
Natural Language Processing, Homework 4 (15%)

Prof. Liang Huang

Due Monday Nov 11 at 11:59pm on Canvas (to HW4 groups)

This homework is about unsupervised learning (using the EM algorithm) of the alignment between
English and Japanese phonemes in English-Katakana pairs. Recall from HW2/3:

AE K T ER ;; English phoneme sequence for ’actor’

A K U T A A ;; Same word, loaned into Japanese

1 2 2 3 4 4 ;; e.g., Japanese T maps to the 3rd English sound

But in this homework, you need to learn the alignments yourself. In fact, those alignments we gave you
in HWs 2–3 were also learned by EM, and thus are not 100% correct. You will reuse the following files:

epron-jpron.data a database of aligned English/Japanese phoneme sequence pairs
ignore the aligments – your job is to learn them!

eword.wfsa a unigram WFSA of English word sequences
eword-epron.wfst a WFST from English words to English phoneme sequences
jprons.txt a short list of Japanese Katakana sounds to decode

1 Complete Data, Incomplete Model (10 pts)

If we’re given the following manually aligned pairs (English “boat” and “test”):

B OW T T EH S T

B O O T O T E S U T O

1 2 2 3 3 1 2 3 3 4 4

What is the maximum likelihood estimate for p(T | T) and p(T O | T) ?

2 Complete Model, Incomplete Data (10 pts)

Given the following conditional probabilities,

p(B | B) = 1

p(O O | OW) = 0.8 p(O | OW) = 0.2

p(T | T) = 0.3 p(T O | T) = 0.5 p(O | T) = 0.1 p(O T O | T) = 0.1

Enumerate (by hand) all legal alignments for the “boat” example above, and compute the probability
and normalized probability of each alignment. Which one is the Viterbi alignment?

3 EM, Implementation I: Enumerating All Alignments (70 pts)

Now implement the EM algorithm:

1. initialize the conditional probabilities to uniform

2. repeat:

3. E-step:

4. for each English-Katakana pair:

5. enumerate all legal alignments for that E-K pair, along with their respective probabilities

6. renormalize the probabilities to get a distribution over these alignments

7. collect the fractional counts for this E-K pair

1

8. M-step: count-and-divide based on the collected fractional counts from all pairs to get new prob. table

9. until reached maximum iteration or converged

You should proceed with the following steps:

1. (15 pts) to start with, you should work on the simplest scenario (“wine” example): W AY N / W A I N.

Print the following information in each iteration: 1) the corpus probability, 2) the new prob. table
(>= 0.01). 3) the number of nonzero entries in the prob. table (>= 0.01). Note: the corpus probibility
should increase in each iteration (we have the proof), and the number of nonzero entries should decrease
(as the model gets peakier).

For example, you should run echo -e "W AY N\nW A I N\n" | ./em.py 5 and get the following (note
that the data should be read in from standard input and 5 is the number of iterations):

iteration 0 ----- corpus prob= 0.00411522633745

AY|-> A: 0.33 A I: 0.33 I: 0.33

W|-> W: 0.67 W A: 0.33

N|-> N: 0.67 I N: 0.33

nonzeros = 7

iteration 1 ----- corpus prob= 0.296296296296

AY|-> A I: 0.50 A: 0.25 I: 0.25

W|-> W: 0.75 W A: 0.25

N|-> N: 0.75 I N: 0.25

nonzeros = 7

...

iteration 4 ----- corpus prob= 0.912659654395

AY|-> A I: 1.00

W|-> W: 1.00

N|-> N: 1.00

nonzeros = 3

For your debugging convenience you can also print all possible alignments and their unnormalized and
normalized probabilities in each iteration. Include the result of 5 iterations in your report.

2. (5 pts) If you add N AY N / N A I N to it you should see it converge faster. Show the results.

3. (5 pts) Now that you have passed “wine”, try the “test” example above (T EH S T / T E S U T O)
and you’ll see that EM converges to something wrong. Show me the result of 5 iterations.

Now come up with a minimal second example so that when combined with the “test” example, EM will
learn the correct alignments. This second pair has to be a real English word, and should be choosen
from epron-jpron.data.

4. (8 pts) Now come up with an example dataset where EM does not learn anything and is still ambivalent
at the end (i.e., the final probability table is (almost) the same as the initial one). In the lecture we
gave B IY / B I I as one such example, but can you come up with something bigger, i.e., longer
sequences and multiple, interdependent pairs?

5. (15 pts) If you have passed all previous questions, it’s now time to work on the whole dataset with the
following command-line:

cat epron-jpron.data | ./em.py 15 >epron-jpron.probs 2>epron-jpron.logs

(Ignore the alignment lines in the input – your job is to learn them yourself!)

