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Probabilities

® experiment (e.g., ‘toss a coin 3 times”)
® basic outcomes () (e.g., Q={HHH,HHT,HTH,..,TTT} )

® event: some subset A of () (e.g.,A =“heads twice”)

® probability distribution

® a function p from Q) to [0, 1]
®2eccap(e) = |
® probability of events (marginals)

*p(A)=2ccap(e)
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Joint and Conditional Probs
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Multiplication Rule

Mulhiplicalion rule
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Independence

e P(A,B) =P(A) P(B) or P(A)=P(A|B)
® disjoint events are always dependent! P(A,B) =0

® unless one of them is “impossible”: P(A)=0

® conditional independence: P(A, B|C) = P(A|C) P(B|C)
P(A|[C) =P (A|B,C)

A, B ac indpndenl ik P(A) = V(A\Q)
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Marginalization

® compute marginal probs from joint/conditional probs

P(8) = P(AB) + *(A,B)
= P(A). p(8)a) « B(R)-P(B]A)
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Bayes Rules
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Most Likely Event
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Most Likely Given ...
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Estimating Probabilities

® how to get probabilities for basic outcomes!?
® do experiments
® count stuff
® e.g. how often do people start a sentence with “the’?

® P (A) = (# of sentences like “the ...” in the sample) /
(# of all sentences in the sample)

® P(A|B) =(count of A, B) / (count of B)

® we will show that this is Maximum Likelihood Estimation
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® what is a MODEL!? retalk pan
| 0

® a general theory of how the data is generated, 2 7

3 2

® along with a set of parameter estimates : .

: . - ¢ 70

® e.g,given this statistics o’ 3\
8 14

® we can “‘guess’ it's generated by a |2-sided die x ¢

. I

¢ along with | | free parameters p(l), p(2),....p(11) 12 :

® alternatively, by two tosses of a single 6-sided die
® along with 5 free parameters p(1), p(2), ..., p(5)

® which is better given the data? which better explains the data?
argmaxm p(m|d) = argmaxm p(m) p(d|m)
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® always maximize posterior: what’s the best m given d?

® when do we use maximum likelihood estimation?
® with uniform prior, same as likelihood (explains data)

® argmaxm p(m|d) = argmaxm p(m) p(d/m)  bayes, and p(d)=1
o

argmaxm p(d|m) when p(m) uniform

Suppese d = HH T ¥

m, cotn i unbicser  P(d|m) ¢ % 3 —\,-_'}'_z 0.066
I T T I T T
C S dnat BONY: Wy AR AR
Com U biase) e 24 L 4.
it fo thet P(W) = Yio P(a|m) o'l 1 10 0.073
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® assuming any pm(H) = 0 is possible, what’s the best 0?
® eg.datais still H,H, T, H.
® argmaxg p(d|m; 8) = argmaxeg 03 (1-0)

® take derivatives, make it zero: © = 3/4.

® works in the general case: 0 = n/ (n+m) (n heads, m tails)

® this is why MLE is just count & divide in the discrete case
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M  Com iy unbigsed Plm) = 0.90

| jus\' “mede u'“ !

My, o i bicses s P(m) » 0.0\ P(m)
My Cotn 13 biaged ‘/\} e(m) * 0,01

® what if we have arbitrary prior

® like p(6) = B (1-6)

P(a]m) pod |
® maximum a posteriori estimation (MAP)
® MAP approaches MLE with infinite A
® MAP = MLE + smoothing P(m)- #(d )

® this prior is just “extra two tosses, unbiased”

® you can inject other priors, like “extra 4 tosses,
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Probabilistic Finite-State Machines

® adding probabilities into finite-state acceptors (FSAs)

® FSA:a set of strings; VVFSA:a distribution of strings

e 5o x Accepts [genecates some Stvings,
Tej ects others,

x associates 2 prob. P(x) w/each x.
P i POY=0, x is Tejected.

weighted FSA Tepresents set of pairs, eg.:

§ <yow too, 107>,
 youn two, 1077,
<:’ou to, ‘0‘”),
<he the, 0,

i eat fisn, 10°%)

e ,
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WEFSA

® normalization: transitions leaving each state sum up to |
® defines a distribution over strings?
® or a distribution over paths!?

