Natural Language Processing

Spring 2017

Unit I: Sequence Models

Lectures 5-6: Language Models and Smoothing

required

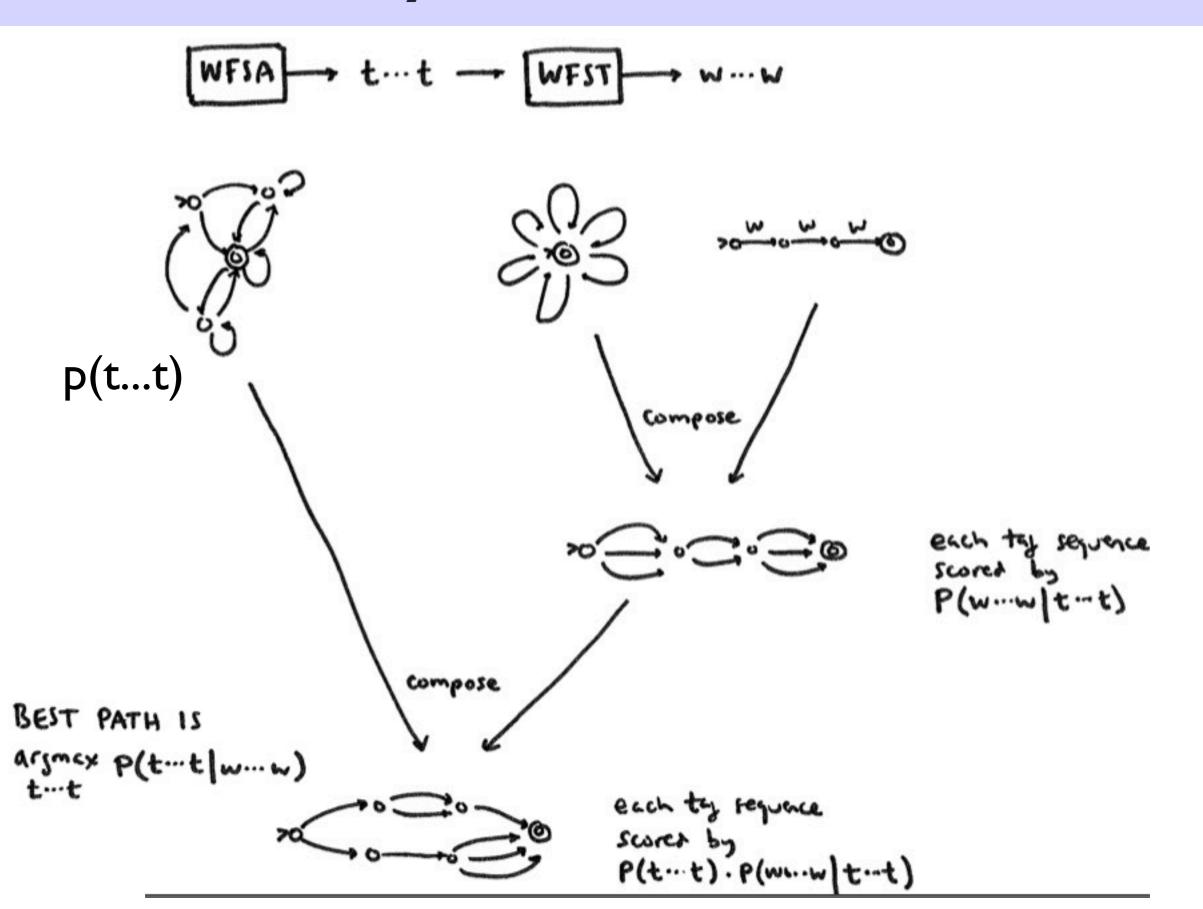
optional

Professor Liang Huang

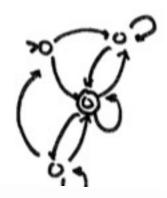
liang.huang.sh@gmail.com

Noisy-Channel Model

Noisy-Channel Model



Applications of Noisy-Channel



Application	Input	Output	p(i)	p(o i)
Machine Translation	L ₁ word sequences	L ₂ word sequences	$p(L_1)$ in a language model	translation model
Optical Character	actual text	text with	prob of	model of
Recognition (OCR)		mistakes	language text	OCR errors
Part Of Speech	POS tag	English	prob of	p(w t)
(POS) tagging	sequences	words	POS sequences	
Speech	word	speech	prob of word sequences	acoustic
recognition	sequences	signal		model
spelling correction	correct text	text with mistakes	prob. of language text	noisy spelling

Noisy Channel Examples

$$WFSA \rightarrow t \cdots t \rightarrow WFST \rightarrow w \cdots w$$

to release a product for image clean-up that dramatically improved OCR accuracy, and won the coveted "Product of the Year" award from *Imaging*

Th qck brwn fx jmps vr th lzy dg. Ths sntnc hs II twnty sx Ittrs n th lphbt.

