
CS 539-001 Natural Language Processing, Fall 2019

HW 6: Recurrent Neural Language Models

Instructions:

• Submit individually by Monday Dec 9, 11:59pm on Canvas. No late submission will be accepted.

• Only hw6.zip (which contains report.pdf and all your code) should be submitted.

• Worth 12% of the final grade.

• This HW aims to give you some basic exposure to recurrent neural language models and deep learning.

• This HW compares NLM with n-gram models from EX2 in many of the same tasks: entropy, random
generation, space and vowel recovery.

To make it simple, our TA has trained two recurrent neural language models (NLMs) for you, the
smaller one (“base”) on your HW2 train.txt, the larger one (“large”) on a subset of wiki-2 corpus,
and a huge one (“huge”) on 10% of the “one-billioon-word” corpus. This Exercise asks you to train and
use char-based n-gram language models. Please download http://classes.engr.oregonstate.edu/eecs/

fall2019/cs539-001/hw6/hw6-data.tgz which contains

1. Trigram models (cf. EX2) trained on base and large settings (the first one is almost identical to the
one from EX2 solutions)

trigram.base.wfsa.norm and trigram.large.wfsa.norm.

2. NLMs (base, large, and huge) in directory saved_models/*. The use of ’huge’ is optional.

3. The NLM code: nlm.py which provides a class NLM.

4. The evaluation scripts: eval_space.py and eval_vowels.py adapted from HW1.

You need to run these experiments on Pytorch (but you don’t need to know anything about it), which
we have installed on pelican.eecs.oregonstate.edu machines (all 4 of them, pelican01 to pelican04).
This HW does not need GPUs, though each pelican machine does have reasonably good GPUs.

$ ssh <ONID>@pelican.eecs.oregonstate.edu

$ /scratch/anaconda3/bin/python3

Python 3.7.3 (default, Mar 27 2019, 22:11:17)

[GCC 7.3.0] :: Anaconda, Inc. on linux

>>> import torch

1 Playing with the NLM (0 pts)

You can use the NLM to evaluate the probability of a given sequence:

>>> NLM.load('large') # load neural model from file; choose 'base', 'large', or 'huge'

>>> h = NLM() # initialize a state (and observing <s>)

>>> p = 1

>>> for c in 't h e _ e n d _ '.split():

>>> print(p, h) # cumulative prob and current state (and the distribution of the next char)

>>> p *= h.next_prob(c) # include prob (c | ...)

>>> h += c # observe another character (changing NLM state internally)

1.000 "<s>": [t: 0.19, i: 0.10, a: 0.09, m: 0.07, s: 0.06, h: 0.06, c: 0.05, b: 0.04, p: 0.04, f: 0.04, r: 0.03, o: 0.03, d: 0.03, w: 0.03, e: 0.03, n: 0.03, l: 0.02, k: 0.02, g: 0.02, j: 0.01]

0.189 "<s> t": [h: 0.82, o: 0.09, r: 0.03, e: 0.02, i: 0.01, w: 0.01]
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0.156 "<s> t h": [e: 0.88, i: 0.07, a: 0.02, r: 0.01]

0.138 "<s> t h e": [_: 0.88, y: 0.04, r: 0.03, s: 0.01]

0.121 "<s> t h e _": [s: 0.13, c: 0.09, f: 0.08, t: 0.07, p: 0.06, a: 0.05, m: 0.05, r: 0.05, b: 0.05, n: 0.04, w: 0.04, g: 0.04, l: 0.04, e: 0.04, d: 0.03, i: 0.03, h: 0.03, o: 0.03, u: 0.01, v: 0.01]

0.004 "<s> t h e _ e": [n: 0.24, a: 0.13, x: 0.11, v: 0.08, p: 0.07, r: 0.05, l: 0.05, m: 0.04, s: 0.04, u: 0.03, f: 0.03, i: 0.02, c: 0.02, d: 0.02, g: 0.01, t: 0.01]

0.001 "<s> t h e _ e n": [d: 0.41, g: 0.23, t: 0.18, v: 0.03, c: 0.03, o: 0.02, e: 0.01, r: 0.01]

0.000 "<s> t h e _ e n d": [_: 0.84, </s>: 0.05, i: 0.05, e: 0.02, s: 0.02]

You can also use the NLM to greedily generate (i.e., always choose the most likely next character):

>>> NLM.load("large")

>>> h = NLM()

>>> for i in range(100):

>>> c, p = max(h.next_prob().items(), key=lambda x: x[1])

>>> print(c, "%.2f <- p(%s | ... %s)" % (p, c, " ".join(map(str, h.history[-4:]))))

>>> h += c

You get something like:

t 0.19 <- p(t | ... <s>)

h 0.82 <- p(h | ... <s> t)

e 0.88 <- p(e | ... <s> t h)

_ 0.88 <- p(_ | ... <s> t h e)

s 0.13 <- p(s | ... t h e _)

e 0.18 <- p(e | ... h e _ s)

c 0.31 <- p(c | ... e _ s e)

o 0.88 <- p(o | ... _ s e c)

n 1.00 <- p(n | ... s e c o)

d 1.00 <- p(d | ... e c o n)

