
Natural Language Processing

Spring 2017

Liang Huang

Unit 1: Sequence Models
Lecture 4a: Probabilities and Estimations

Lecture 4b: Weighted Finite-State Machines

required
optional

CS 562 - Lec 5-6: Probs & WFSTs

Probabilities

• experiment (e.g., “toss a coin 3 times”)

• basic outcomes Ω (e.g., Ω={HHH, HHT, HTH, ..., TTT})

• event: some subset A of Ω (e.g., A = “heads twice”)

• probability distribution

• a function p from Ω to [0, 1]

• ∑ e ∈ Ω p(e) = 1

• probability of events (marginals)

• p (A) = ∑ e ∈ A p(e)

2

CS 562 - Lec 5-6: Probs & WFSTs

Joint and Conditional Probs

3

CS 562 - Lec 5-6: Probs & WFSTs

Multiplication Rule

4

CS 562 - Lec 5-6: Probs & WFSTs

Independence

• P(A, B) = P(A) P(B) or P(A) = P(A|B)

• disjoint events are always dependent! P(A,B) = 0

• unless one of them is “impossible”: P(A)=0

• conditional independence: P(A, B|C) = P(A|C) P(B|C)
 P(A|C) = P (A|B, C)

5

CS 562 - Lec 5-6: Probs & WFSTs

Marginalization

• compute marginal probs from joint/conditional probs

6

CS 562 - Lec 5-6: Probs & WFSTs

Bayes Rules

7

alternative bayes rule by partition

CS 562 - Lec 5-6: Probs & WFSTs

Most Likely Event

8

CS 562 - Lec 5-6: Probs & WFSTs

Most Likely Given ...

9

CS 562 - Lec 5-6: Probs & WFSTs

Estimating Probabilities

• how to get probabilities for basic outcomes?

• do experiments

• count stuff

• e.g. how often do people start a sentence with “the”?

• P (A) = (# of sentences like “the ...” in the sample) /
 (# of all sentences in the sample)

• P (A | B) = (count of A, B) / (count of B)

• we will show that this is Maximum Likelihood Estimation

10

CS 562 - Lec 5-6: Probs & WFSTs

Model
• what is a MODEL?

• a general theory of how the data is generated,

• along with a set of parameter estimates

• e.g., given this statistics

• we can “guess” it’s generated by a 12-sided die

• along with 11 free parameters p(1), p(2), ..., p(11)

• alternatively, by two tosses of a single 6-sided die

• along with 5 free parameters p(1), p(2), ..., p(5)

• which is better given the data? which better explains the data?
 argmaxm p(m|d) = argmaxm p(m) p(d|m)

11

CS 562 - Lec 5-6: Probs & WFSTs

Maximum Likelihood Estimation

• always maximize posterior: what’s the best m given d?

• when do we use maximum likelihood estimation?

• with uniform prior, same as likelihood (explains data)

• argmaxm p(m|d) = argmaxm p(m) p(d|m) bayes, and p(d)=1

• = argmaxm p(d|m) when p(m) uniform

12

CS 562 - Lec 5-6: Probs & WFSTs

How do we rigorously derive this?

• assuming any pm(H) = θ is possible, what’s the best θ?

• e.g.: data is still H, H, T, H.

• argmaxθ p(d|m; θ) = argmaxθ θ3 (1-θ)

• take derivatives, make it zero: θ = 3/4.

• works in the general case: θ = n / (n+m) (n heads, m tails)

• this is why MLE is just count & divide in the discrete case

13

CS 562 - Lec 5-6: Probs & WFSTs

What if we have some prior?

• what if we have arbitrary prior

• like p(θ) = θ (1-θ)

• maximum a posteriori estimation (MAP)

• MAP approaches MLE with infinite

• MAP = MLE + smoothing

• this prior is just “extra two tosses, unbiased”

• you can inject other priors, like “extra 4 tosses, 3 Hs”
14

CS 562 - Lec 5-6: Probs & WFSTs

Probabilistic Finite-State Machines

• adding probabilities into finite-state acceptors (FSAs)

• FSA: a set of strings; WFSA: a distribution of strings

15

CS 562 - Lec 5-6: Probs & WFSTs

WFSA

• normalization: transitions leaving each state sum up to 1

• defines a distribution over strings?

• or a distribution over paths?

• => also induces a distribution over strings

16

CS 562 - Lec 5-6: Probs & WFSTs

WFSTs

• FST: a relation over strings (a set of string pairs)

• WFST: a probabilistic relation over strings (a set of
<s, t, p>: strings pair <s, t> with probability p)

• what is p representing?

17

CS 562 - Lec 5-6: Probs & WFSTs

Edit Distance as WFST

• this is simplified edit distance

• real edit distance as an example of WFST, but not PFST

18

costs:
replacement: 1

insertion: 2
deletion: 2

0

a:a/0

a:b/1

a:*e*/2

b:b/0
e:a/2

b:a/1

...

WFST: real edit distance

CS 562 - Lec 5-6: Probs & WFSTs

Normalization

• if transitions leaving each state and each input symbol
sum up to 1, then...

• WFST defines conditional prob p(y|x) for x => y

• what if we want to define a joint prob p(x, y) for x=>y?

• what if we want p(x | y)?