I cnduo't byleiee taht I culod aulaclty uesdtannrd waht I was rdnaieg. Unisg the icndeblire pweor of the hmuan mnid, aocdcrnig to rseecrah at Cmabrigde Uinervtisy, it dseno't mttaer in waht oderr the Iterets in a wrod are, the olny irpoamtnt tihng is taht the frsit and Isat Itteer be in the rhgit pclae.

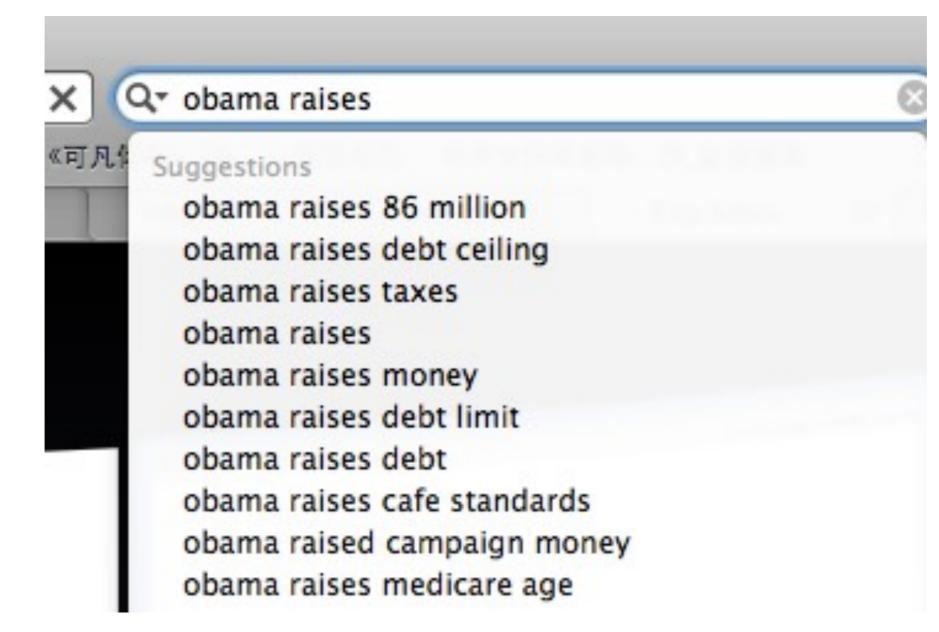
Therestcanbeatotalmessandyoucanstillreaditwi thoutaproblem.Thisisbecausethehumanminddo esnotreadeveryletterbyitself,butthewordasawh ole.

研表究明,汉字的序顺并不定一能影 阅响读,比如当你看完句这话后,才 发这现里的字全是都乱的。

研<u>究表</u>明,汉字的<u>顺序并不一定</u>能影 <u>响阅读</u>,比如当你看完<u>这句话</u>后,才 发<u>现这</u>里的字全<u>都是</u>乱的。