The logs file contains the logging info for all iterations (see above), and print the final prob. table to
the .probs file. Theis file should follow the same format as in HW3 (ignore < 0.01 entries).

Note: Do not reestimate probs from the final Viterbi alignments – you’ll get HW3 probs that way.
Hint: The corpus probs are likely to underflow (beyond the range of Python float). Try fix it.

2

6. (7 pts) Decode jprons.txt from HW3 using your newly learned epron-jpron.probs. Compare with
your results from HW3: did you see any differences?

7. (5 pts) Generate Viterbi alignments from epron-jpron.probs:

cat epron-jpron.data | ./viterbi_align.py epron-jpron.probs >epron-jpron.viterbi

The result file should follow the same format as epron-jpron.data so that we can compare them.

8. (5 pts) Calculate the number of different viterbi alignments between your epron-jpron.viterbi and
epron-jpron.data. It should be less than 10 (out of 2684 examples).

4 EM, Implementation II: Forward-Backward (DP) (30 pts)

The enumeration of all alignments is not the best idea, since in the worst case, there are exponentially many
such alignments per example.

1. (5 pts) BTW how many possible alignments are there for a pair of n English phonemes and m Japanese
phonemes (n ≤ m)? What pair(s) in epron-jpron.data give the highest number of alignments?

2. (20 pts) Implement the forward-backward algorithm (replacing lines 5–7 in the pseudocode above) so
that you can do dynamic programming to collect fractional counts without enumerating all alignments.
Make sure the two approaches match on their results.

Include a detailed pseudocode of your implementation. What is the complexity of this forward-
backward algorithm for a (n,m) pair? Try optimize your program (em2.py). How does it compare
to the enumeration approach in terms of speed? Part of the grade will depend on efficiency. (5 pts
pseudocode/complexity, 10 pts correctness of implementation, 5 pts efficiency).

3. (5 pts) Try to construct an example so that em2.py is substantially faster than em.py and explain why.

5 EM for Decipherment (30 pts)

Can you decode this? Hint: letter substitution cipher (i.e., permutation of 27 chars).

gjkgcbkycnjpkovryrbgkcrvsczbkyhkahqvykgjvjkcpekrbkjxdjayrpmkyhkmhkyhkyvrcukrpkbjfjvcukihpygb

oqykcykujcbykhpjkejihavcyrakvjmrijkjxrbybkrpkjfjvzkiclhvkarfrurtcyrhpkhvkaquyqvjkrpkygjkshvue

auqobkrpkvjajpykzjcvbkgcfjkwhqpekohvcbkbhkerwwraquykyhkpjmhyrcyjksrygkygcykicpzkbgqpkgrbkaurjpyb

gjkbcrekygjkoqvjcqkiqbykgcfjkygjkerbdqyjkvjbhufjekozkwjovqcvzkrpkhvejvkyhkdjvwhvikygjkajpbqb

oqykygjkdqouraryzkbqvvhqperpmkygjkejocaujkajvycrpuzkbjvfjekyhkwhaqbkckbdhyurmgykhpkyghbjkjwwhvyb

(Wait: how come there is no space at all, given that space also participated in the permutation??)

Using a bigram model trained on Ex2’s train.txt with 50 iterations should be good enough.
Hint: as shown in slides, start with a uniform model p(c | e) = 1/27 for all c, e: (the LM does not change!)

p(c1 . . . cn) =
∑

e1...en

p(c1 . . . cn, e1 . . . en) =
∑

e1...en

p(e1 . . . en) · p(c1 . . . cn | e1 . . . en) (1)

=
∑

e1...en

p(e1 . . . en) · p(c1 | e1) · · · p(cn | en) (2)

=
∑

e1...en

p(e1 | <s>) · · · p(ei | ei−1) · · · p(</s> | en) · p(c1 | e1) · · · p(cn | en) (3)

After each iteration, print some debugging information like these (probs ≤ 0.01 are considered zeros):

$ cat cipher.txt | ./decipher2.py train.txt 50

epoch 1 logp(corpus)= -2270.05 entropy= 4.79 nonzeros= 567

...

epoch 50 logp(corpus)= -1606.14 entropy= 3.39 nonzeros= 76

notice the initial entropy
is similar to 0-gram’s, and
the final entropy similar to
2-gram’s (see LM slides).
why?

Optional: Can you do trigram? (should be better: the stronger your LM is, the better you can decipher).
Optional: What if you also update the language model during EM training (like in Eisner’s example)?

3

