
CS 3813/780, Python Programming, Fall 2012

Final Project

December 6, 2012

1 Instructions

• This is a programming project onmachine translation but we assumeno prior knowledge in any
of the languages involved in the examples (Chinese, French, or Spanish),nor any familiarity with
computational linguistics or any linguistic theory.

• Please refer to the slides for high-level intuitions and visualizations.

• The submission deadline isFriday Dec 21stat midnight.No late submissions are accepted.

• There are other testcases on the course homepage.

2 The Problem - Syntax-Directed Translation

In this project, you will be building a machine translation system that translates from a source language to a
target language, say, English-to-French. The translation method we usehere issyntax-directed translation,
which is originated in compiling, where the source program in a high-level language (say, C or Java) is first
parsed into a syntax or expression tree which guides the generation of object program (say, in Assembly or
Byte-code). We adapt this technique to the translation of human languages,where the source input is first
parsed into a parse-tree and then we recursively convert the tree into astring in the target language.

2.1 An English-to-Chinese Example

Consider the following English sentence and its Chinese translation (note the reordering in the passive
construction):

(1) the gunman was killed by the police .

qiangshou
[gunman]

bei
[passive]

jingfang
[police]

jibi
[killed]

◦

.

Figure 1 shows how the translation works. The English sentence (a) is first parsed into the tree in (b)1

which is then recursively converted into the Chinese string in (e) through five steps. First, at the root node,
1The internal nodes in the parse tree are callednon-terminal tags or syntactic categories. For example, VP stands for verb phrase

and PP prepositional phrase. The tags right above leaf nodes are called preterminals or part-of-speech tags. For example, VBD and
VBN correspond to verbs in past tense and past participle, respectively. Our tagset and grammar follows the Penn Treebank Style.
For further information, please visit:
http://www.cis.upenn.edu/ ˜ treebank
http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

1

(a) the gunman was killed by the police .

parser ⇓

(b)

S

NP-C

DT

the

NN

gunman

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

PUNC

.

r1, r2 ⇓

(c) qiangshou

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

◦

r3 ⇓

(d) qiangshou bei

NP-C

DT

the

NN

police

VBN

killed
◦

r5 ⇓ r4 ⇓

(e) qiangshou bei jingfang jibi ◦

Figure 1: A syntax-directed translation process.

2

we apply the ruler1 which preserves the top-level word-order and translates the English period into its
Chinese counterpart:

(r1) S (x1:NP-Cx2:VP PUNC (.))→ x1 x2 ◦

Then, the ruler2 grabs the whole sub-tree for “the gunman” and translates it as a phrase:

(r2) NP-C (DT (the) NN (gunman))→qiangshou

Now we get a “partial Chinese, partial English” sentence “qiangshou VP ◦” as shown in Fig. 1 (c). Our
recursion goes on to translate the VP sub-tree. Here we use the ruler3 for the passive construction:

(r3)

VP

VBD

was

VP-C

x1:VBN PP

IN

by

x2:NP-C

→ bei x2 x1

which captures the fact that the agent (NP-C, “the police”) and the verb(VBN, “killed”) are always inverted
between English and Chinese in a passive voice. Finally, we apply rules:

(r4) VBN (killed) →jibi

(r5) NP-C (DT (the) NN (police))→jingfang

which perform phrasal translations for the two remaining sub-trees in (d), respectively, and get the completed
Chinese string in (e).

You might also have other rules which lead to a different translation, say, replacingr5 with another
Chinese word for “police”:

(r5) NP-C (DT (the) NN (police))→jingcha

In this framework, every rule is associated with aprobability, and your job is to search for the best
translation (the one with the highest probability) given a parse tree.

2.2 English-to-French/Spanish Example

If you have no idea what the previous example is all about, here is anotherexample, but from English to
French and Spanish (it’s not a whole sentence).

(2) my friend’s black cat

le
el
[the]

chat
gato
[cat]

noir
negro
[black]

de
de
[of]

mon
mi
[my]

ami
amigo
[friend]

3

Again, assume the parse tree for the English phrase is:

NP

DP

NP

PRP

my

NN

friend

POS

’s

NP

JJ

black

NN

cat

We can first have a rule which takes care of the reordering of possessive (’s) construction between
English and French/Spanish:

(r′
1
) NP

DP

x0:NP POS

’s

x1:NP

→ x1 de x0

Then we use a rule to translate the English phrase “my friend”:

(r′
2
) NP(PRP (my) NN (friend))→

mon ami
mi amigo

and a rule for reordering the adjective (black) with the noun (cat):

(r′
3
) NP(x0:JJ x1:NN) → x1 x0

finally, we finish the translation with the following two lexical rules:

(r′
4
) black →

noir
negro

(r′
5
) cat →

le chat
el gato

Of course, you may decomposer′
2

into three smaller rules and get the same translations.

2.3 Translation Algorithm

Given a fixed parse-treeτ∗, we are to search for the best derivation with the highest probability. Thiscan be
done by a simple top-down traversal (or depth-first search) from the root ofτ∗: at each nodeη in τ∗, try each
possible ruler whose source-side patternt(r) matches the subtreeτ∗η rooted atη, and recursively visit each
descendant nodeηi in τ∗η that corresponds to a variable int(r). We then collect the resulting target-language

4

strings and plug them into the Chinese-sides(r) of ruler, getting a translation for the subtreeτ∗η . We finally
take the best of all translations.

With the extended LHS of our transducer, there may be many different rules applicable at one tree node.
As a result, the number of derivations is exponential in the size of the tree, since there are exponentially
many decompositions of the tree for a given set of rules. This problem canbe solved bymemoization:
we cache each subtree that has been visited before, so that every treenode is visitedat most once. This
results in a dynamic programming algorithm that is guaranteed to run inO(npq) time wheren is the size
of the parse tree,p is the maximum number of rules applicable to one tree node, andq is the maximum
size of an applicable rule. For a given rule-set, this algorithm runs in time linearto the length of the input
sentence, sincep andq are considered grammar constants, andn is proportional to the input length. The full
pseudo-code is worked out in Algorithm 1.

Algorithm 1 Top-down Memoized Recursion
1: function TRANSLATE(η)
2: if cache[η] definedthen ⊲ this sub-tree visited before?
3: return cache[η]

4: best← 0
5: for r ∈ R do ⊲ try each ruler
6: matched, sublist← PATTERNMATCH(t(r), η) ⊲ tree pattern matching
7: if matched then ⊲ if matched,sublist contains a list of matched subtrees
8: prob← Pr(r) ⊲ the probability of ruler
9: for ηi ∈ sublist do

10: pi, si ← TRANSLATE(ηi) ⊲ recursively solve each sub-problem
11: prob← prob · pi

12: if prob > best then
13: best← prob

14: str ← [xi 7→ si]s(r) ⊲ plug in the results

15: cache[η]← best, str ⊲ caching the best solution for future use
16: return cache[η] ⊲ returns the best string with its prob.

3 I/O Specifications and Samples

Command-line format:

cat <tree_file> | ./translate.py <rule_file> [-d|-k <K>]

where<...> and[...] denote required and optional arguments, respectively.
There are two input files:

• a tree file (throughsys.stdin): a list of source-language parse trees, which contains several lines,
with each line representing one parse tree.

• a rule file (filename specified by the command-line): one line for each rule in theformat of

lhs -> rhs ### prob= p

5

wherelhs is the left-hand-side (source-language) tree pattern (trees with variables), andrhs is the
right-hand-side (target-language) string (with the same set of variables,possibily permutated). The
variables will be in the form ofx0 , x1 , and so on. The real numberp is the probability of this rule.

Sample input files:

input1.txt:

NP(DP(NP(PRP("my") NN("friend")) POS("’s")) NP(JJ("bla ck") NN("cat")))
NP(DP(NP(PRP("my") NN("friend")) POS("’s")) NP(JJ("whi te") NN("cat")))

rules1.txt:

NP(DP(x0:NP POS("’s")) x1:NP) -> x1 "de" x0 ### prob=1.0
NP(PRP("my") NN("friend")) -> "mon" "ami" ### prob=0.51
NP(PRP("my") NN("friend")) -> "mon" "amie" ### prob=0.49
NP(x0:JJ x1:NN) -> x1 x0 ### prob=0.7
NP(x0:JJ x1:NN) -> x0 x1 ### prob=0.3
JJ("black") -> "noir" ### prob=0.6
JJ("black") -> "noire" ### prob=0.4
NN("cat") -> "le" "chat" ### prob=1.0
NP(x0:JJ NN("cat")) -> "le" "chat" x0 ### prob=1
NP(JJ("black") x0:NN) -> x0 "noir" ### prob=0.55
NP(JJ("black") x0:NN) -> x0 "noire" ### prob=0.45

To run the program, type in the terminal

cat input1.txt | ./translate.py rules1.txt

and you will get the output

my friend ’s black cat -> le chat noir de mon ami ### prob=0.306
my friend ’s white cat -> *** failed ***

The output contains one line for each source-language tree ininput.txt . As shown in the above
example, the format is quite similar to the rules file, except there are no quotes,and the probability of the
best translation is printed to the 3rd decimal digit (i.e.,’%.3f’ % prob).

Note:

1. if the search fails, simply print*** failed *** in place of the best translation. (see the above
example).

2. each individual word in the input (e.g.,"my") is surrounded by a pair of double quotes, and we
assume that white spaces, double quotes, or parentheses arenot part of any word.

3. The sample case is available online asinput1.txt , rules1.txt , andoutput1.txt under the
homework page, where you can also find a more complicated example.

6

4 Recommended Design

• a Tree class

A separate class for trees is highly recommended. It should work for bothparse-trees and tree patterns
(trees with variables), and implements the following two functions:

– Tree Parsing

the static methodfrom_string(s) implements the parsing of a tree represented in string
input into a Tree instance. This might be the most difficult part of this project.You may want to
write a “pretty-print” function inside the Tree class to help you debug this part.

– Tree Pattern Matching

the methodpatternmatch(self, pattern) takes a tree pattern as input and returns a
pair (matched, sublist) , wherematched is a boolean (whether the matching succeeds
or not), andsublist is a list of matched subtrees in case of success. See Algorithm 1.

• a Rule class: This is optional. In fact, a tuple of(pattern, rhs, prob) would suffice.

• search: This module implements the memoized depth-first search (Algorithm 1).

5 Extensions (Extra Credit Problems)

5.1 Outputing the derivation (easy)

What if we want to look into the derviation (see Figure 1)? How is the source sentence translated to the
foreign sentence and what rules are used? We add another option-d to the command line for outputing the
derivation of the best translation (if any). For example,

cat input1.txt | ./translate.py rules1.txt -d

should output the following:

my friend ’s black cat -> le chat noir de mon ami ### prob=0.306
NP (DP (x0:NP POS (’s)) x1:NP) -> x1 de x0 ### prob=1.000
| x0: NP (PRP (my) NN (friend)) -> mon ami ### prob=0.510
| x1: NP (x0:JJ NN (cat)) -> le chat x0 ### prob=1.000
| | x0: JJ (black) -> noir ### prob=0.600
| black cat -> le chat noir ### prob=0.600
my friend ’s black cat -> le chat noir de mon ami ### prob=0.306

my friend ’s white cat -> *** failed ***

This output is available online asoutput1-d.txt . A derivation basically outputs all the rules in-
volved in a tree-like format. For each subtree, we first output the top-level rule, e.g.

NP (DP (x0:NP POS (’s)) x1:NP) -> x1 de x0 ### prob=1.000

and then recursively output the sub-derivations for the subtrees corresponding to the two variables (x0
and x1) with one more level of indentation. Finally, we output the best translation for this subtree in the
standard format.

There is a more complicated example online.

7

5.2 Rule Indexing (easy)

In line 5 of Algorithm 1, we enumerate each rule and check if its LHS tree-pattern matches the current tree.
This is rather inefficient in general when we have a very large rule set. However, you can index the rules
using a dictionary, where the keys are the top-level productions of the tree pattern. For example, for the rule

NP (DP (x0:NP POS (’s)) x1:NP) -> x1 de x0 ### prob=1.000

the top-level production is

NP => DP NP

Now when you are translating a treeT whose top-level production isγ, you only need to look at rules
indexed underγ (because other rules are certainly incompatible withT).

You can further group rules with same LHS tree pattern together, as a second-level of indexing, which
will save some time by reducing redundant calls ofPatternMatch() .

5.3 k-best translations (challenging but very interesting)

Clearly, there are many possible translations given a ruleset and an inputtree. Can you also output the
2nd-best, 3rd-best, or up tokth-best translations? We add another option-k to the command line to request
“top-k” translations. For example,

cat input1.txt | ./translate.py rules1.txt -k 3

will output

my friend ’s black cat -> le chat noir de mon ami ### prob=0.306
my friend ’s black cat -> le chat noir de mon amie ### prob=0.29 4
my friend ’s black cat -> le chat noire de mon ami ### prob=0.20 4
my friend ’s white cat -> *** failed ***

Note: do not print duplicate translations (say, there might be another way of deriving the best translated
string). Be sure to include indebrief.txt your algorithm or thoughts if you attempted this question.

References: see (Huang and Chiang, 2005) and (Huang et al., 2006).

6 debrief.txt

1. How many hours did you spend on this project?

2. If you did any extra credit problem, describe your algorithms or methods.

3. If you had discussed with another student, what’s his or her name?

References

Huang, Liang and David Chiang. 2005. Betterk-best Parsing. InProceedings of the Ninth International Workshop
on Parsing Technologies (IWPT-2005).

Huang, Liang, Kevin Knight, and Aravind Joshi. 2006. Statistical syntax-directed translation with extended domain
of locality. In Proceedings of AMTA, Boston, MA, August.

8