19

CS 562 - Lec 5-6: Probs & WFSTs

Questions of WFSTs

• given x, y, what is p(y|x) ?

• for a given x, what’s the y that maximizes p(y|x) ?

• for a given y, what’s the x that maximizes p(y|x) ?

• for a given x, supply all output y w/ respective p(y|x)

• for a given y, supply all input x w/ respective p(y|x)

20

CS 562 - Lec 5-6: Probs & WFSTs

Answer: Composition

• p (z | x) = p (y | x) p (z | y) ???

• = sumy p (y | x) p (z | y) have to sum up y

• given y, z & x are independent in this cascade - Why?

• how to build a composed WFST C out of WFSTs A, B?

• again, like intersection

• sum up the products

• (+, x) semiring
21

CS 562 - Lec 5-6: Probs & WFSTs

Example

22

CS 562 - Lec 5-6: Probs & WFSTs

Example

23
they use (min, +), we use (+, *)

from M. Mohri and J. Eisner

CS 562 - Lec 5-6: Probs & WFSTs

Example

24
they use (min, +), we use (+, *)

CS 562 - Lec 5-6: Probs & WFSTs

Example

25
they use (min, +), we use (+, *)

CS 562 - Lec 5-6: Probs & WFSTs

Given x, supply all output y

26

no longer normalized!

CS 562 - Lec 5-6: Probs & WFSTs

Given x, y, what’s p(y|x)

27

CS 562 - Lec 5-6: Probs & WFSTs

Given x, what’s max p(y|x)

28

CS 562 - Lec 5-6: Probs & WFSTs

Part-of-Speech Tagging Again

29

CS 562 - Lec 5-6: Probs & WFSTs

Part-of-Speech Tagging Again

30

CS 562 - Lec 5-6: Probs & WFSTs

Adding a Tag Bigram Model (again)

31

FST C: POS bigram LM

p(t...t|w...w) p(t...t)

wait, is that right (mathematically)?

p(???)p(w...w)

CS 562 - Lec 5-6: Probs & WFSTs

Noisy-Channel Model

32

CS 562 - Lec 5-6: Probs & WFSTs

Noisy-Channel Model

33

p(t...t)

CS 562 - Lec 5-6: Probs & WFSTs

Applications of Noisy-Channel

34

CS 562 - Lec 5-6: Probs & WFSTs

Example: Edit Distance

35

a:ε"

ε:a

b:ε"

ε:b

a:b

b:a

a:a

b:b

O(k) deletion arcs

O(k) insertion
arcs

O(k) identity arcs

from J. Eisner

CS 562 - Lec 5-6: Probs & WFSTs

Example: Edit Distance

36

clara

a:ε"

ε:a

b:ε"

ε:b

a:b

b:a

a:a

b:b

.o.

=

caca
.o.

c:ε" l:ε" a:ε" r:ε" a:ε"

ε:c

c:c
ε:c

l:c

ε:c

a:c

ε:c

r:c

ε:c

a:c

ε:c
c:ε" l:ε" a:ε" r:ε" a:ε"

ε:a
c:a

ε:a

l:a

ε:a

a:a

ε:a

r:a

ε:a

a:a

ε:a c:ε" l:ε" a:ε" r:ε" a:ε"

ε:c

c:c

ε:c

l:c

ε:c

a:c

ε:c

r:c

ε:c

a:c

ε:c c:ε" l:ε" a:ε" r:ε" a:ε"

ε:a

c:a

ε:a

l:a

ε:a

a:a

ε:a

r:a

ε:a

a:a

ε:a
c:ε" l:ε" a:ε" r:ε" a:ε"

Best path (by Dijkstra’s algorithm)

CS 562 - Lec 5-6: Probs & WFSTs

Max / Sum Probs
• in a WFSA, which string x has the greatest p(x)?

• graph search (shortest path) problem

• Dijkstra;

• or Viterbi if the FSA is acyclic

• does it work for NFA?

• best path much easier than best string

• you can determinize it (with exponential cost!)

• popular work-around: n-best list crunching

37

(b. 1932)
Viterbi Alg. (1967)
CMDA, Qualcomm

Edsger Dijkstra
(1930-2002)

“GOTO considered harmful”

CS 562 - Lec 5-6: Probs & WFSTs

Dijkstra 1959 vs. Viterbi 1967

38

that’s min. spanning tree!
Jarnik (1930) - Prim (1957) - Dijkstra (1959)

Edsger Dijkstra
(1930-2002)

“GOTO considered harmful”

CS 562 - Lec 5-6: Probs & WFSTs

Dijkstra 1959 vs. Viterbi 1967

39

that’s shortest-path
Moore (1957) - Dijkstra (1959)

CS 562 - Lec 5-6: Probs & WFSTs

Dijkstra 1959 vs. Viterbi 1967

40

special case of
dynamic programming

(Bellman, 1957)

CS 562 - Lec 5-6: Probs & WFSTs

Sum Probs

• what is p(x) for some particular x?

• for DFA, just follow x

• for NFA,

• get a subgraph (by composition), then sum ??

• acyclic => Viterbi

• cyclic => compute strongly connected components

• SCC-DAG cluster graph (cyclic locally, acyclic globally)

• do infinite sum (matrix inversion) locally, Viterbi globally

• refer to extra readings on course website

41

