

Shift-Reduce Example

- int + (int) + (int)\$ shift

$$
\uparrow \underset{\uparrow}{\operatorname{int}+(\operatorname{int})+\left(\operatorname{int}_{18}\right)}
$$

Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+(\mathrm{int})+(\mathrm{int}) \$$ red. $\mathrm{E} \rightarrow \mathrm{int}$

int + (int) + (int) \uparrow

Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+(\mathrm{int})+(\mathrm{int}) \$$ red. $\mathrm{E} \rightarrow \mathrm{int}$
$E \nabla+(i n t)+(i n t) \$$ shift 3 times

Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+$ (int) + (int)\$ red. E \rightarrow int
$E \square+($ int $)+$ (int)\$ shift 3 times
$\mathrm{E}+$ (int -) + (int) $\$$ red. $E \rightarrow$ int

Shift-Reduce Example

```
- int + (int) + (int)$ shift
int> + (int) + (int)$ red. E }->\mathrm{ int
E + + (int) + (int)$ shift 3 times
E + (int> ) + (int)$ red. E }->\mathrm{ int
E + (E\triangleright ) + (int)$ shift
```


Shift-Reduce Example

```
- int + (int) + (int)$ shift
int + +(int)+(int)$ red. E }->\mathrm{ int
E + + (int) + (int)$ shift 3 times
E+(int \triangleright)+(int)$ red. E }->\mathrm{ int
E + (E\triangleright ) + (int)$ shift
E+(E)\triangleright+(int)$ red. E }->\textrm{E}+(\textrm{E}
```


Shift-Reduce Example

Shift-Reduce Example

$$
\begin{array}{ll}
\text { int + (int) + (int)\$ } & \text { shift } \\
\text { int }+ \text { (int) }+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E++(\text { int })+(\text { int }) \$ & \text { shift } 3 \text { times } \\
E+(\text { int }>)+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E+(E-)+(\text { int }) \$ & \text { shift } \\
E+(E)-+(i n t) \$ & \text { red. } E \rightarrow E+(E) \\
E+(\text { int }) \$ & \text { shift } 3 \text { times } \\
E+(\text { int }>) \$ & \text { red. } E \rightarrow \text { int }
\end{array}
$$

Shift-Reduce Example

$$
\begin{array}{ll}
l \text { int + (int) + (int)\$ } & \text { shift } \\
\text { int }+(\text { int })+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E++(\text { int })+(\text { int }) \$ & \text { shift } 3 \text { times } \\
E+(\text { int }>)+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E+(E-)+(\text { int }) \$ & \text { shift } \\
E+(E) \downarrow+(\text { int }) \$ & \text { red. } E \rightarrow E+(E) \\
E+(\text { int }) \$ & \text { shift } 3 \text { times } \\
E+(i n t \nabla) \$ & \text { red. } E \rightarrow \text { int } \\
E+(E-) \$ & \text { shift }
\end{array}
$$

Shift-Reduce Example

$$
\begin{aligned}
& \text { - int + (int) + (int)\$ shift } \\
& \text { int } \downarrow+(\mathrm{int})+(\mathrm{int}) \$ \text { red. } \mathrm{E} \rightarrow \text { int } \\
& E \triangleright+(\mathrm{int})+(\mathrm{int}) \$ \text { shift } 3 \text { times } \\
& \mathrm{E}+(\mathrm{int} \triangleright)+\text { (int) } \$ \text { red. } \mathrm{E} \rightarrow \text { int } \\
& E+(E \triangleright)+(\text { int }) \$ \text { shift } \\
& E+(E) \triangleright+(\text { int }) \$ \quad \text { red. } E \rightarrow E+(E) \\
& E \triangleright+(\text { int }) \$ \quad \text { shift } 3 \text { times } \\
& \mathrm{E}+(\text { int } \triangleright) \$ \quad \text { red. } \mathrm{E} \rightarrow \text { int } \\
& E+(E \triangleright) \$ \text { shift } \\
& E+(E) \triangleright
\end{aligned}
$$