Language Model for Generation

search suggestions



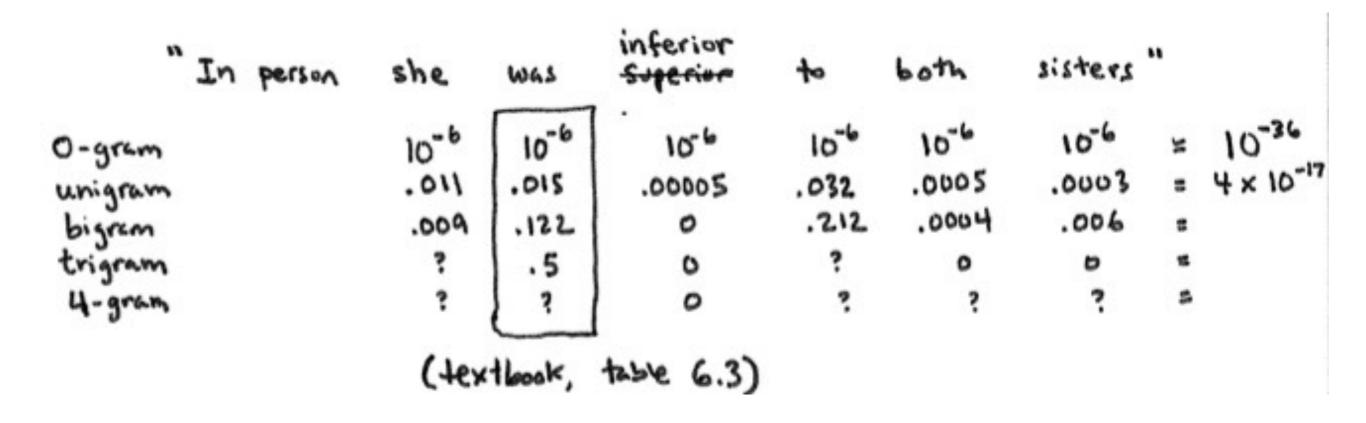
Language Models

- problem: what is $P(\mathbf{w}) = P(w_1 w_2 ... w_n)$?
 - ranking: P(an apple) > P(a apple)=0, P(he often swim)=0
 - prediction: what's the next word? use $P(w_n | w_1 ... w_{n-1})$

• Obama gave a speech about _________.
•
$$P(w_1 w_2 ... w_n) = P(w_1) P(w_2 | w_1) ... P(w_n | w_1 ... w_{n-1})$$

- $\approx P(w_1) P(w_2 | w_1) P(w_3 | w_1 w_2) ... P(w_n | w_{n-2} w_{n-1})$ trigram
- $\approx P(w_1) P(w_2 | w_1) P(w_3 | w_2) \dots P(w_n | w_{n-1})$ bigram
- $\approx P(w_1) P(w_2)$ $P(w_3)$... $P(w_n)$ unigram
- $\approx P(w) P(w) P(w) P(w) ... P(w) 0-gram$

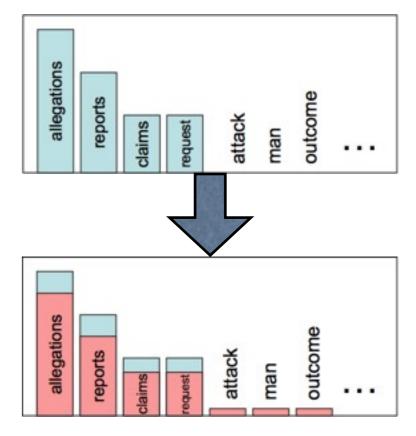
Estimating n-gram Models



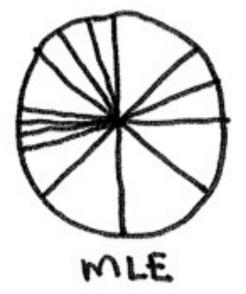
- maximum likelihood: $p_{ML}(x) = c(x)/N$; $p_{ML}(xy) = c(xy)/c(x)$
- problem: unknown words/sequences (unobserved events)
- sparse data problem
- solution: smoothing

Smoothing

- have to give some probability mass to unseen events
 - (by discounting from seen events)
- QI: how to divide this wedge up?
- Q2: how to squeeze it into the pie?

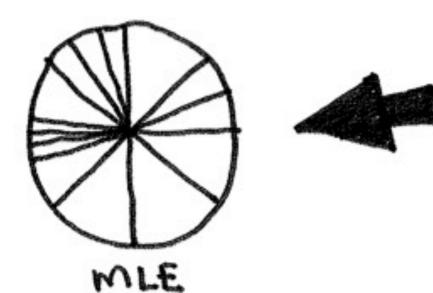


(D. Klein)



new wedge (one they slice for each character sequence of length < 20 that was never observed in training data)

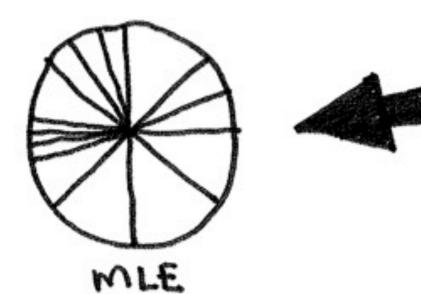
Smoothing: Add One (Laplace)



new wedge (one tiny slice for each character sequence of length < 20 that was never observed in training data)

- MAP: add a "pseudocount" of I to every word in Vocab
- $P_{lap}(x) = (c(x) + I) / (N + V)$ V is Vocabulary size
 - P_{lap}(unk) = I / (N+V) same probability for all unks
- how much prob. mass for unks in the above diagram?
 - e.g., N=10⁶ tokens, V=26²⁰, $V_{obs} = 10^5$, $V_{unk} = 26^{20} 10^5$

Smoothing: Add Less than One



new wedge (one they slice for each character sequence of length < 20 that was never observed in training data)

- add one gives too much weight on unseen words!
- solution: add less than one (Lidstone) to each word in V
- $P_{lid}(x) = (c(x) + \lambda) / (N + \lambda V)$ $0 < \lambda < I$ is a parameter
 - $P_{lid}(unk) = \lambda / (N + \lambda V)$ still same for unks, but smaller
- Q: how to tune this λ ? on held-out data!