=> also induces a distribution over strings

he/o.4 ’i“:‘/ o.g’o me /i o ‘

7/‘% /\@

.0

oy
she. /0.6 tolked /1.0
° WFSA

R P(he ran home) = 0.08
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WEFSTs

® FST:a relation over strings (a set of string pairs)

® WEFST:a probabilistic relation over strings (a set of
<s, t, p>: strings pair <s, t> with probability p)

® what is p representing? {<they can Rim, PRO AUX V, 040,
{they tan f5h, PRO Vv N, 0.o1y

(e @aa b, OT DT DT, 0.007)
Chey sing, PRo V, 1,007,

KIN/ON ] deletes any inpu¥
' 0:». *ex/o.) letter w/ probebilihy
@ o brblod -
cee S bixex/o. | jNFST

P(ade |acdet) = 6.4.0.1.04:04.0.1 = 00729
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Edit Distance as WFST

® this is simplified edit distance

® real edit distance as an example of WFST, but not PFST

ata/0N ‘! deletes any ia?v‘!’
' Om *ex /o) letter w/ probebilihy
@ o brblod -
e S bixex/o, IWEST WFST: real edit distance
P(ade |acdet) = 6.4.0.1.04:04.0.1 = 00729 a:a/0
costs:
replacement: I -
insertion: 2
deletion: 2

*e*:al2
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Normalization

® if transitions leaving each state and each input symbol
sum up to |, then...

® WEFST defines conditional prob p(y|x) for x =>y

® what if we want to define a joint prob p(x, y) for x=>y?

® what if we want p(x | y)?

KISLON 1 deletes any inpu¥
0 . ke /o.) letter w/ probebilh,
>©) :9 bib /0.9 ok

o b:xex/o.\ WEST

P(ade |acdet) = 6.4:0.1.04.04.0.1 = 00729
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Questions of WFSTs

® given X, Y, what is p(y|x) ?

® for a given x, what’s the y that maximizes p(y|x) ?

® for a given y, what’s the x that maximizes p(y|x) ?

® for a given x, supply all output y w/ respective p(y|x)

® for a given y, supply all input x w/ respective p(y|x)

10,/ 0:N 1 deletes any inpu¥
* Oa: *ex/o.) letter w/ probebilihy
@ “ bibloq 0el
bixex/o.\ WEST

P(ade |acdet) = 6.4:0.1.04.04.0.1 = 00729
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Answer: Composition

..4—-------"‘_—--
— TR

ol s — [

- e - WS IS AT ST — v - —re —e o gl

*p[x)=py|x) pzl|y)
o =sumyp (Y |X) p(z]|y) havetosumupy

® giveny, z & x are independent in this cascade - Why!

® how to build a composed WFST C out of WFSTs A, B?

® again, like intersection

Cc:d/.?. o :.H/‘s o (u/oa )
® sum up the products A 8
k_____g.______?

® (+,x) semiring
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Example

d:a/o.b
Compose C

A-Aflo0.M

r t/

CS 562 - Lec 5-6: Probs & WFSTs

a:b /0.)

t:s/0.8

/aclos *0

AA/\

ttlos
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Example

from M. Mohri and J. Eisner

a:a/0.6
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a:a'0.6

.O. @ heb 0.1

a:a/0.4

ab’0.2

b:a/0.5

a:b/0.9

a:a/).7
b:a/0.6

a:b .o. b:b = a:b

they use (min, +), we use (+, *)
CS 562 - Lec 5-6: Probs & WFSTs 24



.O. @ b:b/0.1

aa/0.4

(0, 0) a:b/0.2

b:a/0).5

a:a/0.7
b:a/0.6

a:b .o0. b:a = a:a
they use (min, +), we use (+, *)
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a:4/0.6

a:b/0.9

a:b/l

25




Given X, supply all output y

N

a6 fo

Qo‘ A/OB

5 blo.2
U b:8/0.8

L

no longer normalized!
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Given X, y, what’s p(y|x)

L o Wb ‘ (@()32 F J ‘L esA/os b\:lol \
“O\b" L “Ab..