Shift-Reduce Example

$$
\begin{array}{ll}
r \text { int + (int) + (int)\$ } & \text { shift } \\
\text { int }+(\text { int })+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E++(\text { int })+(\text { int }) \$ & \text { shift } 3 \text { times } \\
E+(\text { int })+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E+(E-)+(\text { int }) \$ & \text { shift } \\
E+(E) \downarrow+(\text { int }) \$ & \text { red. } E \rightarrow E+(E) \\
E+(\text { int }) \$ & \text { shift } 3 \text { times } \\
E+(\text { int }) \$ & \text { red. } E \rightarrow \text { int } \\
E+(E>) \$ & \text { shift } \\
E+(E) \vee \$ & \text { red. } E \rightarrow E+(E) \\
E \subset \$ & \text { accept } t
\end{array}
$$

A Hierarchy of Grammar Classes

From Andrew Appel,
"Modern Compiler
Implementation in Java"

Shift/Reduce Conflicts

- If a DFA state contains both

$$
[X \rightarrow \alpha \bullet a \beta, b] \text { and }[Y \rightarrow \gamma \bullet, a]
$$

- Then on input " a " we could either
- Shift into state [$X \rightarrow \alpha a \bullet \beta, b$], or
- Reduce with $Y \rightarrow \gamma$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else $S \rightarrow$ if E then S if E then S else $S \mid$ OTHER
- Will have DFA state containing

$$
\begin{array}{ll}
{[S \rightarrow \text { if } E \text { then } S \bullet,} & \text { else }] \\
{[S \rightarrow \text { if } E \text { then } S \bullet \text { else } S,} & x]
\end{array}
$$

- If else follows then we can shift or reduce
- Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

The Stack

- Left string can be implemented as a stack
- Top of the stack is the
- Shift pushes a terminal on the stack
- Reduce
- Pops 0 or more symbols off the stack: production rhs
- Pushes a non-terminal on the stack: production lhs

Key Issue: When to Shift or Reduce?

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The DFA input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and examine the resulting state X and the token tok after
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

LR(1) Parsing: An Example

Representing the DFA

- Parsers represent the DFA as a 2D table
- Recall table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

Representing the DFA. Example

The table for a fragment of our DFA

	int	+	$($	$)$	$\$$
\ldots					E
3			$s 4$		
4	$s 5$				
5		$r_{E \rightarrow \text { int }}$		$r_{E \rightarrow \text { int }}$	
6	s8		$s 7$		
7		$r_{E \rightarrow E+(E)}$			$r_{E \rightarrow E+(E)}$
\ldots					
\ldots					

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- Remember for each stack element to which state it brings the DFA
- LR parser maintains a stack

$$
\left\langle\text { sym }_{1}, \text { state }_{1}\right\rangle \ldots\left\langle\text { sym }_{n}, \text { state }_{n}\right\rangle
$$

state $_{k}$ is the final state of the DFA on sym $_{1} \ldots$ sym $_{k}$

The LR Parsing Algorithm

Let $I=w \$$ be initial input
Let $j=0$
Let DFA state 0 be the start state
Let stack $=\langle$ dummy, 0\rangle
repeat
case action[top_state(stack), I[j]] of
shift k: push $\langle I[j++], k\rangle$
 reduce $X \rightarrow \alpha$:

- pop $|\alpha|$ pairs off the stack
- push $\langle X$, Goto[top_state(stack), X]〉
accept: halt normally error: halt and report error

LR Parsing Notes

- Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- Can be described as a simple table
- There are tools for building the table
- How is the table constructed?

Recap ...