Smoothing:Witten-Bell

- key idea: use one-count things to guess for zero-counts
 - recurring idea for unknown events, also for Good-Turing
- prob. mass for unseen: T / (N + T) T: # of seen types
 - 2 kinds of events: one for each token, one for each type
 - = MLE of seeing a new type (T among N+T are new)
 - divide this mass evenly among V-T unknown words

•
$$p_{wb}(x) = T / (V-T)(N+T)$$
 unknown word
= $c(x) / (N+T)$ known word

bigram case more involved; see J&M Chapter for details

Smoothing: Good-Turing

- again, one-count words in training ~ unseen in test
- let $N_c = #$ of words with frequency r in training
- $P_{GT}(x) = c'(x) / N$ where $c'(x) = (c(x)+1) N_{c(x)+1} / N_{c(x)}$
- total adjusted mass is $sum_c c' N_c = sum_c (c+1) N_{c+1} / N$

remaining mass: N₁ / N: split evenly among unks EXAMPLE:

N₃₅₁₀

N₄₄₁₆

N_o

N₁

N₂

N₁

N₂

N₃

N₃₅₁₁

N4417

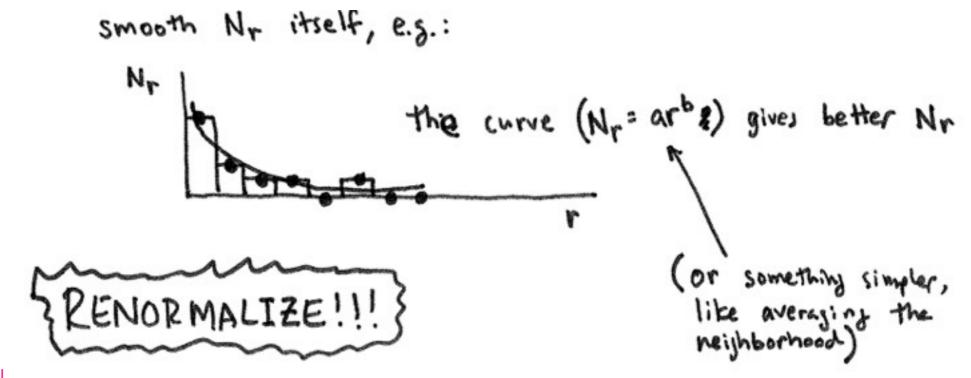
Smoothing: Good-Turing

from Church and Gale (1991).
 bigram LMs. unigram vocab size = 4x10^{5.}
 T_r is the frequencies in the held-out data (see f_{empirical}).

$r = f_{MLE}$	<i>f</i> empirical	f_{Lap}	fdel	fgт	N_r	T_r
0	0.000027	0.000137	0.000037	0.000027	74 671 100 000	2 019 187
1	0.448	0.000274	0.396	0.446	2 018 046	903 206
2	1.25	0.000411	1.24	1.26	449 721	564 153
3	2.24	0.000548	2.23	2.24	188 933	424 015
4	3.23	0.000685	3.22	3.24	105 668	341 099
5	4.21	0.000822	4.22	4.22	68 379	287 776
6	5.23	0.000959	5.20	5.19	48 190	251 951
7	6.21	0.00109	6.21	6.21	35 709	221 693
8	7.21	0.00123	7.18	7.24	27 710	199 779
9	8.26	0.00137	8.18	8.25	22 280	183 971

Smoothing: Good-Turing

- Good-Turing is much better than add (less than) one
- problem $I: N_{cmax+1} = 0$, so c'max = 0
 - solution: only adjust counts for those less than k (e.g., 5)
- problem 2: what if N_c = 0 for some middle c?
 - solution: smooth N_c itself



CS 562 - Lec 5-0. 11003 a 111013

Smoothing: Backoff & Interpolation

$$\hat{p}(w_i|w_{i-2}w_{i-1}) = \begin{cases} \tilde{p}(w_i|w_{i-2}w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_i) > 0\\ \alpha_1 p(w_i|w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_i) = 0\\ & \text{and } C(w_{i-1}w_i) > 0\\ \alpha_2 p(w_i), & \text{otherwise.} \end{cases}$$

$$\hat{p}(w_i|w_{i-2}w_{i-1}) = \lambda_1 p(w_i|w_{i-2}w_{i-1}) \\ + \lambda_2 p(w_i|w_{i-1}) \\ + \lambda_3 p(w_i)$$