_ 0.97 <- p(_ | ... c o n d)

s 0.13 <- p(s | ... o n d _)

e 0.22 <- p(e | ... n d _ s)

a 0.30 <- p(a | ... d _ s e)

s 0.82 <- p(s | ... _ s e a)

o 0.99 <- p(o | ... s e a s)

n 1.00 <- p(n | ... e a s o)

_ 0.88 <- p(_ | ... a s o n)

o 0.21 <- p(o | ... s o n _)

f 0.92 <- p(f | ... o n _ o)

_ 0.98 <- p(_ | ... n _ o f)

t 0.28 <- p(t | ... _ o f _)

h 0.90 <- p(h | ... o f _ t)

e 0.94 <- p(e | ... f _ t h)

_ 0.96 <- p(_ | ... _ t h e)

s 0.12 <- p(s | ... t h e _)

e 0.18 <- p(e | ... h e _ s)

c 0.26 <- p(c | ... e _ s e)

o 0.86 <- p(o | ... _ s e c)

n 1.00 <- p(n | ... s e c o)

d 1.00 <- p(d | ... e c o n)

_ 0.94 <- p(_ | ... c o n d)

s 0.13 <- p(s | ... o n d _)

e 0.21 <- p(e | ... n d _ s)

a 0.29 <- p(a | ... d _ s e)

s 0.81 <- p(s | ... _ s e a)

o 0.99 <- p(o | ... s e a s)

n 1.00 <- p(n | ... e a s o)

_ 0.87 <- p(_ | ... a s o n)

o 0.18 <- p(o | ... s o n _)

f 0.89 <- p(f | ... o n _ o)

_ 0.98 <- p(_ | ... n _ o f)

t 0.28 <- p(t | ... _ o f _)

h 0.90 <- p(h | ... o f _ t)

e 0.94 <- p(e | ... f _ t h)

_ 0.96 <- p(_ | ... _ t h e)

s 0.12 <- p(s | ... t h e _)

e 0.18 <- p(e | ... h e _ s)

c 0.26 <- p(c | ... e _ s e)

o 0.86 <- p(o | ... _ s e c)

n 1.00 <- p(n | ... s e c o)

d 1.00 <- p(d | ... e c o n)

_ 0.94 <- p(_ | ... c o n d)

s 0.13 <- p(s | ... o n d _)

e 0.21 <- p(e | ... n d _ s)

a 0.29 <- p(a | ... d _ s e)

s 0.81 <- p(s | ... _ s e a)

o 0.99 <- p(o | ... s e a s)

n 1.00 <- p(n | ... e a s o)

_ 0.87 <- p(_ | ... a s o n)

o 0.18 <- p(o | ... s o n _)

f 0.88 <- p(f | ... o n _ o)

_ 0.98 <- p(_ | ... n _ o f)

t 0.28 <- p(t | ... _ o f _)

2 Evaluating Entropy (2 pts)

1. Like EX2, please first evaluate the trigram entropies (base and large) on EX2 test.txt
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cat <text> | sed -e 's/ /_/g;s/\(.\)/\1 /g' | awk '{printf("<s> %s </s>\n", $0)}' \

| carmel -sribI <your_wfsa>

Hint: both should be around 2.9.

Q: Is the large version intuitively better than the small version? If so, why? If not, why?

2. Now write a short program to evaluate the entropy of NLMs on the same test.txt.

Hint: they should be around 2.6 and 2.0, respectively.

Q: Which version (base or large) is better? Why?

3. Is NLM better than trigram in terms of entropy? Does it make sense?

3 Random Generation (2 pts)

1. Random generation from n-gram models.

Use carmel -GI 10 <your_wfsa> to stochastically generate character sequences. Show the results.
Do these results make sense?

2. Write a short code to randomly generate 10 sentences (from <s> to </s>) from NLMs.

Hint: use random.choices() to draw the random sample from a distribution.

3. Compare the results between NLMs and trigrams.

4 Restoring Spaces (4 pts)

1. Recall from EX2 that you can use LMs to recover spaces:

therestcanbeatotalmessandyoucanstillreaditwithoutaproblem

thisisbecausethehumanminddoesnotreadeveryletterbyitselfbutthewordasawhole.

First, redo the trigram experiments using our provided trigrams, and using Carmel.

What are the precisions, recalls, and F-scores? (use eval_space.py).

Hint: F-scores should be around 61% and 64%, respectively.

2. Then design an algorithm to recover spaces using NLMs. Note: you can’t use dynamic programming
any more due to the infinite history that NLM remembers. You can use beam search instead.

Describe your algorithm in English and pseudocode, and analyze the complexity.

3. Implement it, and report the precisions, recalls, and F-scores.

Hint: F-scores should be ∼81% and ∼94% using beam size of 20 (and 100% using the ’huge’ model).

5 Restoring vowels (4 pts)

1. Redo trigram vowel recovery and report the accuracy. (use eval_vowels.py)

Hint: should be around 37% 42% and 33% 41%.

2. Now design an algorithm to recover spaces using NLMs.

Describe your algorithm in English and pseudocode, and analyze the complexity.

3. Implement it, and report the precisions, recalls, and F-scores.

Hint: should be around 50% 54% and 77% 80% using beam size of 40. If you use the ’huge’ NLM, it
will be around 93% (it might be slow to run).

6 Cancelled: Extra Credit: Decipherment with Neural LM (5 pts)

Redo HW4 part 5 with NLMs.
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