P(Ab|ob) = 0.16
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Given x, what's max p(y|x)

d‘.m[o.z

~ o:A /o8
X‘a’“&b" [,0_2.}_.,0_2:!—"@.} + @obtblo.zj
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Part-of-Speech Tagging Agaln

Before Probabhhes

thePRo

Op‘“”

a Cant AU X
0 Uﬁ;\ N

fith:v

):'"MI - Can !'Fmt\ @ +

N
PRO »
»—-—Q" 0
\—/ v
AVX

%o pre[mces
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Part-of-Speech Tagging Agaln

Before Probabhhes

con:V
Yoty o Cen i o 4 Oﬂ S ,o‘.’.'.‘_?._.(: _\,,b

a Cant AU X
0 Uﬁ;\ N

figh:v
70 pre/mces
After Probzbilities
they:PRo /) .
CaniV /.0\ N/
they  Can £isw Qﬂ can:N /14 Pro/\ J NS
. oFN g 4 @D nk/es = e
fim:NJo8 &)
fish -V /0.2 Aux[.9S
needs tvezking
0%

©
& 0 CantAUX | 8BS

Q
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Adding a Tag Bigram Model (again)

they:PRo /)

t‘n'.V/.O\ N/
they  Can itk Ql)ﬂ can:N /14 Pro/\ J NLE
oty o yo———® + (O P wnax/es = | L ®
fim:iN/os v/
fm2V /0.2 Aux[.QS
FST C: POS bigram LM
they:PRo/) .
0(‘1\'.v /ool‘ : "01 bz
; can:N /Y . ' by
nmv B oﬁa:~4 o-f'L—oG + @.4,» CanthVX /.25 - N
fim:N/o% A L
fith:V /0.2 ) b Yo b)) @
N N N _/tony
P(W...w) p(t...t|w...w) p(t...t) p(1??)

wait, is that right (mathematically)?
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Noisy-Channel Model
e o]

CS 562 - Lec 5-6: Probs & WFSTs
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Noisy-Channel Model

t--t """"w

ReST PATH 1S

/"’oo

/—\ f"“ ~ eatw 1 se\mu,
Scored

P(w- w\‘t‘. t)
COM'QS/

argmex Ptk |w-- ...)

t-t

CS 562 - Lec

eec T4 Fequanca

Scwaeedr b
’o\"’ "°~_/ Ple-t) . plwe- w|t-t)
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Applications of Noisy-Channel
bt — s

,O/?oo
F
O

Application

Machine
Translation

Optical Character
Recognition (OCR)

Part Of Speech
(POS) tagging

Speech
recognition
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Input

L, word
sequences

actual text

POS tag
sequences

word
sequences

ol

Output

L> word
sequences

text with
mistakes
English
words
speech
signal

w W

W
’o-—.o-—og-—e

/

p(i)

p(Ly)ina
language model
prob of
language text

prob of
POS sequences

prob of word
sequences

p(oli)

translation
model

model of
OCR errors

p(wit)

acoustic
model
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Example: Edit Distance

from |]. Eisner

O(k) deletion arcs

O(k) insertion %
arcs vl a:a

E:b\\"'/
b:b
O

(k) identity arcs

CS 562 - Lec 5-6: Probs & WFSTs
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Example: Edit Distance

o8 fo. bL/o.2
= | o A/JQ))" '4(0)

e bbb O . ‘
700-.0——-'® ¢ Q)g + m-A-—A»oE-tq@

J 0

\\an i
clara
OO.
..f,
A v -,
(s ,'/ / N a:b

.O.
caca
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® in a WFSA, which string x has the greatest p(x)?/

® graph search (shortest path) problem

® Dijkstra; s |
Edsger Dijkstra
® or Viterbi if the FSA is acyclic (1930-2002)

“GOTO considered harmful”

A
Y
RV e

® does it work for NFA!?
® best path much easier than best string

® you can determinize it (with exponential cost!)

Dr. Andrew Viterbi

® popular work-around: n-best list crunching . 1932)

Viterbi Alg. (1967)
CMDA, Qualcomm

USC Viterbi
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Numerische Mathematik 1, 269—271 (1959)

A DaSE

A Note on Two Problems in Connexion with Graphs Edsg;er Dijkstfa
By (1930-2002)
E. W. DIJKSTRA “GOTO considered harmful”

We consider # points (nodes), some or all pairs of which are connected by a
branch; the length of each branch is given. We restrict ourselves to the case
where at least one path exists between any two nodes. We now consider two
problems.

Problem 1. Construct the tree of minimum total length between the # nodes.

(A tree is a graph with one and only one path between every two nodes.) ’ ! .
In the course of the construction that we present here, the branches are thatS min. Spannlng tree!
subdivided into three sets: Jarnik (|930) - Prim (|957) - Dijkstra (|959)

I. the branches definitely assigned to the tree under construction (they will
form a subtree);

II. the branches from which the next branch to be added to set I, will be
selected;

III. the remaining branches (rejected or not yet considered).
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. that’s shortest-path
% e bl Moore (1957) - Dijkstra (1959)

the data for at most # branches, viz. the branches in sets I and II and the branch
under consideration in step 2.

Problem 2. Find the path of minimum total length between two given nodes
P and Q.

We use the fact that, if R is a node on the minimal path from P to Q, knowledge
of the latter implies the knowledge of the minimal path from P to R. In the

solution presented, the minimal paths from P to the other nodes are constructed
in order of increasing length until Q is reached.
In the course of the solution the nodes are subdivided into three sets:

A. the nodes for which the path of minimum length from P is known; nodes
will be added to this set in order of increasing minimum path length from node P;

B. the nodes from which the next node to be added to set A will be selected:
this set comprises all those nodes that are connected to at least one node of
set A but do not yet belong to A themselves;

C. the remaining nodes.

CS 562 - Lec 5-6: Probs & WFSTs
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JEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-13, NO. 2, APRIL 1967

Error Bounds for Convolutional Codes

and an Asymptotically Optimum
Decoding Algorithm

ANDREW J. VITERBI, SENIOR MEMBER, IEEE

Abstract—The probability of error in decoding an optimal con-
volutional code transmitted over a memoryless channel is bounded
from above and below as a function of the constraint length of the
code. For all but pathological channels the bounds are asymptotically
(exponentially) tight for rates above R,, the computational cutoff
rate of sequential decoding. As a function of constraint length the
performance of optimal convolutional codes is shown to be superior
to that of block codes of the same length, the relative improvement

Manuscript received May 20, 1966; revised November 14, 1966.
The research for this work was sponsored by Applied Mathematics
Division, Office of Aerospace h, U. Sp Air Force, Grant

The author is with the Department of Engineering, University o
California, Los Angeles, Calif.
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increasing with rate. The upper bound is obtained for a specific
probabilistic nonsequential decoding algorithm which is shown to be
asymptotically optimum for rates above R, and whose performance
bears certain similarities to that of sequential decoding algorithms.

I. SumMARY OoF RESULTS

INCE Elias' first proposed the use of convolutional
(tree) codes for the discrete memoryless channel,
it has been conjectured that the performance of

this class of codes is potentially superior to that of block
codes of the same length. The first quantitative verification
of this conjecture was due to Yudkin'*' who obtained

USC Viterbi

School of Engineering

special case of
dynamic programming
(Bellman, 1957)
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® what is p(x) for some particular x?
® for DFA, just follow x
e for NFA,

® get a subgraph (by composition), then sum ??
@ acyclic => Viterbi
¢ cyclic => compute strongly connected components
® SCC-DAG cluster graph (cyclic locally, acyclic globally)

® do infinite sum (matrix inversion) locally, Viterbi globally

® refer to extra readings on course website
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