subject to the constraint that $\sum_j \lambda_j = 1$

CS 562 - Lec 5-6: Probs & WFSTs

Entropy and Perplexity

- classical entropy (uncertainty): $H(X) = -sum p(x) \log p(x)$
 - how many "bits" (on average) for encoding
- sequence entropy (distribution over sequences):
 - $H(L) = \lim I/n H(w_1..., w_n)$ (for language L) Q: why I/n?
 - = lim I/n sum_{w in L} $p(w_1...w_n) \log p(w_1...w_n)$
- Shannon-McMillan-Breiman theorem:
 - $H(L) = \lim_{n \to \infty} -\frac{1}{n} \log p(w_1...w_n)$ no need to enumerate w in L!
 - if w is long enough, just take I/n log p(w) is enough!
- perplexity is 2^{H(L)}

Entropy/Perplexity of English

- on 1.5 million WSJ test set:
 - unigram: 962 9.9 bits
 - bigram: 170 7.4 bits
 - trigram: 109 6.8 bits
- higher-order n-grams generally has lower perplexity
 - but hitting diminishing returns after n=5
 - even higher order: data sparsity will be a problem!
 - recurrent neural network (RNN) LM will be better
- what about human??

Shannon Papers

- Shannon, C. E. (1938). A Symbolic Analysis of Relay and Switching Circuits. Trans. AIEE. 57 (12): 713–723. cited ~1,200 times. (MIT MS thesis)
- Shannon, C. E. (1940). An Algebra for Theoretical Genetics. *MIT PhD Thesis*. cited 39 times.
- Shannon, C.E. (1948). A Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, 1948. cited ~100,000 times.
- Shannon, C.E. (1951). Prediction and Entropy of Printed English. (same journal)
 - <u>http://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf</u> cited ~2,600 times.

	Fo	F1	F2	F3	Fword
26 letter	4.70	4.14	3.56	3.3	2.62
27 letter	4.76	4.03	3.32	3.1	2.14

	XFOML RXKHRJFFJUJ ALPWXFWJXYJ
Zero-order approximation	FFJEYVJCQSGHYD
	QPAAMKBZAACIBZLKJQD
	OCRO HLO RGWR NMIELWIS EU LL
First-order approximation	NBNESEBYA TH EEI ALHENHTTPA
	OOBTTVA NAH BRL
	ON IE ANTSOUTINYS ARE T INCTORE
Second and a an an in ation	ST BE S DEAMY ACHIN D ILONASIVE
Second-order approximation	TUCOOWE AT TEASONARE FUSO TIZIN
	ANDY TOBE SEACE CTISBE
	IN NO IST LAT WHEY CRATICT
Third order approximation	FROURE BIRS GROCID PONDENOME
Third-order approximation	OF DEMONSTURES OF THE REPTAGIN
	IS REGOACTIONA OF CRE

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED

http://people.seas.harvard.edu/~jones/cscie129/papers/stanford_info_paper/entropy_of_english_9.htm

Shannon Game

• guess the next letter; compute entropy (bits per char)

• 0-gram: 4.76, I-gram: 4.03, 2-gram: 3.32, 3-gram: 3.1

• native speaker: ~I.I (0.6~I.3); me: upperbound ~2.3

Q: formula for entropy? (only computes upperbound) <u>http://math.ucsd.edu/~crypto/java/ENTROPY/</u>

From Shannon Game to Entropy

The_broken_v 2 1 1 1 11 3 2 5 1 1 1 15

The subject's identical twin would be able to reconstruct the original text from the guess sequence, so in that sense, it contains the same amount of information.

Let $c_1, c_2, ..., c_n$ represent the character sequence, let $g_1, g_2, ..., g_n$ represent the guess sequence, and let *j* range over guess numbers from 1 to 95, the number of printable English characters plus newline. Shannon [3] provides two results.

(*Upper Bound*). The entropy of $c_1, c_2, ..., c_n$ is no greater than the unigram entropy of the guess sequence:

 $-\frac{1}{n}\log(\prod_{i=1} P(g_i)) = -\frac{1}{n}\sum_{i=1}^{n}\log(P(g_i)) = -\sum_{j=1}^{95} P(j)\log(P(j))$

This is because this unigram entropy is an upper bound on the entropy of g_1, g_2, \ldots, g_n , which equals the entropy of c_1, c_2, \ldots, c_n . In human experiments, Shannon obtains an upper bound of 1.3 bits per character (bpc) for English, significantly better than the character n-gram models of his time (e.g., 3.3 bpc for trigram).

