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Probabilities

• experiment (e.g., “toss a coin 3 times”)

• basic outcomes Ω  (e.g., Ω={HHH, HHT, HTH, ..., TTT} )

• event:  some subset  A of  Ω  (e.g., A = “heads twice”)

• probability distribution

• a function p from Ω to [0, 1]

• ∑ e ∈ Ω p(e) = 1

• probability of events (marginals)

• p (A) = ∑ e ∈ A p(e)
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Joint and Conditional Probs
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Multiplication Rule
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Independence

• P(A, B) = P(A) P(B)    or  P(A) = P(A|B)

• disjoint events are always dependent!   P(A,B) = 0

• unless one of them is “impossible”: P(A)=0

• conditional independence:   P(A, B|C) = P(A|C) P(B|C) 
                                                P(A|C)     = P (A|B, C)
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Marginalization

• compute marginal probs from joint/conditional probs
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Bayes Rules
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alternative bayes rule by partition
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Most Likely Event

8



CS 562 - Lec 5-6:  Probs & WFSTs

Most Likely Given ...
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Estimating Probabilities

• how to get probabilities for basic outcomes?

• do experiments

• count stuff

• e.g. how often do people start a sentence with “the”?

• P (A) = (# of sentences like “the ...” in the sample) /
            (# of all sentences in the sample)

• P (A | B)  = (count of A, B) / (count of B)

• we will show that this is Maximum Likelihood Estimation
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Model
• what is a MODEL?

• a general theory of how the data is generated, 

• along with a set of parameter estimates

• e.g., given this statistics

• we can “guess” it’s generated by a 12-sided die

• along with 11 free parameters p(1), p(2), ..., p(11)

• alternatively, by two tosses of a single 6-sided die

• along with 5 free parameters p(1), p(2), ..., p(5)

• which is better given the data? which better explains the data?
             argmaxm p(m|d) = argmaxm p(m) p(d|m)
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Maximum Likelihood Estimation

• always maximize posterior: what’s the best m given d?

• when do we use maximum likelihood estimation?

• with uniform prior, same as likelihood (explains data)

• argmaxm p(m|d) = argmaxm p(m) p(d|m)     bayes, and p(d)=1

•                         = argmaxm p(d|m)          when p(m) uniform
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How do we rigorously derive this?

• assuming any pm(H) = θ is possible, what’s the best θ?

• e.g.: data is still H, H, T, H.

• argmaxθ p(d|m; θ) = argmaxθ θ3 (1-θ)

• take derivatives, make it zero: θ = 3/4.

• works in the general case: θ = n / (n+m)        (n heads, m tails)

• this is why MLE is just count & divide in the discrete case
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What if we have some prior?

• what if we have arbitrary prior

• like p(θ) = θ (1-θ)

• maximum a posteriori estimation (MAP)

• MAP approaches MLE with infinite 

• MAP = MLE + smoothing

• this prior is just “extra two tosses, unbiased”

• you can inject other priors, like “extra 4 tosses, 3 Hs”
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Probabilistic Finite-State Machines

• adding probabilities into finite-state acceptors (FSAs)

• FSA: a set of strings;   WFSA: a distribution of strings
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WFSA

• normalization: transitions leaving each state sum up to 1

• defines a distribution over strings?

• or a distribution over paths? 

• => also induces a distribution over strings
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WFSTs

• FST: a relation over strings (a set of string pairs)

• WFST: a probabilistic relation over strings (a set of    
<s, t, p>: strings pair <s, t> with probability p)

• what is p representing?
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Edit Distance as WFST

• this is simplified edit distance

• real edit distance as an example of WFST, but not PFST
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costs:
replacement: 1

insertion: 2
deletion: 2

0

a:a/0

a:b/1

a:*e*/2

b:b/0
*e*:a/2

b:a/1

...

WFST: real edit distance
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Normalization

• if transitions leaving each state and each input symbol 
sum up to 1, then...