- A bottom-up parser rewrites the input string to the start symbol
- The state of the parser is described as

$$
\alpha \triangleright \gamma
$$

- α is a stack of terminals and non-terminals
- γ is the string of terminals not yet examined
- Initially: $x_{1} x_{2} \ldots x_{n}$

The Shift and Reduce Actions

- Recall the CFG: $E \rightarrow$ int $\mid E+(E)$
- A bottom-up parser uses two kinds of actions
- Shift pushes a terminal from input on the stack

$$
E+(\triangleright \text { int }) \Rightarrow E+(\text { int } \downarrow)
$$

- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a non-terminal on the stack (production Ihs)

$$
E+(\underline{E}+(E) \triangleright) \Rightarrow E+(\underline{E} \triangleright)
$$

Key Issue: When to Shift or Reduce?

- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
- What non-terminal we are looking for
- What production rhs we are looking for
- What we have seen so far from the rhs
- Each DFA state describes several such contexts
- E.g., when we are looking for non-terminal E, we might be looking either for an int or an $E+(E)$ rhs

LR(1) Items

- An LR(1) item is a pair

$$
X \rightarrow \alpha \bullet \beta, a
$$

- $X \rightarrow \alpha \beta$ is a production
- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- $[X \rightarrow \alpha \bullet \beta, a]$ describes a context of the parser
- We are trying to find an X followed by an a, and
- We have a already on top of the stack
- Thus we need to see next a prefix derived from βa

Note

- The symbol \downarrow was used before to separate the stack from the rest of input
- $\alpha \triangleright \gamma$, where α is the stack and γ is the remaining string of terminals
- In LR(1) items - is used to mark a prefix of a production rhs:

$$
X \rightarrow \alpha \bullet \beta, a
$$

- Here β might contain non-terminals as well
- In both case the stack is on the left

Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
- Where E is the old start symbol
- The initial parsing context contains:

$$
S \rightarrow \bullet E, \$
$$

- Trying to find an S as a string derived from $E \$$
- The stack is empty

LR(1) Items (Cont.)

- In context containing

$$
E \rightarrow E+\cdot(E),+
$$

- If (follows then we can perform a shift to context containing

$$
E \rightarrow E+(\cdot E),+
$$

- In a context containing

$$
E \rightarrow E+(E) \bullet,+
$$

- We can perform a reduction with $E \rightarrow E+(E)$
- But only if a + follows

LR(1) Items (Cont.)

- Consider a context with the item

$$
E \rightarrow E+(\bullet E),+
$$

- We expect next a string derived from E) +
- There are two productions for E

$$
E \rightarrow \text { int and } E \rightarrow E+(E)
$$

- We describe this by extending the context with two more items:

$$
\begin{aligned}
& E \rightarrow \bullet \text { int, }) \\
& E \rightarrow \bullet E+(E),)
\end{aligned}
$$

The Closure Operation

- The operation of extending the context with items is called the closure operation

Closure (Items) $=$
repeat

$$
\text { for each }[X \rightarrow \alpha \bullet Y \beta, a] \text { in Items }
$$

for each production $Y \rightarrow \gamma$
for each $b \in$ First(βa)
add $[\mathrm{Y} \rightarrow \bullet \boldsymbol{\gamma}, \mathrm{b}]$ to Items
until Items is unchanged

Constructing the Parsing DFA (1)

- Construct the start context: Closure (\{s $\rightarrow \bullet E, \$\})$

$$
\begin{aligned}
& S \rightarrow \bullet E, \$ \\
& E \rightarrow \bullet E+(E), \$ \\
& E \rightarrow \bullet \text { int, } \$ \\
& E \rightarrow \bullet E+(E),+ \\
& E \rightarrow \bullet \text { int, }+
\end{aligned}
$$

- We abbreviate as

$$
\begin{aligned}
& S \rightarrow \bullet E, \$ \\
& E \rightarrow \bullet E+(E), \$ /+ \\
& E \rightarrow \text { int, } \$ /+
\end{aligned}
$$

Constructing the Parsing DFA (2)

- A DFA state is a closed set of $\operatorname{LR}(1)$ items
- This means that we performed Closure
- The start state contains $[S \rightarrow \bullet E, \$]$
- A state that contains [$X \rightarrow \alpha \cdot b]$ is labeled with "reduce with $X \rightarrow \alpha$ on b"
- And now the transitions ...

The DFA Transitions

- A state "State" that contains [X $\rightarrow \alpha \bullet y \beta$, b] has a transition labeled y to a state that contains the items "Transition(State, y)"
- y can be a terminal or a non-terminal

Transition(State, y)
Items $\leftarrow \varnothing$
for each $[X \rightarrow \alpha \bullet y \beta$, b] \in State add $[X \rightarrow \alpha y \bullet \beta, b]$ to Items
return Closure(Items)

Constructing the Parsing DFA: An Example

LR Parsing Tables. Notes

- Parsing tables (i.e. the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
- E.g., they report errors in terms of sets of items
- What kind of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both

$$
[X \rightarrow \alpha \bullet a \beta, b] \text { and }[Y \rightarrow \gamma \bullet, a]
$$

- Then on input " a " we could either
- Shift into state [$X \rightarrow \alpha a \bullet \beta, b$], or
- Reduce with $Y \rightarrow \gamma$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else $S \rightarrow$ if E then S if E then S else $S \mid$ OTHER
- Will have DFA state containing

$$
\begin{array}{ll}
{[S \rightarrow \text { if } E \text { then } S \bullet,} & \text { else }] \\
{[S \rightarrow \text { if } E \text { then } S \bullet \text { else } S,} & x]
\end{array}
$$

- If else follows then we can shift or reduce
- Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

More Shift/Reduce Conflicts

- Consider the ambiguous grammar

$$
E \rightarrow E+E|E * E| \operatorname{int}
$$

- We will have the states containing

$$
\begin{array}{ll}
{[E \rightarrow E * \bullet E,+]} \\
{[E \rightarrow \bullet E+E,+] \Rightarrow E} & {[E \rightarrow E * E \bullet,+]} \\
{[E \rightarrow E \bullet+E,+]}
\end{array}
$$

- Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Recall solution: declare the precedence of * and +

More Shift/Reduce Conflicts

- In bison declare precedence and associativity: \%left + \%left *
- Precedence of a rule $=$ that of its last terminal
- See bison manual for ways to override this default
- Context-dependent precedence (Section 5.4, pp 70)
- Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

Using Precedence to Solve S/R Conflicts

- Back to our example:

$$
\begin{array}{ll}
{\left[E \rightarrow E^{*} \bullet E_{1}+\right]} \\
{[E \rightarrow \bullet E+E,+] \Rightarrow E} & {\left[E \rightarrow E^{*} E_{\bullet},+\right]} \\
{\left[E \rightarrow E \bullet+E_{1}+\right]}
\end{array}
$$

- Will choose reduce because precedence of rule $E \rightarrow E$ * E is higher than of terminal +

Using Precedence to Solve S/R Conflicts

- Same grammar as before

$$
E \rightarrow E+E|E * E| \text { int }
$$

- We will also have the states

$$
\begin{aligned}
& {[E \rightarrow E+\bullet E,+]} \\
& {\left[E \rightarrow E+e_{\bullet},+\right]} \\
& {[E \rightarrow \bullet E+E,+] \quad \Rightarrow^{E} \quad\left[E \rightarrow E \bullet+E_{1}+\right]}
\end{aligned}
$$

- Now we also have a shift/reduce on input +
- We choose reduce because $E \rightarrow E+E$ and + have the same precedence and + is left-associative

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example

$$
\begin{array}{ll}
{[S \rightarrow \text { if } E \text { then } S \bullet,} & \text { else }] \\
{[S \rightarrow \text { if } E \text { then } S \bullet \text { else } S,} & x]
\end{array}
$$

- Can eliminate conflict by declaring else with higher precedence than then
- Or just rely on the default shift action
- But this starts to look like "hacking the parser"
- Best to avoid overuse of precedence declarations or you'll end with unexpected parse trees

Reduce/Reduce Conflicts

- If a DFA state contains both

$$
[X \rightarrow \alpha \bullet, a] \text { and }[Y \rightarrow \beta \bullet, a]
$$

- Then on input " a " we don' \dagger know which production to reduce
- This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers

$$
S \rightarrow \varepsilon \mid \text { id } \mid \text { id } S
$$

- There are two parse trees for the string id

$$
\begin{aligned}
& S \rightarrow \text { id } \\
& S \rightarrow \text { id } S \rightarrow \text { id }
\end{aligned}
$$

- How does this confuse the parser?

More on Reduce/Reduce Conflicts

- Consider the states

$$
[S \rightarrow \text { id } \bullet, \quad \$]
$$

$$
\begin{array}{ll}
{[S \rightarrow \bullet S,} & \$] \\
{[S \rightarrow \bullet,} & \$] \\
{[S \rightarrow \bullet \text { id, }} & \$] \\
{[S \rightarrow \bullet \text { id } S,} & \$]
\end{array} \quad \begin{array}{ll}
\text { id } & {[S \rightarrow \text { id } \bullet S,} \\
& {[S \rightarrow \bullet} \\
& {[S \rightarrow \bullet \text { id, }} \\
& {[S \rightarrow \bullet \text { id } S,} \\
& \$]
\end{array}
$$

- Reduce/reduce conflict on input \$

$$
\begin{aligned}
& S^{\prime} \rightarrow S \rightarrow \text { id } \\
& S^{\prime} \rightarrow S \rightarrow \text { id } S \rightarrow \text { id }
\end{aligned}
$$

- Better rewrite the grammar: $S \rightarrow \varepsilon \mid$ id S

Using Parser Generators

- Parser generators construct the parsing DFA given a CFG
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars (and is provided as a library function)
- But most parser generators do not construct the DFA as described before
- Because the LR(1) parsing DFA has 1000s of states even for a simple language

LR(1) Parsing Tables are Big

- But many states are similar, e.g.

- Idea: merge the DFA states whose items differ only in the lookahead tokens
- We say that such states have the same core
- We obtain

The Core of a Set of LR Items

- Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals
- Example: the core of

$$
\{[X \rightarrow \alpha \bullet \beta, b],[Y \rightarrow \gamma \bullet \delta, d]\}
$$

is

$$
\{X \rightarrow \alpha \bullet \beta, Y \rightarrow \gamma \bullet \delta\}
$$

LALR States

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[X \rightarrow \alpha \bullet a],[Y \rightarrow \beta \bullet c]\} \\
& \{[X \rightarrow \alpha \bullet, b],[Y \rightarrow \beta \bullet, d]\}
\end{aligned}
$$

- They have the same core and can be merged
- And the merged state contains:

$$
\{[X \rightarrow \alpha \bullet a / b],[Y \rightarrow \beta \bullet, c / d]\}
$$

- These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

- Repeat until all states have distinct core
- Choose two distinct states with same core
- Merge the states by creating a new one with the union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors

Conversion LR(1) to LALR(1). Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[X \rightarrow \alpha \cdot a],[Y \rightarrow \beta \bullet b]\} \\
& \{[X \rightarrow \alpha \bullet, b],[Y \rightarrow \beta \bullet a]\}
\end{aligned}
$$

- And the merged LALR(1) state

$$
\{[X \rightarrow \alpha \bullet a / b],[Y \rightarrow \beta \bullet a / b]\}
$$

- Has a new reduce-reduce conflict
- In practice such cases are rare
- However, no new shift/reduce conflicts. Why?

LALR vs. LR Parsing

- LALR languages are not natural
- They are an efficiency hack on LR languages
- Any reasonable programming language has a LALR(1) grammar
- LALR(1) has become a standard for programming languages and for parser generators

A Hierarchy of Grammar Classes

From Andrew Appel,
"Modern Compiler
Implementation in Java"

Notes on Parsing

- Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- LALR(1) parser generators
- Didn't discuss another variant: SLR(1)
- Now we move on to semantic analysis

General Idea

- Input tokens are shifted onto a parsing stack

```
Stack
NAME
NAME =
NAME = NUM
```

Input
$\mathrm{X}=3$

$\longleftarrow=3 * 4+5$
$\longleftarrow 3 * 4+5$
$* 4+5$

- This continues until a complete grammar rule appears on the top of the stack

General Idea

- If rules are found, a "reduction" occurs

- RHS of grammar rule replaced with LHS

Rule Functions

- During reduction, rule functions are invoked

```
def p_factor(p):
    'factor : NUMBER'
```

- Parameter p contains grammar symbol values

```
def p_factor(p):
    'factor : NUMBER'
        p[0]
        \ ¢ [1]
```


Using an LR Parser

- Rule functions generally process values on right hand side of grammar rule
- Result is then stored in left hand side
- Results propagate up through the grammar
- Bottom-up parsing

Example: Calculator

```
def p_assign(p):
    '''assign : NAME EQUALS expr'''
    vars[p[1]] = p[3]
def p_expr_plus(p):
    '''expr : expr PLUS term'''
    p[0] = p[1] + p[3]
def p_term_mul(p):
    '''term : term TIMES factor'''
    p[0] = p[1] * p[3]
def p_term_factor(p):
    '''term : factor'''
    p[0] = p[1]
def p_factor(p):
    '''factor : NUMBER'''
    p[0] = p[1]
```


Example: Parse Tree

```
def p_assign(p):
    '''assign : NAME EQUALS expr'''
    p[0] = ('ASSIGN',p[1],p[3])
def p_expr_plus(p):
    '''expr : expr PLUS term'''
    p[0] = ('+',p[1],p[3])
def p_term_mul(p):
    "''term : term TIMES factor'''
    p[0] = (**',p[1],p[3])
def p_term_factor(p):
    ''term : factor'''
    p[0] = p[1]
def p_factor(p):
    '''factor : NUMBER'''
    p[0] = ('NUM',p[1])
```


Example: Parse Tree

```
>>> t = yacc.parse("x = 3*4 + 5*6")
>>> t
('ASSIGN','x',('+',
                ('*',('NUM',3),('NUM',4)),
                        ('*',('NUM',5),('NUM',6))
    )
)
>>>
```


Why use PLY?

- There are many Python parsing tools
- Some use more powerful parsing algorithms
- Isn't parsing a "solved" problem anyways?

PLY is Informative

- Compiler writing is hard
- Tools should not make it even harder
- PLY provides extensive diagnostics
- Major emphasis on error reporting
- Provides the same information as yacc

PLY Diagnostics

- PLY produces the same diagnostics as yacc
- Yacc
\% yacc grammar.y
4 shift/reduce conflicts
2 reduce/reduce conflicts
- PLY
\% python mycompiler.py
yacc: Generating LALR parsing table...
4 shift/reduce conflicts
2 reduce/reduce conflicts
- PLY also produces the same debugging output

Debugging Output

Grammar

Rule $1 \quad$ statement -> NAME $=$ expression
Rule 2 statement -> expression
Rule 3 expression \rightarrow expression + expression Rule 4 expression -> expression - expression Rule 5 expression -> expression * expression Rule 6 expression -> expression / expression Rule 7

Terminals, with rules where they appear

$*$	$: 5$
+	$: 3$
-	$: 4$
	$: 6$
$=$	$: 1$
NAME	$: 7$
NUMBER	$:$

Nonterminals, with rules where they appear
expression : 123344556
statement
: 0
Parsing method: LALR
state 0
(0) S --> . statement
(1) statement -> . NAME = expressio
(3) expression -> expression + expression
(4) expression -> . expression - expression
(5) expression $->$. expression * expression
(6) expression -> . expression / expression
(7) expression -> . NUMBER
shift and go to state 1
NUMBER shift and go to state 2

$$
\begin{array}{ll}
\text { expression } & \text { shift and go to state } 4 \\
\text { statement } & \text { shift and go to state } 3
\end{array}
$$

state 1

(1) statement -> NAME . = expression

shift and go to state 5
state 10
(1) statement -> NAME $=$ expression
(3) expression $->$ expression . + expression
(4) expression -> expression . - expression
(5) expression -> expression . * expression
(6) expression -> expression . * expression
\$end reduce using rule 1 (statement -> NAME = expression .)
$+\quad$ shift and go to state 7
shift and go to state 6
shift and go to state 8
/ shift and go to state 9
state 11
(4) expression $->$ expression - expression .
(3) expression -> expression . + expression
(4) expression -> expression . - expression
(5) expression $->$ expression . * expression
(6) expression -> expression . / expression
! shift/reduce conflict for + resolved as shift
shift/reduce conflict for - resolved as shift
Shift/reduce conflict for * resolved as shift
shift/reduce conflict for / resolved as shift.
$\begin{array}{ll}\text { send } & \text { reduce using rule } 4 \text { (exp } \\ + & \text { shift and go to state } 7\end{array}$

- shift and go to state 6
* shift and go to state 8
! + [reduce using rule 4 (expression -> expression - expression .)
reduce using 4 (expression -> expression - expression .)
reduce using rule 4 (expression -> expression - expression .)
[reduce using rule 4 (expression -> expression - expression .)]

Debugging Output

```
•••
state 11
    (4) expression -> expression - expression .
    (3) expression -> expression . + expression
    (4) expression -> expression . - expression
    (5) expression -> expression . * expression
    (6) expression -> expression . / expression
    ! shift/reduce conflict for + resolved as shift.
    ! shift/reduce conflict for - resolved as shift.
    ! shift/reduce conflict for * resolved as shift.
    ! shift/reduce conflict for / resolved as shift.
        $end reduce using rule 4 (expression -> expression - expression .)
    + shift and go to state 7
    - shift and go to state 6
    * shift and go to state }
    / shift and go to state 9
! + [ reduce using rule 4 (expression -> expression - expression .) ]
! - [ reduce using rule 4 (expression -> expression - expression .) ]
! * [ reduce using rule 4 (expression -> expression - expression .) ]
! / [ reduce using rule 4 (expression -> expression - expression .) ]
```

-••

PLY Validation

- PLY validates all token/grammar specs
- Duplicate rules
- Malformed regexs and grammars
- Missing rules and tokens
- Unused tokens and rules
- Improper function declarations
- Infinite recursion

Error Example

```
import ply.lex as lex
tokens = [ 'NAME','NUMBER','PLUS','MINUS','TIMES',
            'DIVIDE', EQUALS' ]
t_ignore = ' \t'
t_PLUS = r'\+'
t_MINUS = r'_'
t_TIMES = r'\*'
t_DIVIDE = r'/'
t_EQUALS = r'='
t_NAME = r'[a-zA
t_MINUS = r'-' }\longleftarrow\mathrm{ example.py:12: Rule t_MINUS redefined.
t_POWER = r'\^^
                                    Previously defined on line 6
def t_NUMBER():
    r'\d+'
    t.value = int(t.value)
    return t
lex.lex() # Build the lexer
```


Error Example

```
import ply.lex as lex
tokens = [ 'NAME','NUMBER','PLUS','MINUS','TIMES',
            'DIVIDE', EQUALS' ]
t_ignore = ' \t'
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'\*'
t_DIVIDE = r'/'
t_EQUALS = r'='
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'
t_MINUS = r'-
t_POWER = r'\^'`& lex: Rule 't_POWER' defined for an
def t_NUMBER():
    r'\d+'
    t.value = int(t.value)
    return t
lex.lex() # Build the lexer
```


Error Example

```
import ply.lex as lex
tokens = [ 'NAME','NUMBER','PLUS','MINUS','TIMES',
            'DIVIDE', EQUALS' ]
t_ignore = ' \t'
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'\*'
t_DIVIDE = r'/'
t_EQUALS = r'='
t_NAME = r'[a-zA-Z_][a-zA-Z0-9_]*'
t_MINUS = r'-'
t_POWER = r'\^'
```

def $\underset{r^{\prime} \backslash d+^{\prime}}{t} \operatorname{NUMBER()}: \longleftarrow \begin{aligned} & \text { example.py:15: Rule } \\ & \text { an argument. }\end{aligned}$
$t . v a l u e=$ int (t.vaLue)
return t
lex.lex() \# Build the lexer

PLY is Yacc

- PLY supports all of the major features of Unix lex/yacc
- Syntax error handling and synchronization
- Precedence specifiers
- Character literals
- Start conditions
- Inherited attributes

Precedence Specifiers

- Yacc

```
    %left PLUS MINUS
    %left TIMES DIVIDE
    %nonassoc UMINUS
    expr : MINUS expr %prec UMINUS {
        $$ = -$1;
    }
```

- PLY

```
precedence = (
    ('left','PLUS','MINUS'),
    ('left','TIMES','DIVIDE'),
    ('nonassoc','UMINUS'),
)
def p_expr_uminus(p):
    'expr : MINUS expr %prec UMINUS'
        p[0] = -p[1]
```


Character Literals

- Yacc

```
expr : expr '+' expr { $$ = $1 + $3; }
expr '-' expr { $$ = $1 - $3; }
expr '*' expr { $$ = $1 * $3; }
expr '/' expr { $$ = $1 / $3; }
```

- PLY

```
def p_expr(p):
    ''expr : expr '+' expr
                            | expr '-' expr
                                expr '*' expr
        | expr '/' expr'''
```


Error Productions

- Yacc

```
funcall_err : ID LPAREN error RPAREN {
    printf("Syntax error in arguments\n");
}
;
```

- PLY

```
def p_funcall_err(p):
    '''ID LPAREN error RPAREN''
    print "Syntax error in arguments\n"
```


PLY is Simple

- Two pure-Python modules. That's it.
- Not part of a "parser framework"
- Use doesn't involve exotic design patterns
- Doesn't rely upon C extension modules
- Doesn't rely on third party tools

PLY is Fast

- For a parser written entirely in Python
- Underlying parser is table driven
- Parsing tables are saved and only regenerated if the grammar changes
- Considerable work went into optimization from the start (developed on 200Mhz PC)

PLY Performance

- Parse file with 1000 random expressions (805 KB) and build an abstract syntax tree
- PLY-2.3 : $2.95 \mathrm{sec}, \quad 10.2 \mathrm{MB}$ (Python)
- DParser : $0.71 \mathrm{sec}, \quad 72 \mathrm{MB} \quad$ (Python/C)
- BisonGen : 0.25 sec , 13 MB (Python/C)
- Bison : $0.063 \mathrm{sec}, 7.9 \mathrm{MB}$
- I2x slower than BisonGen (mostly C)
- 47x slower than pure C
- System: MacPro 2.66Ghz Xeon, Python-2.5

Class Example

import ply.yacc as yacc
class MyParser:

```
    def p_assign(self,p):
        '''assign : NAME EQUALS expr'''
    def p_expr(self,p):
        "''expr : expr PLUS term
                                expr MINUS term
                                term'''
    def p_term(self,p):
        "''term : term TIMES factor
                            | term DIVIDE factor
                                factor'''
    def p_factor(self,p):
    '''factor : NUMBER'''
    def build(self):
        self.parser = yacc.yacc(object=self)
```


Limitations

- LALR(I) parsing
- Not easy to work with very complex grammars (e.g., C++ parsing)
- Retains all of yacc's black magic
- Not as powerful as more general parsing algorithms (ANTLR, SPARK, etc.)
- Tradeoff : Speed vs. Generality