(*Lower Bound*). The entropy of $c_1, c_2, \ldots c_n$ is no less than:

$$\sum_{j=1}^{95} j \cdot [P(j) - P(j+1)] \cdot \log(j)$$

with the proof given in his paper. Shannon reported a lower bound of 0.6 bp

$$\sum_{i=1}^{27} i(q_i^N - q_{i+1}^N) \log i \le F_N \le -\sum_{i=1}^{27} q_i^N \log q_i^N.$$
(17)

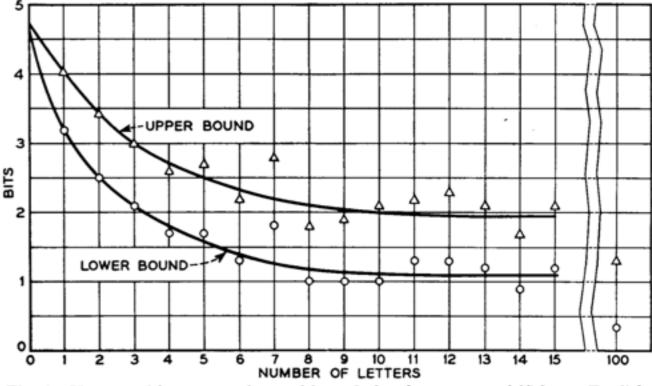


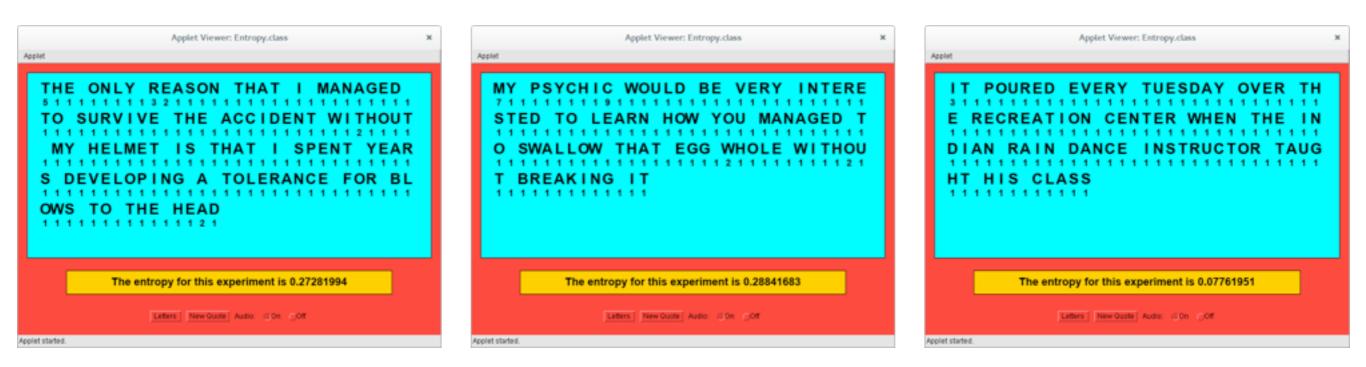
Fig. 4-Upper and lower experimental bounds for the entropy of 27-letter English.

http://www.mdpi.com/1099-4300/19/1/15

BUT I CAN BEAT YOU ALL!

• guess the next letter; compute entropy (bits per char)

- 0-gram: 4.76, I-gram: 4.03, 2-gram: 3.32, 3-gram: 3.1
- native speaker: ~I.I (0.6~I.3); me: upperbound ~2.3



This Applet only computes Shannon's upperbound! I'm going to hack it to compute lowerbound as well.

$$\sum_{i=1}^{27} i(q_i^N - q_{i+1}^N) \log i \le F_N \le -\sum_{i=1}^{27} q_i^N \log q_i^N.$$
(17)

Playing Shannon Game: n-gram LM

- 0-gram: each char is equally likely (1/27)
- I-gram: (a) sample from I-gram distribution from Shakespeare or PTB
- I-gram: (b) always follow same order: __ETAIONSRLHDCUMPFGBYWVKXJQZ