• WFST defines conditional prob p(y|x) for x => y

• what if we want to define a joint prob p(x, y) for x=>y?

• what if we want p(x | y)?
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Questions of WFSTs

• given x, y, what is p(y|x) ?

• for a given x, what’s the y that maximizes p(y|x) ?

• for a given y, what’s the x that maximizes p(y|x) ?

• for a given x, supply all output y w/ respective p(y|x)

• for a given y, supply all input x w/ respective p(y|x)
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Answer: Composition

• p (z | x) = p (y | x)  p (z | y)  ???

•            = sumy p (y | x)  p (z | y)    have to sum up y

• given y,   z & x are independent in this cascade - Why?

• how to build a composed WFST C out of WFSTs A, B?

• again, like intersection

• sum up the products

• (+, x) semiring
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Example
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Example
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they use (min, +), we use (+, *)

from M. Mohri and J. Eisner
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Example
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they use (min, +), we use (+, *)
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Example
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they use (min, +), we use (+, *)
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Given x, supply all output y
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no longer normalized!
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Given x, y, what’s p(y|x)
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Given x, what’s max p(y|x)
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Part-of-Speech Tagging Again
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Part-of-Speech Tagging Again
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Adding a Tag Bigram Model (again)
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FST C:  POS bigram LM

p(t...t|w...w) p(t...t)

wait, is that right (mathematically)?

p(???)p(w...w)
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Noisy-Channel Model
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Noisy-Channel Model
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p(t...t)
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Applications of Noisy-Channel
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Example: Edit Distance
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a:ε"

ε:a 

b:ε"

ε:b 

a:b 

b:a 

a:a 

b:b 

O(k) deletion arcs  

O(k) insertion 
arcs  

O(k) identity arcs  

from J. Eisner
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Example: Edit Distance
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clara 

a:ε"

ε:a 

b:ε"

ε:b 

a:b 

b:a 

a:a 

b:b 

.o. 

= 

caca 
.o. 

c:ε" l:ε" a:ε" r:ε" a:ε"

ε:c 

c:c 
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a:c 

ε:c 

r:c 

ε:c 

a:c 
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c:a 
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a:a 
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c:c 

ε:c 

l:c 

ε:c 

a:c 

ε:c 

r:c 

ε:c 

a:c 
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ε:a 

c:a 

ε:a 

l:a 

ε:a 
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ε:a 

r:a 
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c:ε" l:ε" a:ε" r:ε" a:ε"

Best path (by Dijkstra’s algorithm) 
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Max / Sum Probs
• in a WFSA, which string x has the greatest p(x)? 

• graph search (shortest path) problem

• Dijkstra;     

• or Viterbi if the FSA is acyclic

• does it work for NFA? 

• best path much easier than best string

• you can determinize it (with exponential cost!)

• popular work-around: n-best list crunching
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(b. 1932)
Viterbi  Alg. (1967)
CMDA, Qualcomm

Edsger Dijkstra
(1930-2002)

“GOTO considered harmful”
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Dijkstra 1959 vs. Viterbi 1967
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that’s min. spanning tree!
Jarnik (1930) - Prim (1957) - Dijkstra (1959)

Edsger Dijkstra
(1930-2002)

“GOTO considered harmful”
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Dijkstra 1959 vs. Viterbi 1967
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that’s shortest-path
Moore (1957) - Dijkstra (1959) 
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Dijkstra 1959 vs. Viterbi 1967
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special case of 
dynamic programming

(Bellman, 1957)
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Sum Probs

• what is p(x) for some particular x?

• for DFA, just follow x

• for NFA, 

• get a subgraph (by composition), then sum ??

• acyclic => Viterbi

• cyclic => compute strongly connected components

• SCC-DAG cluster graph (cyclic locally, acyclic globally)

• do infinite sum (matrix inversion) locally,  Viterbi globally

• refer to extra readings on course website
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