0-gram

ARGUE WITH ANYONE THAT

PAYING

BEAR

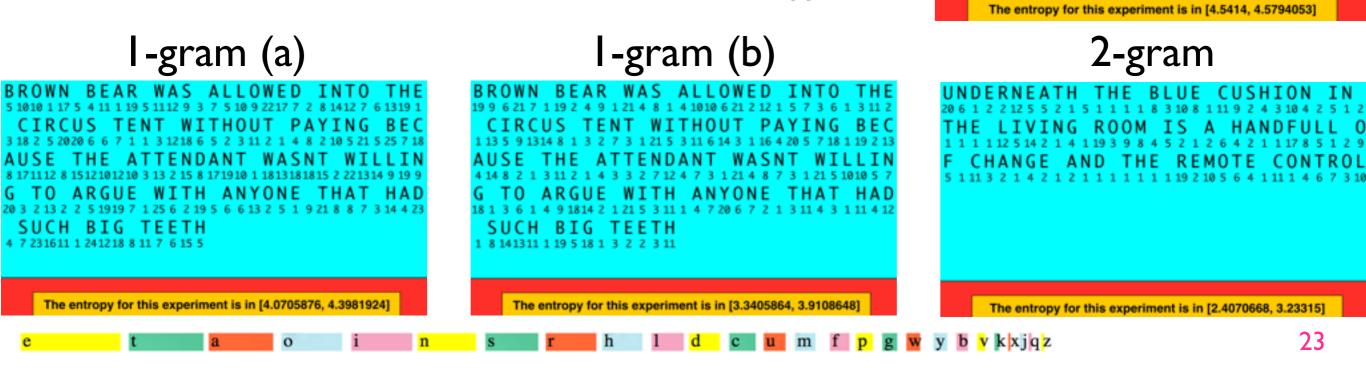
CIRCUS TENT WITHOUT

• 2-gram: always follow same order: Q=>U_A J=>UOEAI

	Fo	F1	F2	F3	Fword
26 letter	4.70	4.14	3.56	3.3	2.62
27 letter	4.76	4.03	3.32	3.1	2.14

$$\sum_{i=1}^{27} i(q_i^N - q_{i+1}^N) \log i \le F_N \le -\sum_{i=1}^{27} q_i^N \log q_i^N.$$
(17)

Shannon's estimation is less accurate for lower entropy!

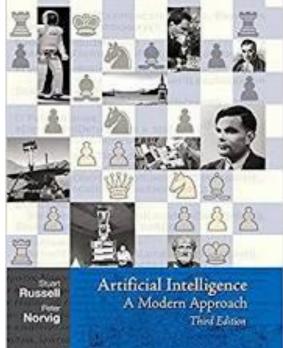


On Google Books (Peter Norvig)

My distillation of the Google books data gives us 97,565 distinct words, which were mentioned 743,842,922,321 times (37 million times more than in Mayzner's 20,000-mention collection). Each distinct word is called a "type" and each mention is called a "token." To no surprise, the most common word is "the". Here are the top 50 words, with their counts (in billions of mentions) and their overall percentage (looking like a Zipf distribution):

WORD COUNT PERCENT bar graph 53.10 B 7.14% the the of of 30.97 B 4.16% 3.04% 22.63 B and and 19.35 B 2.60% to 16.89 B 2.27% in 15.31 B 2.06% а is 8.38 B 1.13% 1.08% that 8.00 B that for 6.55 B 0.88% for LET COUNT PERCENT bar graph 0.77% 445.2 B 12.49% 5.74 B it E т T 330.5 B 9.28% 5.70 B 0.77% as A 286.5 B А 8.04% 5.50 B 0.74% was was O 272.3 B 7.64% 0 0.70% 5.18 B with with т I 269.7 B 7.57% 4.82 B 0.65% be 7.23% N 257.8 B N 4.70 B 0.63% by S 232.1 B 6.51% s 4.59 B 0.62% on R 223.8 B 6.28% R 4.52 B 0.61% not not 5.05% Н H 180.1 B 4.11 B 0.55% he 4.07% L 145.0 B L 1 2grams 3grams -grams 5-grams 6-grams 3.88 B 0.52% i 3.82% th D 136.0 B D е the tion ation ations t he and atio tions ration C 119.2 B 3.34% С 3.83 B 0.51% this this а in ing that which tional U 97.3 B 2.73% U 0.50% 3.70 B are are ction nation 0 \mathbf{er} ion ther 89.5 B 2.51% М м 3.67 B 0.49% or i an tio with other ection 85.6 B 2.40% F F his 3.61 B 0.49% his cation n ent ment their re 76.1 B 2.14% P P 0.47% ati ions lation 3.47 B from 8 on there from 66.6 B 1.87% G G r at for this ition though 3.41 B 0.46% atat W 59.7 B 1.68% W h her here ement presen en which 3.14 B 0.42% which 1.66% Y 59.3 B Y 1 from inter nd ter tation 0.38% 2.79 B but but d в 1.48% ti ould 52.9 в в hat ional should 2.78 B 0.37% have have С es tha ting ratio resent v 37.5 B 1.05% v u or ere hich would genera 2.73 B 0.37% an к к 19.3 B 0.54% an dition m te ate whic tiona 0.23% X 2.62 B 0.35% 8.4 B had had х f of his ctio these ationa J 5.7 в 0.16% J 2.46 B 0.33% they they ed state produc р con ence 0 4.3 B 0.12% 0 0.31% 2.34 B you you is res have natio throug g 3.2 B 0.09% Z z it 0.31% w ver othe thing hrough were 2.27 B were y al all ight under etween 2.15 B 0.29% their their betwee ь ar ons sion ssion 0.29% 2.15 B one one differ v st nce ever ectio all 2.06 B 0.28% all k icatio to men ical catio 2.06 B 0.28% we х nt ith they latio people i iffere ng ted inte about 1 67 B 0 229 Can đ se ers ough count fferen z ha pro ance ments struct

http://norvig.com/mayzner.html



8-grams

differen

national

consider

position

ifferent

governme

vernment

overnmen

interest

importan

ormation

formatio

relation

question

american

characte

haracter

articula

possible

children

elopment

velopmen

developm

evelopme

conditio

ondition

7-grams

present

ational

through

between

ication

differe

ifferen

general

because

develop

america

however

eration

nationa

conside

onsider

ference

positio

osition

ization

fferent

without

ernment

vernmen

overnme

governm

kxiqz

9-grams

different

governmen

overnment

formation

character

velopment

developme

evelopmen

condition

important

articular

particula

represent

individua

ndividual

relations

political

informati

nformatio

universit

following

experienc

stitution

xperience

education

roduction

we

to

in

а

is

it

as

be

by

on

he

or

i

Bilingual Shannon Game

"From an information theoretic point of view, accurately translated copies of the original text would be expected to contain almost no extra information if the original text is available, so in principle it should be possible to store and transmit these texts with very little extra cost." (Nevill and Bell, 1992)

Monolingual Shannon Game (no source sentence)

	s_defended_thro			
Dw	him	eifi a ,		
m t		as		
c 0		n		
		с		
		i		
		f		
		m		
		0		
		d		
		-		
		P		
		t		
Bilingual Shannon Game (source sentence = "Se defiende con argumentos.")				
It_i	s_defended_thro w	ugh_reasoning. d. a		

If I am fluent in Spanish, then English translation adds no new info.

If I understand 50% Spanish, then English translation adds some info.

If I don't know Spanish at all, then English should be have the same entropy as in the monolingual case.

Entropy 2017, 19(1), 15; doi: 10.3390/e19010015

Humans Outperform Machines at the Bilingual Shannon Game

Marjan Ghazvininejad +,* and Kevin Knight +

http://www.mdpi.com/1099-4300/19/1/15 25

Other Resources

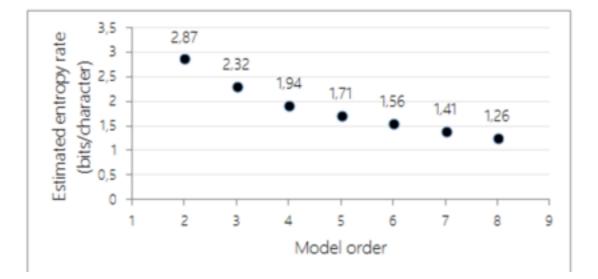
"Unreasonable Effectiveness of RNN" by Karpathy

• Yoav Goldberg's follow-up for n-gram models (ipynb)

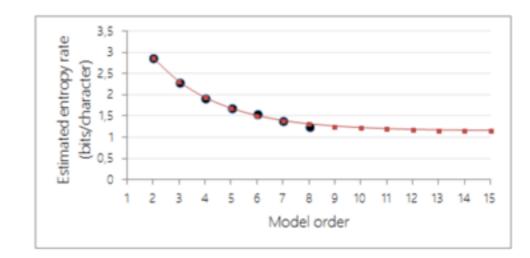
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

http://pit-claudel.fr/clement/blog/an-experimental-estimation-of-the-entropy-of-english-in-50-lines-of-python-code/



As a rough example, call this sequence of values F_k and assume that it verifies the recurrence equation $F_{k+1}-F_k = \alpha(F_n-F_{n-1})$. Then the α that yields the best approximation (taking the two initial values for granted since they are less likely to suffer from sampling errors) is $\alpha \approx 0.68$ (\mathcal{L}^2 error: $6.7 \cdot 10^{-3}$), and the corresponding entropy rate is $h \approx 1.14$ bits/character.



Extrapolated entropy rate values for $\alpha \approx 0.68$. In this heuristic model, the limit entropy rate is $h \approx 1.14$ bits/character.

Running this algorithm on the entire <u>Open American National Corpus</u> (about 95 million characters) yields the following results: