
Atmel Studio and ATmega128

A Beginner’s Guide

Version 1.0:

Written by:
David Zier

Version 2.0:

Written by:
Taylor Johnson, Mohammed Sinky, and Arul Dhamodaran

Oregon State University
TekBotsTM

September 29, 2014

1

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Atmel Studio 6 Overview . 3
1.3 ATmega128Overview . 3
1.4 Nomenclature . 3
1.5 Disclaimer . 4

2 Atmel Studio 6 4
2.1 Startup Tutorial . 4

2.1.1 Installation . 4
2.1.2 Project Creation . 5
2.1.3 Project Simulation . 7

2.2 Simulation Tips . 8
2.2.1 Line-By-Line Debugging 8
2.2.2 Workspace Window . 9
2.2.3 Memory Windows . 9

2.3 Debugging Strategies . 9

3 Programming the ATmega128 13
3.1 Parts and Cables Needed . 13
3.2 Downloading the Necessary Software 14
3.3 Connecting the Universal Programmer 15
3.4 Programming Your Microcontroller 15

4 ATmega128 17
4.1 Useful Registers . 17

4.1.1 General Purpose Registers 18
4.1.2 Special Function Registers 19

4.2 Interrupt Vectors . 22
4.3 Memory Specifications . 22

4.3.1 Program Memory . 22
4.3.2 SRAM Data Memory . 24
4.3.3 EEPROM Data Memory 26

4.4 Starter Code . 26

2

1 Introduction

The Department of Electrical Engineering and Computer Science (EECS) at
Oregon State University (OSU) has recently been reevaluating the way classes
are taught. With the collaboration of Tektronix, the TekBots program was
born. TekBots has allowed ECE a way to educate by keeping a consistent flow
in the course work. In keeping with that consistency, ECE 375: Computer
Structure and Assembly Language Programming, uses Atmel’s software tools
and AVR RISC core chips. For more information about the TekBots Program,
go to http://eecs.oregonstate.edu/tekbots/.

1.1 Purpose

The purpose of this document is to provide the reader with the basic knowledge
to develop assembly programs for the ATmega128 using Atmel Studio 6. The
intent of this document is to be used in conjuncture with lecture material from
ECE 375: Computer Structure and Assembly Language Programming.

1.2 Atmel Studio 6 Overview

Atmel Studio 6 is the new professional Integrated Development Environment
(IDE) for writing and debugging AVR applications in Windows environments.
Atmel Studio 6 was created by the Atmel Corporation and can be downloaded
for free from http://www.atmel.com/tools/atmelstudio.aspx.

1.3 ATmega128Overview

The ATmega128 is a low power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single
clock cycle, the ATmega128 achieves throughputs approaching 1 MIPS per MHz
allowing the system designer to optimize power consumption versus processing
speed. The complete datasheet can be downloaded from http://www.atmel.
com/Images/doc2467.pdf.

1.4 Nomenclature

Throughout this document, there will be several styles of writing to signify
di↵erent aspects such as code examples or command line instructions.

• This style is used for normal text

• This style is used for code examples

• This style used for menu selects and commands, ie. File) Exit

3

http://eecs.oregonstate.edu/tekbots/
http://www.atmel.com/tools/atmelstudio.aspx
http://www.atmel.com/Images/doc2467.pdf
http://www.atmel.com/Images/doc2467.pdf

1.5 Disclaimer

TekBots and Oregon State University are trademarks of OSU. Atmel Studio 6
and ATmega128 are trademarks and/or copyrighted by Atmel Co. Windows is
a trademark of Microsoft Co.

2 Atmel Studio 6

Atmel Studio 6 is Atmel’s o�cial Integrated Development Environment (IDE),
used for writing and debugging AVR applications on the Windows platform.
Atmel Studio 6 is available for free, and can be downloaded at: http://www.
atmel.com/tools/atmelstudio.aspx

This section provides general information on how to successfully use Atmel
Studio 6 to create, compile, and debug AVR assembly projects. Not every as-
pect of Atmel Studio 6 will be covered here, but for those who choose to learn
the program in more detail, additional information can be obtained from At-
mel’s website at: http://www.atmel.com

2.1 Startup Tutorial

This tutorial will give a step-by-step guide on how to install Atmel Studio 6,
create a project, add code (new or existing) to the project, and simulate the
project.

2.1.1 Installation

The installation of Atmel Studio 6 is straightforward and involves only a few
steps:

1. Go to http://www.atmel.com/tools/atmelstudio.aspx, and click the
download icon next to Atmel Studio Installer.

2. At this point, you can create a “myAtmel” account, or choose to down-
load Atmel Studio 6 as a guest. In either case, follow the directions and
download the executable installer.

3. Locate the .exe file you just downloaded and run the setup program by
double-clicking on it.

4. Follow the instructions in the setup program. Most of the default instal-
lation directories will work just fine.

5. When the installer is finished, click on the Finish button to complete the
setup process. Atmel Studio 6 is now successfully installed.

4

http://www.atmel.com/tools/atmelstudio.aspx
http://www.atmel.com/tools/atmelstudio.aspx
http://www.atmel.com
http://www.atmel.com/tools/atmelstudio.aspx

2.1.2 Project Creation

Atmel Studio 6 is an Integrated Development Environment (IDE). Just like any
other IDE, Atmel Studio 6 is project-based. A project is like an environment for
a particular program that is being written. It keeps track of what files are open,
compilation instructions, as well as the current Graphical User Interface (GUI)
selections. The following process detail the steps needed to create a new project:

1. Start Atmel Studio 6 by navigating through the Windows start menu:
Start) Programs) Atmel) Atmel Studio 6. The path could be
di↵erent if changed during installation.

2. Atmel Studio 6 should launch and display a Start Page. To create a new
AVR project, click on the New Project... button, or navigate to File
) New) Project...

3. The dialogue box that appears should look similar to Figure 1. Under
Installed Templates, make sure Assembler is selected.

4. Select AVR Assembler Project as the project type.

5. In the Name text box, type the name of the project, such as Lab1.

6. Make sure that that the checkbox for Create directory for solution is
checked.

7. The location of the project can be changed by clicking on the Browse...
button next to the path name, and navigating to the desired location for
the new project.

8. Click OK to continue.

9. The next dialogue requires a device selection. First, ensure that the drop-
down menu labeled Device Family: selects either All or megaAVR,
8-bit.

10. Scroll through the list of devices and select ATmega128.

11. Click OK to complete the project creation.

At this point, an editor window appears within Atmel Studio 6 and you are
able to begin composing your assembly program. Notice that Atmel Studio 6
has already created an empty assembly file for you, based on the name given
earlier as the project name. For example, if you named your project Lab1
as in Figure 1 then the automatically-created assembly file would be named
Lab1.asm.

If you want to incorporate some code that you have already written into
this new project, then you can do so in one of two ways. First, you can simply

5

Figure 1: AVR Studio Project Creation.

open your existing code file with a text editor and copy-paste some or all of
its contents directly into the open editor window within Atmel Studio 6 - this
copies your code into the file created for you, e.g. Lab1.asm. If you want to
include an entire existing file into your newly-created project, use the following
steps:

1. In the Solution Explorer on the righthand side of the Atmel Studio 6
window, right-click on the name of your project (e.g., Lab1) and select
Add) Existing Item...

2. Navigate to the existing assembly code file that you would like to use for
this project, select it, and click Add.

3. Your existing code file will now appear in the Solution Explorer under
the heading of your project. Double-click on the file name and it will open
in a new editor tab.

4. If this existing file is to be the “main” assembly file of your project, right-
click on the file name and select Set As EntryFile. Now this existing
file that you included in the project will be considered the main entry
point during compilation. Feel free to remove the automatically-created

6

file (e.g. Lab1.asm) if you are not going to use it, by right-clicking on
the file name and selecting Remove.

2.1.3 Project Simulation

Once a project has been created, and you have written an assembly program,
it will need to be tested. This is accomplished by running the program on a
simulated microcontroller built into Atmel Studio 6. Atmel Studio 6 has the
capability to simulate almost every AVR microcontroller o↵ered by Atmel. For
the purposes of this tutorial, the ATmega128 will be the microcontroller that
will be simulated. This microcontroller was selected earlier during the project
creation phase. (To change the microcontroller, right-click on your project name
in the Solution Explorer and select Properties. This will open a tab that
allows you to configure various properties of your project. Make sure the Build
tab is selected, and then click the Change Device... button and select a dif-
ferent microcontroller.)

1. Before the program can be simulated, the program must first be compiled.
There are three ways to do this:

(a) In the main Atmel Studio 6 menu, navigate to Build) Build
Solution.

(b) Click on the Build Solution icon on the main toolbar.

(c) Press the F7 key.

2. If the code was successfully compiled, a message in the Output window
at the bottom should read “Build succeeded”. If it does not say this, then
there were some errors in the code. Clicking on the errors in theError
List will highlight the line of code causing the error in the editor window.

3. Once the code has been successfully compiled, simulation can begin. There
are two ways to simulate the chip: debugging mode, which allows a line-
by-line simulation, and run mode, which continuously runs the program.

(a) There are a few ways to run in debug mode:

i. Follow the menu Debug) Start Debugging and Break.

ii. Click on the Start Debugging And Break icon.

iii. Press Alt+F5.

(b) To start the run mode:

i. Follow the menu Debug) Continue.

ii. Click on the Start Debugging icon.

iii. Press F5.

4. To stop the simulation at any point:

(a) Follow the menu Debug) Stop Debugging.

7

(b) Click on the Stop Debugging Icon.

(c) Press Ctrl+Shift+F5.

5. That is how to simulate a program. For more detailed simulation tips and
strategies, see Simulation Tips below.

2.2 Simulation Tips

Just simulating a program is not enough. Knowing how to use the simulator and
debugger is essential to get results from simulation. This section will provide
the necessary information needed to get the most out of a simulation.

2.2.1 Line-By-Line Debugging

Line-by-line debugging is the best way to take control of the simulation. It al-
lows the programmer to verify data in registers and memory. There are several
ways to get into line-by-line debugging mode. The first would be to start the
simulation in line-by-line debug mode by clicking on the Start Debugging
and Break icon. When the program is in run mode, hitting the Break All
icon will halt the simulation and put it into line-by-line mode. Also, if a break
point was set in the code, the simulation will automatically pause at the break
point and put the simulation into line-by-line mode.

When running in line-by-line mode, several new buttons will be activated.
These allow you to navigate through the program.

• Step Into (F11) - Steps into the code. Normal operation will run program
line-by-line, but will step into subroutine calls such as the RCALL command.

• Step Over (F10) - Steps over subroutine calls. Normal operation will run
program line-by-line, but will treat subroutine calls as a single instruction
and not jump to the subroutine instructions.

• Step Out (Shift+F11) - Steps out of subroutine calls. This will temporar-
ily put the simulation into run mode for the remainder of the subroutine
and will pause at the next instruction after the subroutine call.

• Run to Cursor (Ctrl+F10) - Runs simulation until cursor is reached.
The cursor is the blinking line indicating where to type. Place the cursor
by putting the mouse over the instruction you want to stop at and hit the
Run to Cursor icon.

• Reset (Shift+F5) - Simulates a reset of the microcontroller; returns the
simulator to the first instruction of the program.

After experimenting around with these five commands, you should be able
to navigate through the code with ease.

8

2.2.2 Workspace Window

When debugging, the Solution Explorer window is supplemented by tabs such
as IO View and Processor, which provide a look at the current state of the
microcontroller during the course of simulation. The IO View tab contains
all the configuration registers associated with the simulated chip. By default,
this window should automatically be displayed when simulation is run in line-
by-line mode. Figure 2 shows an example of what the IO View tab looks
like during simulation. By expanding some of the contents of this window,
additional information is available such as the current bit values, and address,
of configuration registers. It is in this window where you can simulate input on
the ports.

The Processor tab displays the current contents of the Program Counter,
Stack Pointer, the 16-bit pointer registers X, Y, and Z, and the Status Regis-
ter. Figure 3 shows an example of what the Processor tab looks like during
simulation. The Processor tab also shows the current values contained in each
of the general purpose registers (in the case of the ATmega128, registers R00 -
R31).s

2.2.3 Memory Windows

In actuality, all of the registers are actually parts of memory within the AT-
mega128. In addition to the register memory, the ATmega128 has several other
memory banks, including the program memory, data memory, and EEPROM
memory. Of course, no good simulator is complete without being able to view
and/or modify this memory, and Atmel Studio 6 is no exception.

To view the Memory window, follow the menu command Debug) Win-
dows) Memory) Memory 1 or hit Alt+6. The Memory window,
shown in Figure 4, may pop up on top and obscure other windows, but it can
be docked below the Processor and IO View tabs in order to be less intrusive.

The main area of the Memory window contains three sets of information;
the starting address of each line of memory shown, the data of the memory in
hexadecimal format, and the ASCII equivalent of that data. The pull down
menu on the top left allows you to select the various memory banks available
for the ATmega128. In Figure 4, the contents of Program Memory are being
displayed, with 0x000000 as the starting address of the first line shown. To edit
the memory, just place the cursor in the hexadecimal data area and type in the
new data.

2.3 Debugging Strategies

Debugging code can be the most time consuming process in programming. Here
are some tips and strategies that can help with this process:

• Comment, Comment, Comment. Unless it is absolutely blatantly obvious
of what the code is doing, comment EVERY line of code. Even if the code

9

Figure 2: I/O View tab in Workspace.

is obvious, at least comment what the group of instruction is doing, for
example, Initializing Stack Pointer.

• Pick a programming style and stick with it. The style is how you lay out
your code, and having a consistent programming style will make reading
the code a lot easier.

• Before writing any actual code, write it out in pseudo-code and convince

10

Figure 3: Processor tab in Workspace.

yourself that it works.

• Break the code down into small subroutines and function calls. Small
sections of code are much easier to debug than one huge section of code.

• Wait loops should be commented out during debugging. The simulator is
much slower than the actual chip and extensive wait loops take up a lot
of time.

11

Figure 4: Memory Window.

• Use breakpoints to halt the simulation at the area known to be buggy.
Proper use of breakpoints can save a lot of time and frustration.

• Carefully monitor the I/O View tab, Memory tab, and Processor tab
throughout the simulation. These windows will indicate any problem.

• Make sure the AVR instruction is actually supported by the ATmega128.

• The ATmega128 has certain memory ranges; so make sure that when
manipulating data, the addresses are within range.

12

3 Programming the ATmega128

Following simulation and debugging of your assembly program in AVR Studio,
you should be ready to load your functional program on the actual microcon-
troller. This is the ultimate test in verifying your program works as it is sup-
posed to. In many cases, your program may seem to be sound during simulation,
but behaves di↵erently when run on the actual hardware. Loading your pro-
gram onto the microcontroller chip is typically referred to as “programming”
or “flashing” your microcontroller. This involves transferring the “.hex” file
generated by the compilation and assembly process, to the Program Memory
located on chip. Recall that there exists 128 Kbytes of In-System Programmable
(ISP) Flash memory dedicated to the Program Memory. The Flash is organized
as 64K ⇥ 16, to accommodate one 16-bit word per entry, and is non-volatile,
i.e. once you flash the chip, your code remains in memory even when powered
o↵. This chapter will provide the steps you need to successfully program your
ATmega128 chip with the dedicated Universal Programmer.

3.1 Parts and Cables Needed

The main device required for programming your ATmega128 chip, is the osuisp2
device provided by TekBotsTM. Fig. 5 shows the device and accompanying ca-
bles. It is also referred to as the TekBots Universal Programmer. The Universal
Programmer uses the Serial Peripheral Interface (SPI) standard and In-System
Programming (ISP) to flash Program Memory. Thus, it is compatible with any
Atmel AVR device that supports the SPI standard and has ISP capabilities.

Figure 5: TekBots Universal Programmer kit: osuisp2 programmer device
connected to a USB cable and ribbon cable.

The Universal Programmer kit is not included with your ATmega128 board.

13

You will need to purchase it separately from TekBotsTM. You can find the Tek-
Bots store online by navigating to the “Store” link at http://eecs.oregonstate.
edu/education/. Next select “TekBots Store - Oregon State University” under
the drop-down menu. The Universal Programmer Kit will be under the “Spare
Parts” link. Be sure to select “Walk-in” for the shipping method when you
check out.

3.2 Downloading the Necessary Software

Prior to connecting the osuisp2 programmer device to your computer and AT-
mega128 board, you will need to download the Universal Programmer soft-
ware located at the TekBots website provided earlier. For convenience, a direct
link is provided here: http://eecs.oregonstate.edu/education/software/
UniversalProgrammer3.1.zip. Keep in mind that this link may change and to
contact your TA for the most updated information. The link provided is is valid
as of September 30, 2014. The software provides a graphical user interface to
the AVRDUDE program (http://www.nongnu.org/avrdude/) which is a util-
ity that allows modifications of the contents of ROMs and EEPROMs for At-
mel microcontrollers. AVRDUDE makes use of In System Programming (ISP),
which allows for the chip to be programmed while installed in the end system.
In other words, you do not need to remove the chip or have it pre-programmed.
This saves time and money during development and when deploying firmware
updates.

14

http://eecs.oregonstate.edu/education/
http://eecs.oregonstate.edu/education/
http://eecs.oregonstate.edu/education/software/UniversalProgrammer3.1.zip
http://eecs.oregonstate.edu/education/software/UniversalProgrammer3.1.zip
http://www.nongnu.org/avrdude/

3.3 Connecting the Universal Programmer

To program the ATmega128 chip, you will first need to connect your computer
to the osuisp2 programmer device with the provided USB cable. Then connect
the osuisp2 board to your ATmega128 board via the ribbon cable as depicted
in Fig. 6. Double check that all your connections are solid. No additional drivers
are required and Windows 7 should be able to detect the connected hardware.

Tekbots Universal Programmer v3.1

AVR JTAG

Atmel Microcontroller
(ATmega128, Tiny26, etc)

osuisp2

USB cable

Ribbon cable

Figure 6: How to connect your laptop/computer to the Universal Progammer
and Atmega128 board.

3.4 Programming Your Microcontroller

To run the Universal Programmer software, after you download the correspond-
ing zip file from the TekBots website and extract its contents you will find an
executable called “Universal GUI.exe” in the extracted folder. Double click on
the executable to bring up the window shown in Fig. 7. To verify the connection,
click on Identify. The Universal Programmer v3.1 should automatically detect
your ATmega128 chip. If Identify does not work as expected, try setting the
clock period to a higher value and double check that all connections shown in
Fig. 6 are secure. You may also try another USB port on your computer. In lab,
you may also run into a station with a bad USB port. In those circumstances
inform your TA so that it may be noted. If you think your programmer device
is bad, contact TekBots for a replacement.

Once the Universal Programmer software successfully detects your chip, you
should be ready to program it. To do this, check the Flash checkbox. This will
enable the Browse button, allowing you to navigate to the .hex file generated
after performing a successful compilation of your assembly code. See Fig. 8.

15

Figure 7: Universal Programmer Software with the default tab (AVR) selected.

Now click on Write Flash to load your program to the flash memory of the
ATmega128. Always make sure the correct .hex file is chosen. Many times
students will choose a .hex file for a di↵erent lab or project leading to improper
operation of their TekBot according to the assigned task.

16

Figure 8: Selecting Flash checkbox with path to .hex file to be programmed.

4 ATmega128

This section will provide some basic information about the ATmega128 mi-
crocontroller. For more detailed information about the ATmega128, see the
Complete Datasheet at http://www.atmel.com/atmel/acrobat/doc2467.pdf.

4.1 Useful Registers

The ATmega128 is equipped with two types of registers, general purpose regis-
ters and special function registers. All the registers in the ATmega128 are 8-bit,
which means they are basically just 8 flip-flops in a row and are, in actuality,
just part of the memory, each with their own address. Unlike other areas of
memory that are tied into a multiplexor, registers are tied directly to the CPU
and hold valuable data for the CPU.

17

4.1.1 General Purpose Registers

There are 32 General Purpose Registers in the ATmega128. These registers
are connected to the ALU (Arithmetic Logic Unit) and are used to manipulate
data. The registers are labeled R0 - R31.

Lower Registers The lower 16 registers, R0 - R15, work just like rest of
the registers with the exception of loading immediate data i.e., the use of LDI
instruction. These registers have access to the full range of the Data Mem-
ory, ALU, and additional peripherals. Here is an example of using the loading
immediate data into the lower registers:

LDI R16, 30 ; Load the number 30 into R16
MOV R0, R16 ; Copy R16 into R0, R0 <- R16
INC R0 ; Increment R0, R0 <- R0+1
ADD R0,R16 ; R0<-R0+R16,value in R0 should now be 61

Upper Registers The upper 16 registers, R16 - R31, have additional capa-
bilities. They have access to immediate data using the LDI instruction. These
registers will be the ones that get the most use throughout your program. To
move data into or out of these registers, the various di↵erent Load and Store in-
structions are needed. All arithmetic instructions work on these registers. Here
is an example of using the upper registers:

LDI R16, $A4 ; Load the immediate hex value into R16
LD R17, X ; Load value from memory address in X-Pointer
ADC R16, R17 ; Add with carry, R16 <- R16 + R17 + Carry Bit
ST Y, R16 ; Store value in R16 to address in Y-Pointer

X-, Y-, Z-Registers The last six of the General Purpose Registers have
additional functionality. They serve as the pointers for indirect addressing.
The ATmega128 has a 16-bit addressing scheme that requires two registers for
the address alone. The AVR RISC structure supports this scheme with the X,
Y, and Z-Registers. These registers are the last six General Purpose Registers
(R26-R31). The following table details the register assignments:

Name Byte Assignment

X-Register
Low R26
High R27

Y-Register Low R28
High R29

Z-Register Low R30
High R31

Table 1: Address Register Assignments

18

The following code is an example of how to use these special registers. The
code will read a value from SRAM, manipulate it, and then store it back at the
next address in SRAM.

LDI R26, $5A ; Load 0x5A into the low Byte of X
LDI R27, $02 ; Load 0x02 into the high Byte of X
LD R16, X+ ; Load value from SRAM, increment X
INC R16 ; Manipulate value
ST X, R16 ; Store value to SRAM

4.1.2 Special Function Registers

Special Function Registers are registers in the ATmega128 that either control
or monitor the various components of the chip. In this section, I will cover
the commonly used Special Function Registers. Most of the Special Function
Registers have read/write capabilities, check the datasheet for the ATmega128
for more details. These register reside in the ATmega128 I/O Memory and as
such, require the IN and OUT instructions to read and write to these registers.

Status Register (SREG) The Status Register or SREG contains the im-
portant information about the ALU such as the Carry Bit, Overflow Bit, and
Zero Bit. These bits are set and cleared during ALU instructions. This regis-
ter becomes extremely useful during branching operations. The following table
details the bit assignments within the SREG.

Bit Name Description
7 I Global Interrupt Enable
6 T Bit Copy Storage
5 H Half Carry Flag
4 S Sign Bit
3 V Twos Compliment Overflow Flag
2 N Negative Flag
1 Z Zero Flag
0 C Carry Flag

Table 2: SREG Description

As an example of using this register, look at the BREQ or Branch If Equal
instruction. When this instruction is called, it looks at the Zero Flag in the
SREG. If the Zero Flag is set, then the instruction will branch to the program
address specified, otherwise it will continue on as usual.

Stack Pointer The Stack is mainly used for storing temporary data, for stor-
ing local variables and for storing return addresses after interrupts and subrou-
tine calls. The Stack Pointer Register always points to the top of the Stack.
Note that the Stack is implemented as growing from higher memory locations to

19

lower memory locations. This implies that a Stack PUSH command decreases
the Stack Pointer.

The AVR Stack Pointer is implemented as two 8-bit Special Function Regis-
ters, Stack Pointer High Register (SPH) and Stack Pointer Low Register (SPL).
The following diagram is a representation of the Stack Pointer.

AVR Studio 4 and ATmega128: A Beginner’s Guide

Table 2: SREG Definition

Bit Name Description
7 I Global Interrupt Enable
6 T Bit Copy Storage
5 H Half Carry Flag
4 S Sign Bit
3 V Twos Compliment Overflow Flag
2 N Negative Flag
1 Z Zero Flag
0 C Carry Flag

As an example of using this register, look at the BREQ or Branch If Equal instruction.
When this instruction is called, it looks at the Zero Flag in the SREG. If the Zero Flag is
set, then the instruction will branch to the program address specified, otherwise it will
continue on as usual.

4.1.2.2 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Register
always points to the top of the Stack. Note that the Stack is implemented as growing from
higher memory locations to lower memory locations. This implies that a Stack PUSH
command decreases the Stack Pointer.

The AVR Stack Pointer is implemented as two 8-bit Special Function Registers, Stack
Pointer High Register (SPH) and Stack Pointer Low Register (SPL). The following
diagram is a representation of the Stack Pointer.

Bit 15 14 13 12 11 10 9 8
 SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL
 7 6 5 4 3 2 1 0

Figure 7: Stack Pointer

The following example demonstrates how to initialize the Stack Pointer. Remember to
include the definition file for the ATmega128 at the beginning of the program to utilize
Register naming schemes.

.include “m128def.inc” ; Include definition file in program

 LDI R16, LOW(RAMEND) ; Low Byte of End SRAM Address
 OUT SPL, R16 ;Write byte to SPL
 LDI R16, HIGH(RAMEND) ;High Byte of End SRAM Address
 OUT SPH, R16 ;Write byte to SPH

TekBots¥ Oregon State University Page 18 of 53

Figure 9: Stack Pointer

The following example demonstrates how to initialize the Stack Pointer.
Remember to include the definition file for the ATmega128 at the beginning of
the program to utilize Register naming schemes.

.include "m128def.inc" ; Include definition file in program

LDI R16, LOW(RAMEND) ; Low Byte of End SRAM Address
OUT SPL, R16 ; Write byte to SPL
LDI R16, HIGH(RAMEND) ; High Byte of End SRAM Address
OUT SPH, R16 ; Write byte to SPH

I/O Ports The ATmega128 is equipped with 7 I/O Ports labeled Port A
through Port G. Each port has it own unique capabilities such as External
RAM Addressing, PWMs, Timers, and Counters. Unfortunately, this document
will only cover the basics that are common with each port. For more detail
information, refer to the Complete Datasheet for the ATmega128.

The I/O Port is the most fundamental way to move data in to or out of
the ATmega128. The ports are bi-directional I/O ports with optional internal
pull-ups. Throughout the rest of the description, certain names are abbreviated
that are common to all registers. For example, a generic pin on an I/O port is
referred to as Pxn, where x is the port name (A- G) and n is the pin number
(0-7).

Each port pin consists of three Register bits: DDxn, PORTxn, and PINxn.
The DDxn bits are accessed at the the DDRx Special Function Register (SFR),
the PORTxn bits at the PORTx SFR, and the PINxn bits at the PINx SFR.
To alleviate confusion, these three Special Function Registers for Port A are
detailed below.

AVR Studio 4 and ATmega128: A Beginner’s Guide

4.1.2.3 I/O Ports
The ATmega128 is equipped with 7 I/O Ports labeled Port A through Port G. Each port
has it own unique capabilities such as External RAM Addressing, PWMs, Timers, and
Counters. Unfortunately, this document will only cover the basics that are common with
each port. For more detail information, refer to the Complete Datasheet for the
ATmega128.

The I/O Port is the most fundamental way to move data in to or out of the ATmega128.
The ports are bi-directional I/O ports with optional internal pull-ups. Throughout the rest
of the description, certain names are abbreviated that are common to all registers. For
example, a generic pin on an I/O port is referred to as Pxn, where x is the port name (A-
G) and n is the pin number (0-7).

Each port pin consists of three Register bits: DDxn, PORTxn, and PINxn. The DDxn bits
are accessed at the the DDRx Special Function Register (SFR), the PORTxn bits at the
PORTx SFR, and the PINxn bits at the PINx SFR. To alleviate confusion, these three
Special Function Registers for Port A are detailed below.

Bit 7 6 5 4 3 2 1 0
 PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 8: Port A Data Register – PORTA

Bit 7 6 5 4 3 2 1 0
 DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 9: Port A Data Direction Register – DDRA

Bit 7 6 5 4 3 2 1 0
 PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Figure 10: Port A Input Pins Address – PINA

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is
configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin.

TekBots¥ Oregon State University Page 19 of 53

Figure 10: Port A Data Register - PORTA

20

AVR Studio 4 and ATmega128: A Beginner’s Guide

4.1.2.3 I/O Ports
The ATmega128 is equipped with 7 I/O Ports labeled Port A through Port G. Each port
has it own unique capabilities such as External RAM Addressing, PWMs, Timers, and
Counters. Unfortunately, this document will only cover the basics that are common with
each port. For more detail information, refer to the Complete Datasheet for the
ATmega128.

The I/O Port is the most fundamental way to move data in to or out of the ATmega128.
The ports are bi-directional I/O ports with optional internal pull-ups. Throughout the rest
of the description, certain names are abbreviated that are common to all registers. For
example, a generic pin on an I/O port is referred to as Pxn, where x is the port name (A-
G) and n is the pin number (0-7).

Each port pin consists of three Register bits: DDxn, PORTxn, and PINxn. The DDxn bits
are accessed at the the DDRx Special Function Register (SFR), the PORTxn bits at the
PORTx SFR, and the PINxn bits at the PINx SFR. To alleviate confusion, these three
Special Function Registers for Port A are detailed below.

Bit 7 6 5 4 3 2 1 0
 PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 8: Port A Data Register – PORTA

Bit 7 6 5 4 3 2 1 0
 DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 9: Port A Data Direction Register – DDRA

Bit 7 6 5 4 3 2 1 0
 PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Figure 10: Port A Input Pins Address – PINA

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is
configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin.

TekBots¥ Oregon State University Page 19 of 53

Figure 11: Port A Data Direction Register - DDRA

AVR Studio 4 and ATmega128: A Beginner’s Guide

4.1.2.3 I/O Ports
The ATmega128 is equipped with 7 I/O Ports labeled Port A through Port G. Each port
has it own unique capabilities such as External RAM Addressing, PWMs, Timers, and
Counters. Unfortunately, this document will only cover the basics that are common with
each port. For more detail information, refer to the Complete Datasheet for the
ATmega128.

The I/O Port is the most fundamental way to move data in to or out of the ATmega128.
The ports are bi-directional I/O ports with optional internal pull-ups. Throughout the rest
of the description, certain names are abbreviated that are common to all registers. For
example, a generic pin on an I/O port is referred to as Pxn, where x is the port name (A-
G) and n is the pin number (0-7).

Each port pin consists of three Register bits: DDxn, PORTxn, and PINxn. The DDxn bits
are accessed at the the DDRx Special Function Register (SFR), the PORTxn bits at the
PORTx SFR, and the PINxn bits at the PINx SFR. To alleviate confusion, these three
Special Function Registers for Port A are detailed below.

Bit 7 6 5 4 3 2 1 0
 PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 8: Port A Data Register – PORTA

Bit 7 6 5 4 3 2 1 0
 DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 9: Port A Data Direction Register – DDRA

Bit 7 6 5 4 3 2 1 0
 PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Figure 10: Port A Input Pins Address – PINA

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is
configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin.

TekBots¥ Oregon State University Page 19 of 53

Figure 12: Port A Input Pins Address - PINA

The DDxn bit in the DDRx Register selects the direction of this pin. If
DDxn is written logic one, Pxn is configured as an output pin. If DDxn is
written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin,
the pull-up resistor is activated. To switch the pull-up resistor o↵, PORTxn has
to be written logic zero or the pin has to be configured as an output pin.

If PORTxn is written logic one when the pin is configured as an output pin,
the port pin is driven high (one). If PORTxn is written logic zero when the pin
is configured as an output pin, the port pin is driven low (zero).

Table 3 summarizes the control signals for the pin value.

DDxn PORTxn PUD
(in
SFIOR)

I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current

if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Table 3: Port Pin Configurations

Note: When reading a value from the port, read from the PINx Register.
When writing a value to the port, write to the PORTx register.

The following code is an example of how to initialize the ports. This example
initializes Port B as output and Port D as input. Remember, this code uses the
definition document that is included somewhere in the beginning of the program.

LDI R16, FF ; Select Direction as Output on all pins
OUT DDRB, R16 ; Set value in DDRB
LDI R16, FF ; Set Initial value to high on all pins
OUT PORTB, R16 ; Set PORTB value, Port B pins should be high

21

LDI R16, 00 ; Select Direction as Input on all pins
OUT DDRD, R16 ; Set value in DDRD
LDI R16, 00 ; Use normal Tri-state with no Pull-up resister
OUT PORTD, R16 ; Port D is now ready as input

Additional Special Function Registers Details on other Special Function
Registers can be obtained from the complete datasheet for the ATmega128.
Future version of this document might discuss other registers if needed for the
ECE 375 class.

4.2 Interrupt Vectors

Interrupts are special functions that are automatically called when trigger in
the hardware of the ATmega128. In general, interrupts are enabled or disabled
through the Global Interrupt Enable, bit 7 of the SREG. There are some AVR
Assembly instructions that do this as well, SEI, Set Global Interrupt, and CLI,
Clear Global Interrupt. Of course, just turning the Global Interrupt Enable on
and o↵ won’t activate the interrupts themselves.

Each interrupt has a specific enable bit in the Special Function Register.
To find out how to enable a specific interrupt, refer to the complete datasheet
for the ATmega128. Once an interrupt is triggered, the current instruction
address is saved to the stack and the program address is sent to that specific
Interrupt Vector. An Interrupt Vector is a specific address in the program
memory associated with the interrupt. There is general enough room at the
Interrupt Vector to make a call to the interrupt function somewhere else in
program memory and a return from interrupt instruction.

Table 4 shows a list of all the Interrupt Vectors, as well as there addresses
in program memory, and definitions.

See Section 4.4 Starter Code to find out how to code the Interrupt Vector.

4.3 Memory Specifications

This section describes the di↵erent memories in the ATmega128. The AVR
architecture has two main memory spaces, the Data Memory and the Program
Memory space. In addition, the ATmega128 features an EEPROM Memory for
data storage. All three memory spaces are linear and regular.

4.3.1 Program Memory

The Atmega128 contains 128K bytes of On-chip In-System Reprogrammable
Flash memory for program storage. Since all AVR instructions are 16 or 32
bits wide, the Flash is organized as 64K x 16. For software security, the Flash
Program memory space is divided into two sections, Boot Program section and
Application Program section. The figure 13 illustrates the Flash Memory.

Constant tables can be allocated within the entire program memory address
space. To access these constant, or any data within the program memory, use the

22

Vector
No.

Program
Ad-
dress

Source Interrupt Definition

1 $0000 RESET External Pin, Power-on Reset, Brown-
out Reset, Watchdog Reset, and JTAG
AVR Reset

2 $0002 INT0 External Interrupt Request 0
3 $0004 INT1 External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A INT4 External Interrupt Request 4
7 $000C INT5 External Interrupt Request 5
8 $000E INT6 External Interrupt Request 6
9 $0010 INT7 External Interrupt Request 7
10 $0012 TIMER2 COMP Timer/Counter2 Compare Match
11 $0014 TIMER2 OVF Timer/Counter2 Overflow
12 $0016 TIMER1 CAPT Timer/Counter1 Capture Event
13 $0018 TIMER1 COMPA Timer/Counter1 Compare Match A
14 $001A TIMER1 COMPB Timer/Counter1 Compare Match B
15 $001C TIMER1 OVF Timer/Counter1 Overflow
16 $001E TIMER0 COMP Timer/Counter0 Compare Match
17 $0020 TIMER0 OVF Timer/Counter0 Overflow
18 $0022 SPI, STC SPI Serial Transfer Complete
19 $0024 USART0, RX UASRT0, Rx Complete
20 $0026 USART0, UDRE USART0 Data Register Empty
21 $0028 USART0, TX USART0, Tx Complete
22 $002A ADC ADC Conversion Complete
23 $002C EE READY EEPROM Ready
24 $002E ANALOG COMP Analog Comparator
25 $0030 TIMER1 COMPC Timer/Counter1 Compare Match C
26 $0032 TIMER3 CAPT Timer/Counter3 Capture Event
27 $0034 TIMER3 COMPA Timer/Counter3 Compare Match A
28 $0036 TIMER3 COMPB Timer/Counter3 Compare Match B
29 $0038 TIMER3 COMPC Timer/Counter3 Compare Match C
30 $003A TIMER3 OVF Timer/Counter3 Overflow
31 $003C USART1, RX USART1, Rx Complete
32 $003E USART1, UDRE USART1 Data Register Empty
33 $0040 USART1, TX USART1, Tx Complete
34 $0042 TWI Two-wire Serial Interface
35 $0044 SPM READY Store Program Memory Ready

Table 4: Reset and Interrupt Vectors

23

AVR Studio 4 and ATmega128: A Beginner’s Guide

See Section 4.4 Starter Code to find out how to code the Interrupt Vector.

4.3 Memory Specifications
This section describes the different memories in the ATmega128. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega128 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

4.3.1 Program Memory
The Atmega128 contains 128K bytes of On-chip In-System Reprogrammable Flash
memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the
Flash is organized as 64K x 16. For software security, the Flash Program memory space
is divided into two sections, Boot Program section and Application Program section. The
figure below illustrates the Flash Memory.

Program Memory

Application Flash Section

$0000

Boot Flash Section
$FFFF

Figure 11: Program Memory Map

Constant tables can be allocated within the entire program memory address space. To
access these constant, or any data within the program memory, use the AVR instructions
LPM – Load Program Memory or ELPM – Extended Load Program Memory. Refer to
the instruction description in the AVR Instruction Set document to learn how to use them.

4.3.2 SRAM Data Memory
The ATmega128 supports two different configurations for the SRAM data memory,
Normal mode and ATmega103 Compatibility mode. This mode is selected in the fuse
bits of the ATmega128. For the purposes of this class and document, only the Normal

TekBots¥ Oregon State University Page 22 of 53

Figure 13: Program Memory Map

AVR instructions LPM - Load Program Memory or ELPM - Extended Load
Program Memory. Refer to the instruction description in the AVR Instruction
Set document to learn how to use them.

4.3.2 SRAM Data Memory

The ATmega128 supports two di↵erent configurations for the SRAM data mem-
ory, Normal mode and ATmega103 Compatibility mode. This mode is selected
in the fuse bits of the ATmega128. For the purposes of this class and document,
only the Normal mode will be discussed and used. The figure 14 illustrates the
memory map for the SRAM.

The ATmega128 is a complex microcontroller with more peripheral units
than can be supported within the 64-byte location reserved in the Opcode for
IN and OUT instructions. For the Extended I/O space from 60�FF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The first 4352 Data Memory locations address the Register file, the I/O
Memory and the internal data SRAM. The first 32 locations address the Register
file, the next 64 locations address the standard I/O memory, 160 locations of
Extended I/O memory, and then the next 4096 locations address the internal
data SRAM.

24

AVR Studio 4 and ATmega128: A Beginner’s Guide

mode will be discussed and used. The following figure illustrates the memory map for
the SRAM.

Data Memory
32 Registers $0000-$001F

64 I/O Registers $0020-$005F
160 Ext I/O Reg. $0060-$00FF

$0100 Internal SRAM
(4096 x 8)

$10FF
External SRAM

(0 – 64K x 8)
$1100

$FFFF

Figure 12: Data Memory Map

The ATmega128 is a complex microcontroller with more peripheral units than can be
supported within the 64-byte location reserved in the Opcode for IN and OUT
instructions. For the Extended I/O space from $60 - $FF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

The first 4352 Data Memory locations address the Register file, the I/O Memory and the
internal data SRAM. The first 32 locations address the Register file, the next 64
locations address the standard I/O memory, 160 locations of Extended I/O memory, and
then the next 4096 locations address the internal data SRAM.

An optional external data SRAM can be used with the ATmega128. Refer to the
datasheet for information on how to accomplish this.

The five different addressing modes for the data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-decrement, Indirect with Post-increment. In the
General Purpose Register file, registers R26 to R31 feature the indirect addressing pointer
registers (X, Y, Z). See the section on X-, Y-, Z-Registers for more information about
these registers.

The direct addressing reaches the entire data space.

TekBots¥ Oregon State University Page 23 of 53

Figure 14: Data Memory Map

An optional external data SRAM can be used with the ATmega128. Refer
to the datasheet for information on how to accomplish this.

The five di↵erent addressing modes for the data memory cover: Direct,
Indirect with Displacement, Indirect, Indirect with Pre-decrement, Indirect with
Post-increment. In the General Purpose Register file, registers R26 to R31
feature the indirect addressing pointer registers (X, Y, Z). See the section on
X-, Y-, Z-Registers for more information about these registers.

The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the

base address given by the Y- or Z-register.
When using register indirect addressing modes with automatic pre-decrement

and post- decrement, the address registers X, Y, and Z are decremented or in-
cremented.

25

4.3.3 EEPROM Data Memory

The ATmega128 contains 4K bytes of data EEPROM memory. The EEPROM
memory is useful in certain applications where modifying the data in the field
becomes important. For the purposes of the class and this document, the EEP-
ROM is not discussed in detail. For information on the EEPROM, refer to the
datasheet for the ATmega128.

4.4 Starter Code

This section is an AVR program that can be used as a good starting point for
any program. Just copy the program directly into a new project. The code
shows a good coding technique as well as leaves areas for the interrupt vectors.
It also gives some of the basic initialization routines.

;**
;*
;* Project Name Here
;*
;* Project Description Here
;* ;**
;*
;* Author: Your Name
;* Lab: Lab Number Here
;* Date: Enter the date Here
;* ;**
.include "m128def.inc" ; Definition file for ATmega128
;***
;* Program Constants
;***

.equ const =00 ; Generic Constant Structure
;***
;* Program Variables Definitions
;***

.def mpr =r16 ; Multipurpose Register
;***
;* Interrupt Vectors
;***
.cseg

.org 0000 ; Define start of Code segment
rjmp RESET ; Reset Handler
reti ; IRQ0 Handler
nop
reti ; IRQ1 Handler
nop
reti ; Timer2 Compare Handler
nop

26

reti ; Timer2 Overflow Handler
nop
reti ; Timer1 Capture Handler
nop
reti ; Timer1 CompareA Handler
nop
reti ; Timer1 CompareB Handler
nop
reti ; Timer1 Overflow Handler
nop
reti ; Timer0 Overflow Handler
nop
reti ; SPI Transfer Complete Handler
nop
reti ; USART RX Complete Handler
nop
reti ; UDR Empty Hanlder
nop
reti ; USART TX Complete Handler
nop
reti ; ADC Conversion Complete Handler
nop
reti ; EEPROM Ready Hanlder
nop
reti ; Analog Comparator Handler
nop
reti ; Two-wire Serial Interface Handler
nop
reti ; Store Program Memory Ready Handler
nop

;**
;* Func: RESET
;* Desc: Reset Handler Routine
;***
RESET:

; ***** Stack Pointer Init *****
ldi mpr, LOW(RAMEND)
out SPL, mpr
ldi mpr, HIGH(RAMEND)
out SPH, mpr
rjmp MAIN

;**
;* Func: MAIN
;* Desc: Main Entry into program
;**
MAIN:

27

;< Insert your program Here>
rjmp MAIN ; Loop Indefinitely

To use the Interrupt Vector, create the Interrupt Handler Routine similar
to the RESET routine. Then replace the NOP instruction for the interrupt
and replace it with an RJMP command to the newly created Interrupt Handler
Routine.

28

AVR Studio 4 and ATmega128: A Beginner’s Guide

5 AVR Assembly Programming
This section concentrates on the usage of the AVR Instruction Set. This guide will not
cover every single Instruction or all the Assembler Directives. Instead, it will cover the
most basic and commonly used instructions and directives and give techniques on how to
use them efficiently to get the most out of your program. For a detailed list of
instructions, refer to the Atmel’s AVR Instruction Set. It can be found at
http://www.atmel.com/atmel/acrobat/doc0856.pdf. For a complete detailed list of all the
AVR Assembler Directives, refer to Section 4.5 of AVR Assembler. It can be found at
http://www.atmel.com/atmel/acrobat/doc1022.pdf.

5.1 Pre-compiler Directives
Pre-compiler directives are special instructions that are executed before the code is
compiled and directs the compiler. These instructions are denoted by the preceding dot,
i.e. .EQU. The directives are not translated directly into opcodes. Instead, they are used
to adjust the location of the program in memory, define macros, initialize memory, and so
on. The following sections will contain detailed information on the most commonly used
directives. The following table contains an overview of the directives supported by the
AVR Assembler.

Table 5: Pre-Compiler Directives

Directive Description
.BYTE Reserve byte to a variable
.CSEG Code Segment
.DB Define constant byte(s)
.DEF Define a symbolic name on a register

.DEVICE Define which device to assemble for
.DSEG Data Segment
.DW Define constant words

.ENDMACRO End macro
.EQU Set a symbol equal to an expression
.ESEG EEPROM segment
.EXIT Exit from a file

.INCLUDE Read source from another file
.LIST Turn listfile generation on

.LISTMAC Turn macro expression on
.MACRO Begin Macro
.NOLIST Turn listfile generation off
.ORG Set program origin
.SET Set a symbol to an expression

TekBots¥ Oregon State University Page 27 of 53

http://www.atmel.com/atmel/acrobat/doc0856.pdf
http://www.atmel.com/atmel/acrobat/doc1022.pdf

AVR Studio 4 and ATmega128: A Beginner’s Guide

5.1.1 CSEG – Code Segment
The CSEG directive defines the start of a Code Segment. An assembler file can contain
multiple Code Segments, which are concatenated into one Code Segment when
assembled. The directive does not take any parameters.

Syntax:
 .CSEG
Example:
 .DSEG ; Start Data Segment
 vartab: .BYTE 4 ; Reserve 4 bytes in SRAM
 .CSEG
 const: .DW 2 ; Write 0x0002 in program memory
 mov r1, r0 ; Do something

5.1.2 DB – Define constant byte(s)
The DB directive reserves memory resources in the program memory or the EEPROM
memory. In order to be able to refer to the reserved locations, a label should precede the
DB directive.

The DB directive takes a list of expressions, and must contain at least one expression.
The list of expressions is a sequence of expressions, delimited by commas. Each
expression must evaluate to a number between –128 and 255 since each expression is
represented by 8-bits. A negative number will be represented by the 8-bits two’s
complement of the number.

If the DB directive is used in a Code Segment and the expression list contains more than
one expression, the expressions are packed so that two bytes are placed in each program
memory word. If the expression list contains an odd number of expressions, the last
expression will be placed in a program memory word of its own, even if the next line in
the assembly code contains a DB directive.

Syntax:
 LABEL: .DB expressionlist
Example:
 .CSEG
 consts:
 .DB 0, 255, 0b01010101, -128, $AA
 text:
 .DB “Hello World”

5.1.3 DEF – Set a symbolic name on a register
The DEF directive allows the registers to be referred to through symbols. A defined
symbol can be used to the rest of the program to refer to the registers it is assigned to. A
register can have several symbolic names attached to it. A symbol can be redefined later
in the program.

Syntax:
 .DEF Symbol = Register

TekBots¥ Oregon State University Page 28 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

Example:
 .DEF temp = R16
 .DEF ior = R0
 .CSEG
 ldi temp, $F0 ; Load 0xF0 into temp register
 in ior, $3f ; Read SREG into ior register
 eor temp, ior ; Exclusive or temp and ior

5.1.4 EQU – Set a symbol equal to an expression
The EQU directive assigns a value to a label. This label can then be used in later
expressions. A label assigned to a value by the EQU directive is a constant and can not
be changed or redefined.

Syntax:
 .EQU label = expression

Example:
 .EQU io_offset = $23
 .EQU porta = io_offset + 2
 .CSEG
 clr r2 ; Clear register 2
 out porta, r2 ; Write to Port A

5.1.5 INCLUDE – Include another file
The INCLUDE directive tells the Assembler to start reading from a specified file. The
Assembler then assembles the specified file until the end of file (EOF) or an EXIT
directive is encountered. An include file may itself contain INCLUDE directives.

Syntax:
 .INCLUDE “filename”

Example:
 ; iodefs.asm
 .EQU sreg = $3F ; Status register
 .EQU sphigh = $3E ; Stack pointer high
 .EQU splow = $3D ; Stack pointer low
 ; incdemo.asm
 .INCLUDE “iodefs.asm” ; Include I/O definitions
 in r0, sreg ; Read status register

5.1.6 ORG – Set program origin
The ORG directive sets the location counter to an absolute value. The value to set is
given as a parameter. If an ORG directive is given within a Code Segment, then it is the
Program memory counter that is set. If the directive is preceded by a label (on the same
source line), the label will be given the value of the parameter. The default value of the
Code location counter is zero when assembling is started. Note that the Program memory
location counter counts words and not bytes.

Syntax:

TekBots¥ Oregon State University Page 29 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

 .ORG expression

Example:
 .CSEG
 rjmp main ; Jump to the main section of code
 .ORG $0042 ; Set location counter to address $0042 to skip the
 ; interrupt vectors
 main: ; Main section of code
 mov r0, r1 ; Do something

5.2 Expressions
The Assembler incorporates expressions. Expressions can consist of operands, operators
and functions. All expressions are internally 32 bits.

5.2.1 Operands
The following operands can be used:
x� User defined labels that are given the value of the location counter at the place they

appear.
x� User defined constants defined by the EQU directive.
x� Integer constants: constants can be given in several formats, including

a) Decimal (default): 10, 255
b) Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff
c) Binary: 0b00001010, 0b11111111

x� PC – the current value of the Program memory location counter

5.2.2 Functions
The following functions are defined:
x� LOW(expression) returns the low byte of an expression
x� HIGH(expression) returns the high byte of an expression
x� BYTE2(expression) is the same function as HIGH
x� BYTE3(expression) returns the third byte of an expression
x� BYTE4(expression) returns the fourth byte of an expression
x� LWRD(expression) returns bits 0-15 of an expression
x� HWRD(expression) returns bits 16-31 of an expression
x� PAGE(expression) returns bites 16-21 of an expression
x� EXP2(expression) returns 2^expression
x� LOG2(expression) returns the integer part of log2(expression)

5.2.3 Operators
The Assembler supports a number of operators that are described in section 4.6.3 of the
AVR Assembler document. These operators can be commonly associated with C/C++
operators. Note that these operations are done only during compilation and cannot be
used in place of the AVR Instructions.

TekBots¥ Oregon State University Page 30 of 53

http://www.atmel.com/atmel/acrobat/doc1022.pdf

AVR Studio 4 and ATmega128: A Beginner’s Guide

5.3 Basic Instructions
Almost all AVR Instructions fall into three categories; Arithmetic and Logic Instructions,
Branch Instructions, and Data Transfer Instructions. This section will not cover every
instruction in the AVR Instruction Set; instead, it will support the AVR Instruction Set
document by expanding on key instructions and their uses.

5.3.1 Common Nomenclature
With the exception of a few instructions, all AVR Assembly Instructions follow a
common nomenclature. There are three parts to every instruction, the Instruction Name,
Argument 1, and Argument 2.

Every AVR Instruction has an instruction name. This name is a unique three or four
letter combination that identifies the instruction; for example, the AVR Instruction the
Loads an Immediate Value has the Instruction Name of LDI.

Also, every instruction may have up to two arguments associated with it. These
arguments follow the Instruction Name and are separated by a comma. When arguments
are used, it is important to note that the result of the command will always be stored in
the first argument. Please note the figure below.

CMD ARG1, ARG2

 Instruction Name Argument1 Argument2

ARG1 Å CMD(ARG1, ARG2)
Result of operation

Figure 13: AVR Instruction Nomenclature

5.3.2 Arithmetic and Logic Instructions
The arithmetic and logic instructions make use of the microcontroller’s ALU. Almost all
of the arithmetic and logic instructions consist of a two arguments and can modify all of
the status bits in the SREG. Take note that all of the arithmetic and logic instructions are
8-bit only. The following is a breakdown of the available instructions:

x� Addition: ADD, ADC, ADIW
x� Subtraction: SUB, SUBI, SBC, SBCI, SBIW
x� Logic: AND, ANDI, OR, ORI, EOR
x� Compliments: COM, NEG
x� Register Bit Manipulation: SBR, CBR
x� Register Manipulation: INC, DEC, TST, CLR, SER
x� Multiplication1: MUL, MULS, MULSU
x� Fractional Multiplication1: FMUL, FMULS, FMULSU

1 Multiplication and Division is very limited and restrictive

TekBots¥ Oregon State University Page 31 of 53

http://www.atmel.com/atmel/acrobat/doc0856.pdf

AVR Studio 4 and ATmega128: A Beginner’s Guide

There is a common nomenclature to the naming of the instructions. The following table
explains the nomenclature.

Table 6: Common Instruction Nomenclature

Ending
Letter

Meaning Description

C Carry Operation will involve the carry bit
I Immediate Operation involves an immediate value that is passed as the

second argument.
W Word The operation is a 16-bit operation.
S Signed The operation handles signed numbers

SU Signed/Unsigned The operation handles both signed and unsigned.

5.3.3 Branch Instructions
Branch Instructions are used to introduce logical decisions and flow of control within a
program. About 20% of any program consists of branches. A branch instruction is
basically an instruction that can modify the Program Counter (PC) and redirect where the
next instruction is fetched. There are two types of branch instructions, unconditional
branches and conditional branches.

5.3.3.1 Unconditional Branches
Unconditional branches modify the PC directly. These instructions are known as jumps
because they cause the program to “jump” to another location in program memory.
There are several types of jump instructions (RJMP, IJMP, EIJMP, JMP), but the most
common one is the relative jump, RJMP, because it takes the least amount of cycles to
perform and can access the entire memory array.

There are also special unconditional branch instructions known as function calls, or calls
(RCALL, ICALL, EICALL, CALL). The function calls work just like the jump
instructions, except they also push the next address of the PC on to the stack before
making the jump. There is also a corresponding return instruction, RET, that pops the
address from the stack and loads it into the PC. These instructions are used to create
functions in AVR assembly. See Section 5.6 for more details on functions.

5.3.3.2 Conditional Branches
Conditional branches will only modify the PC if the corresponding condition is meant. In
AVR, the condition is determined by looking at the Status Register (SREG) bits. For
example, the Branch Not Equal, BRNE, instruction will look at the Zero Flag (Z) of the
SREG. If Z = 0, then the branch is taken, else the branch is not taken. At first this might
not seem very intuitive, but in AVR, all the comparisons take place before the branch.

There are several things that can modify the SREG bits. Most arithmetic and logic
instructions can modify all of the SREG bits. But what are more commonly used is the
compare instructions, (CP, CPC, CPI, CPSE). The compare instructions will subtract the

TekBots¥ Oregon State University Page 32 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

two corresponding registers in order to modify the SREG. The result of this subtraction
is not stored back to the first argument. With this in mind, take a look at BRNE again. If
the values in two register are equal when they are subtracted, then the resulting value
would be zero and then Z = 1. If they were not equal then Z would be 0. Now when
BRNE is called, the Z bit can determine the condition. Section 5.5 shows several
examples of how to use this process. The following table gives a nice quick summary of
all conditional tests, the corresponding instruction, and what bits in SREG are
manipulated to determine the condition.

Table 7: Conditional Branch Summary

Test Boolean Mnemonic Complementary Boolean Mnemonic Comment
Rd > Rr Zx(N�V)=0 BRLT(1) Rd d Rr Z+(N�V)=1 BRGE* Signed
Rd t Rr (N�V) = 0 BRGE Rd < Rr (N�V) = 1 BRLT Signed
Rd = Rr Z = 1 BREQ Rd z Rr Z = 0 BRNE Signed
Rd d Rr Z+(N�V)=1 BRGE(1) Rd > Rr Zx(N�V)=0 BRLT* Signed
Rd < Rr (N�V) = 1 BRLT Rd t Rr (N�V) = 0 BRGE Signed
Rd > Rr C + Z = 0 BRLO(1) Rd d Rr C + Z = 1 BRSH* Unsigned
Rd t Rr C = 0 BRSH/BRCC Rd < Rr C = 1 BRLO/BRCS Unsigned
Rd = Rr Z = 1 BREQ Rd z Rr Z = 0 BRNE Unsigned
Rd d Rr C + Z = 1 BRSH(1) Rd > Rr C + Z = 0 BRLO* Unsigned
Rd < Rr C = 1 BRLO/BRCS Rd t Rr C = 0 BRSH/BRCC Unsigned
Carry C = 1 BRCS No carry C = 0 BRCC Simple
Negative N = 1 BRMI Positive N = 0 BRPL Simple
Overflow V = 1 BRVS No overflow V = 0 BRVC Simple
Zero Z = 1 BREQ Not zero Z = 0 BRNE Simple

Note: 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr o CP Rr,Rd

Additionally, conditional branches include the skip instructions (SBRC, SBRS, SBIC,
SBIS). These instructions will skip the next instruction if the condition is meant. These
can be very useful in determining whether or not to call a function. Note that the skip
instructions are limited to only bit testing on registers or specific areas in IO Memory.

5.3.4 Data Transfer Instructions
The majority of instructions in any assembly language program are data transfer
instructions. These instructions essentially move data from one area in memory to
another. As easy as this concept seems, it can quickly become very complicated and
overwhelming. For example, the AVR Instructions Set supports five different addressing
modes: Immediate, Direct, Indirect, Indirect with Pre-Decrement, Indirect with Post-
Increment, and Indirect with Displacement. But each of these modes can be broken down
into comprehensible sections.

5.3.4.1 Immediate Addressing
Immediate addressing is simply a way to move a constant value into a register. Only one
instruction supports immediate addressing, LDI. Also note that this instruction will only
work on the upper 16 General Purpose Registers, R16 – R31. The following is an
example of when LDI would be used. Suppose there was a loop that needed to be looped

TekBots¥ Oregon State University Page 33 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

16 times. Well, a counter register could be loaded with the value 16 and then
decremented after each loop. When the register reached zero, then the program will exit
from the loop. Since the value 16 is a constant, we can load into the counter register by
immediate addressing. The following code demonstrates this example.

.def counter = r22 ; Create a register variable
 ldi counter, 16 ; Load the immediate value 16 in counter
Loop: breq Exit ; If zero, exit loop
 adc r0, r1 ; Do something
 dec counter ; Decrement the counter
 rjmp Loop ; Redo the loop
Exit: inc r0 ; Continue on with program

5.3.4.2 Direct Addressing
Direct addressing is the simplest way of moving data from one area of memory to
another. Direct addressing requires only the address to access the data. But it is limited to
the use of the register file. For example, if you wanted to move a byte of data from one
area in Data Memory to another area in Data Memory, you must first Load the data a
register and then Store the data into the other area of memory. In general, every data
manipulation instruction, except LDI, comes in a Load and Store pair. For Direct
Addressing modes, the instruction pairs are LDS/STS and IN/OUT.

The point of having multiple instruction pairs is to access different areas of memory.
x� LDS/STS – Move data in and out of the entire range of the SRAM Data Memory
x� IN/OUT – Move data in and out of the IO Memory or $0020 - $005F of the SRAM

Data Memory. IN/OUT takes less instruction cycles than LDS/STS does.

The following is an example loop that continually increments the data value at a
particular address.

.equ addr = $14D0 ; Address of data to be manipulated
Loop: lds r0, addr ; Load data to R0 from memory
 inc r0 ; Increment R0
 sts addr, r0 ; Store data back to memory
 rjmp Loop ; Jump back to loop

5.3.5 Bit and Bit- test Instructions
Bit and Bit-test Instructions are instructions that manipulate or test the individual bits
within an 8-bit register. There are three types of Bit and Bit-testing instructions; Shift and
Rotate, Bit Manipulation, and SREG Manipulation.

5.3.5.1 Shift and Rotate
Shifting a register literally means shifting every bit one spot to either the left or the right.
The AVR Instruction set specifies register shifts as two types of instructions, shifts and
rotates. Shifting will just shift the last bit out to carry bit and shift in a 0 to the first bit.
Rotating will shift out the last bit to the carry bit and shift in the carry bit to the first bit.
Therefore rotating a register will not loose any bit data while shifting a register will loose

TekBots¥ Oregon State University Page 34 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

the last bit. The instruction mnemonics are LSL, LSR, ROL, and ROR for Logical Shift
Left, Logical Shift Right, Rotate Left Through Carry, and Rotate Right Through Carry
respectively.

There are also some special Shifting Instructions, Arithmetic Shift Right (ASR) and
Swap Nibbles (SWAP). Arithmetic Shift Right behaves like a Logical Shift Right except
it does not shift out to the carry bit. Instead, ASR, will right shift anywhere from 1 to 7
spaces. Swap Nibbles will swap the upper and lower 4-bits with each other.

5.3.5.2 Bit Manipulation
Bit Manipulation Instructions allow the programmer to manipulate individual bits within
a register by setting, or making the value 1, and clearing, or making the value 0, the
individual bits. There are three instruction pairs to manipulate the SREG, an I/O
Register, or a General Purpose Register through the T flag in the SREG. BSET and
BCLR will set and clear respectively any bit within the SREG register. SBI and CBI will
set and clear any bit in any I/O register. BST will store any bit in any General Purpose
Register to the T flag in the SREG and BLD will load the value of the T flag in the SREG
to any bit in any General Purpose Register.

5.3.5.3 SREG Manipulation
Although the instructions SBI and CBI will allow a programmer to set and clear any bit
in the SREG, there are additional instructions that will set and clear specific bits within
the SREG. This is useful for when the programmer does not want to keep track of which
bit in the SREG is for what. The following table shows the mnemonics for each set and
clear instruction pair are in the table below.

Table 8: SREG Bit Manipulation Instructions

Bit Bit Name Set Bit Clear Bit
C Carry Bit SEC CLC
N Negative Flag SEN CLN
Z Zero Flag SEZ CLZ
I Global Interrupt Flag SEI CLI
S Signed Test Flag SES CLS
V Two’s Complement OVF Flag SEV CLV
T T Flag SET CLT
H Half Carry Flag SEH CLH

TekBots¥ Oregon State University Page 35 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

5.4 Coding Techniques
This section contains general hints and tips to produce well-structured code that can be
easily debugged and save a lot of time and headaches.

5.4.1 Structure
It is important to create and maintain a consistent code structure throughout the program.
Assembly Language in general can be greatly confusing; a well-structured program will
ease this confusion and make the program very readable to yourself and other people.
Spending several hours trying to find a specific problem area in a piece of code can
become quite frustrating.

So what does a well-structured program look like? Structure includes everything that is
typed in the program, where certain parts of the program are located, how an instruction
looks within a line, etc. There are several ways to write out the code on the ‘paper’, but
the most important part is to be consistent. If you start writing your code in one fashion,
maintain that fashion through out the remainder of the program. Varying between
different ‘styles’ can be quite confusing and make the code unreadable.

The one style that I recommend is using the four-column method. If this style is used
consistently throughout the program, the program should look like four columns. A
column is usually separated with one or two tabs depending on how long the data strings
are. In general, the following table describes what goes into each column, the tab lengths
and exception rules.

Table 9: Line Formatting Rules

Column Tab
Length

Includes Comments

1 1 Pre-compiler
Directives, Labels

x� If a label is longer than one tab length,
then the instruction mnemonic goes on the
next line.

x� No instructions must be placed on the
same line as a pre-compiler directive.

2 1 Directive
Parameters,
Instruction
Mnemonic

x� It is common for Directive Parameters to
exceed one tab length.

3 2 Instruction
Parameters

x� If Instruction Parameters exceed two tab
lengths, then place the comment on the
previous line.

TekBots¥ Oregon State University Page 36 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

4 3 Comments x� Comments should only be used in the

fourth column, which is roughly four tab
lengths from the start of the line.

x� Unless the code is blatantly obvious,
place a comment on every line of code.

x� Exceptions are Header Comments, they
must start at the beginning of the line

The following is an example of well-formatted code using the rules from Table 9: Line
Formatting Rules.

; Title: XOR Block of Data
; Author: David Zier
; Date: March 16, 2003

.include “m128def.inc” ; Include definition file

.def tmp = r15 ; Temporary Register
.def xor = r6 ; XOR Register
.equ addr1 = $1500 ; Beginning Address
.equ addr2 = $2000 ; Ending Address

 ; This code segment will XOR all the
 ; bytes of data between the two address
 ; ranges.
.org $0000 ; Set the program starting address
INIT: ldi XL, low(addr1) ; Load low byte of start address in X
 ldi XH, high(addr1) ; Load high byte of start address in X
FETCH: ; Code won’t fit, create a new line
 ld tmp, X+ ; Load data from address into tmp
 eor xor, tmp ; XOR tmp with xor register, store in xor
 cpi XL, low(addr2) ; Compare high byte of X with End Address
 brne FETCH ; If low byte is not equal, then get next
 cpi XH, high(addr2) ; Compare low byte of X with End Address
 brne FETCH ; If high byte is not equal then get next
DONE: rjmp DONE ; Infinite done loop

The next part to proper code structure is code placement. Certain sections of code should
be placed in certain areas. This alleviates confusion and allows the contents to be ordered
and navigable. The following table illustrates the order in which certain code segments
are to be placed.

TekBots¥ Oregon State University Page 37 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

Table 10: Code Structure

Header Comments Title, Author, Date, and Description
Definition Includes Specific Device Definition Includes, i.e.

“m128def.inc”
Register Renaming Register renaming and variable creation, i.e. .def

tmp = r0
Constant

Declaration
 Constant declarations and creation, i.e. .equ addr =

$2000
Interrupt Vectors See Section 4.2 Interrupt Vectors

Initialization Code Any initialization code goes here
Main Code The heart of the program.

Subroutines Any subroutine that is created follows the main code.

ISRs Any Interrupt Subroutines will go here.

Data Any hard coded data is best placed here, i.e. .DB
“hello”

Additional Code
Includes

 Finally, if there is any additional source code
includes, will go last.

By following these simple structure rules, the code will be more readable and
understandable.

5.4.2 Register Naming
Register naming is an important part to any program. It alleviates confusion and makes
the code more readable, thus it will be easier to debug. The main purpose to renaming a
register is to assign a register as a specific variable type. For example, if I wanting a
temporary register that I would use through out the program to hold one-shot data, I
would name the register “tmp”. If I was righting a program that executed a complex
arithmetic routine, I might want a variable to store the result, so I name a register “res”.

The reason you would rename a register is to alleviate confusion. If I just used the
regular register names (r0, r1, r2, etc.), I could easily get confused as to what each
register was used for. Was r0 the register to hold the result or was r13? As the program
grows more complex, this can easily be the case.

Register names should be short but descriptive and unique. Short names fit well into the
four-column formatting scheme. Names should be no longer the six letters, but on
average, be 3 letters in length. For example, “tmp” for temporary, “res” for result,
“addrl” for address low byte, or “cnt” for count. Make the names as descriptive as

TekBots¥ Oregon State University Page 38 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

possible. Using a register named “tmp” that always holds the value to be compared is not
good; a better name might be “cmp” for compare. And finally, the name must be unique.
Don’t name several registers “tmp1”, “tmp2”, and “tmp3”. This is no better than using
r1, r2, and r3. In fact it is worse, because you have to type more letters. If there is ever
situations where multiple temporary register are to be used, make them unique. An
example might be “otmp” and “itmp” for outer loop temporary and inner loop temporary
respectively.

Proper register naming will make coding easier, so it is a good idea to get in the habit.
Also, bad register naming can make code much more difficult to work with. In general, a
segment of code that using register renaming can be easily understandable, even without
the comments.

5.4.3 Constants and Addressing
Like register renaming, constant names should be short, descriptive, and unique. So
when does one use a constant? If you ever find your self repeatedly using the same
constant value over and over again, then a constant is needed. Constants are beneficial in
two ways; one, they make the code more readable and thus more easy to debug, and two,
allow you change the behavior of the program by adjusting the constant numbers in the
beginning of the code.

If there were no constants, a programmer might have to search through the entire code to
see particular value was and change, maybe even multiple times. With constants, this
requires only one edit and no searching each time the programmer wants to change a
value.

Common uses of constants are with set addresses. One thing to note is that addresses are
16-bits and registers are 8-bits. This means that you must deal with addresses as low and
high bytes. There are several things to be concerned with here. First, when comparing
addresses always compare both the low and the high bytes, even if the high byte doesn’t
change. It is very possible, that by the time the program is finished, the high byte might
change and since it was not compared, the program does not function properly. Next, the
programmer would need to consider how to use and access a 16-bit constant. The
following code is one example of how to access the address $23D4.

.equ addrl = $D4 ; Low byte of address
.equ addrh = $23 ; High byte of address
...
 ldi XL, addrl ; Load low byte of address
 ldi XH, addrh ; Load high byte of address

This will works, but it is not a good method for accessing the low and high bytes. Below
is a better and much preferred method.

.equ addr = $23D4 ; The address
...
 ldi XL, low(addr) ; The low byte of the address
 ldi XH, high(addr) ; The high byte of the address

TekBots¥ Oregon State University Page 39 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

This is better because now you can see the address in its entirety. The previous method
split the address into two separate byte constants, which can become confusing when
changing the address. For example, what if I wanted to have another address constant
and I put it as high then low. I might get confused and enter the wrong byte of the
address because it is not consistent with the previous method. By putting the entire
address, you can easily read or edit the address. Additionally, inserting another address
will not be confusing since it is consistent. We later use the high() and low() macros to
access the high and low bytes.

It is a good idea to name every constant that you use within your code. It is quick, easy,
and saves you a lot of time when coding and debugging. It is definitely more beneficial
for you to use constants than to not.

5.4.4 ATMega128 Definition File
A definition file is a file that contains addresses and values for common I/O registers and
special registers within a specific chipset. For example, every ATMEL AVR chipset
contains an SREG, but not every chipset has the SREG in the same memory location.
This is where the definition file comes in. Just write your code with the common name
for the I/O register such as SREG or SPH, and then include the definition file in the
beginning of you code. This does two things, first, the programmer doesn’t have to look
up or memorize the address for each to the I/O register or chip specific registers and
second, the same code can be used for different chipset by just including the proper
definition file.

Since this document mostly concentrates on the ATMega128, we use the definition file so
that we don’t have to look up the address for specific I/O registers. The definition file is
for the ATMega128 is m128def.inc. It contains a lot of .equ and a few .def expressions.
The file also contains useful information such as the last address in SRAM (RAMEND).
It is included with AVR Studio4 when you download and install the program.

5.5 Flow of Control
This section will contain several examples of C-like flow of control expressions and how
to code the same thing in AVR Assembly. These flow of control examples will show the
proper way to use a branch instruction and more importantly, what a branch instruction is
used for.

5.5.1 IF Statement
This is probably the most simplest and straightforward control statement in program. In
C, the IF statement is commonly seen as:

if (expr)
 statement

If expr is nonzero (true), then statement is executed; otherwise statement is skipped, and
control passes to the next statement. This is true for assembly as well. For example, the
following C-code.

TekBots¥ Oregon State University Page 40 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

if (n >= 3)
{
 expr++;
 n = expr;
}

Here is the equivalent version in assembly.

.def n = r0
.def expr = r1
.equ cmp = 3

...
 cpi n, cmp ; Compare value
IF: brsh EXEC ; If n >= 3 then branch to NEXT
 rjmp NEXT ; Jump to NEXT since expression is false
EXEC: inc expr ; increment expr
 mov n, expr ; Set n = expr
NEXT: ... ; continue on with code

Although this code behaves like the C-code, it is not optimal. By simply using the
complementary Boolean Expression, you can save space and speed up the program.

.def n = r0
.def expr = r1
.equ cmp = 3
...
 cpi n, cmp ; Compare value
IF: brlo NEXT ; If n >= 3 is false then skip code
 inc expr ; increment expr
 mov n, expr ; Set n = expr
NEXT: ... ; Continue on with code

This statement behaves exactly the same but uses one less branch statement and one less
line of code. And more importantly, is easier to read and understand.

5.5.2 IF-ELSE Statement
This is very similar to the IF statement, except it has an additional unconditional else
statement. This is not too hard to implement. Here is an example C-Code.

if (n == 5)
 expr++;
else
 n = expr;

And here is the equivalent code in AVR Assembly.

TekBots¥ Oregon State University Page 41 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

.def n = r0

.def expr = r1

.equ cmp = 5

...
 cpi n, cmp ; Compare value
 breq IF ; Branch to IF if the n == 3
 rjmp ELSE ; Branch to ELSE if the expression is false
IF: inc expr ; Increment expression
 rjmp NEXT ; Goto NEXT
ELSE: mov n, expr ; Set n = expr
NEXT: ... ; Continue on with code

We can make this more efficient if we use the complimentary Boolean expression.

.def n = r0
.def expr = r1
.equ cmp = 5
...
 cpi n, cmp ; Compare value
IF: brne ELSE ; Goto ELSE statement since expression is false
 inc expr ; Execute the IF statement
 rjmp NEXT ; Continue on with code
ELSE: mov n, expr ; Execute the ELSE statement
NEXT: ... ; Continue on with code

Again, this code has one less branch statement and one less instruction. Although this
does not seem like much now, but if this were nested within a loop that looped 100 times,
then it is essentially 100 less instructions to be executed.

5.5.3 IF-ELSIF-ELSE Statement
This is simply a nested mix of the IF and IF-ELSE statements. A C example would be:

if (n < 3)
 expr++;
else if (n == 5)
 n = expr;
else
 n++;

Here is how to logically convert it into assembly.

.def n = r0
.def expr = r1
.equ val1 = 3
.equ val2 = 5
...
 cpi n, val1 ; Compare n with val1
 brlo IF ; If n < 3, then execute if
 rjmp ELIF ; Goto ELSEIF Expression
IF: inc expr ; Execute if statement
 rjmp NEXT ; Goto Next
ELIF: cpi n, val2 ; Compare n with val2
 breq ELIE ; If n == 5, then execute ELSEIF statement

TekBots¥ Oregon State University Page 42 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

 rjmp ELSE ; Goto ELSE statement
ELIE: mov n, expr ; Execute ELSEIF statement
 rjmp NEXT ; Goto Next
ELSE: inc n ; Execute ELSE statement
NEXT: ... ; Continue on with code

This seems a little complicated and confusing. By changing the Boolean expressions, the
code can be optimized and less confusing.

.def n = r0
.def expr = r1
.equ val1 = 3
.equ val2 = 5
...
 cpi n, val1 ; Compare n with val1
IF: brsh ELIF ; If is not n < 3, then goto ELSEIF expression
 inc expr ; Execute if statement
 rjmp NEXT ; Goto Next
ELIF: cpi n, val2 ; Compare n with val2
 brne ELSE ; If is not n == 5, then goto ELSE expression
 mov n, expr ; Execute ELSEIF statement
 rjmp NEXT ; Goto Next
ELSE: inc n ; Execute ELSE statement
NEXT: ... ; Continue on with code

This optimized code has two less instructions and two less branches. In addition, it is
easier to read and understand.

5.5.4 WHILE Statement
The WHILE statement is commonly used to create repetitive loops. In fact, it is common
to use an infinite while loop to end a program. Consider a construction of the form:

while (expr)
 statement
next statement

First expr is evaluated, if it is nonzero (true), the statement is executed, and control is
passed back to the beginning of the WHILE loop. The effect of this is that the body of
the WHILE loop, namely the statement, is executed repeatedly until expr is zero (false).
At that point control passes to next statement. An example is:

while (n < 10) {
 sum += n;
 n++;
}

In assembly, WHILE loops can be created pretty easily. Here is the equivalent assembly
code:

.def n = r0
.def sum = r3
.equ limit = 10

TekBots¥ Oregon State University Page 43 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

...
WHIL: cpi n, limit ; Compare n with limit
 brlo WHEX ; When n < limit, goto WHEX
 rjmp NEXT ; Condition is not meet, continue with program
WHEX: add sum, n ; sum += n
 inc n ; n++
 rjmp WHIL ; Go back to beginning of WHILE loop
NEXT: ... ; Continue on with code

This code can also be optimized as follows:

.def n = r0
.def sum = r3
.equ limit = 10
...
WHIL: cpi n, limit ; Compare n with limit
 brsh NEXT ; When not n < limit, goto NEXT
 add sum, n ; sum += n
 inc n ; n++
 rjmp WHIL ; Go back to beginning of WHILE loop
NEXT: ... ; Continue on with code

By converting the BRLO to BRSH, we where able to remove one of the branch
instructions and make the code look more like a WHILE loop.

5.5.5 DO Statement
The DO statement can be considered a variant of the WHILE statement. Instead of
making its test at the top of the loop, it makes it at the bottom. The following is an
example:

do {
 sum += n;
 n--;
} while (n > 0);

The assembly code for the DO statement is also very similar to the WHILE statement.

.def n = r0
.def sum = r3
.equ limit = 0
...
DO: add sum, n ; sum += n
 dec n ; n++
 cpi n, limit ; compare n to limit
 brne DO ; since n is unsigned, brne is same expr
NEXT: ... ; Continue on with code

As you can see, a DO statement provides better performance over the optimized WHILE
statement. But even this function can be optimized.

.def n = r0
.def sum = r3

TekBots¥ Oregon State University Page 44 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

.equ limit = 0

...
DO: add sum, n ; sum += n
 dec n ; n++
 brne DO ; since n is unsigned, brne is same expr
NEXT: ... ; Continue on with code

Although the optimization does not affect the performance of the DO statement in
general, it did for this case. Since DEC is called before the BRNE instruction, the CPI
instruction is not needed. The CPI instruction forces the specific bits in the SREG to
occur that are needed by the branching instructions. In this case, the DEC instruction will
work as well. For example, when the DEC instruction decrements the n value and n
becomes zero, then the Zero Flag in the SREG is set. This is the only bit that is checked
by the BRNE command. Thus we can completely remove the CPI instruction.

5.5.6 FOR Statement
The FOR statement, like the WHILE statement, is used to execute code iteratively. We
can explain its action in terms of the WHILE statement. The construction

for (expr1; expr2; expr3)
 statement
next statement

is semantically equivalent to

expr1;
while (expr2) {
 statement
 expr3;
}
next statement

provided that expr2 is present. FOR loops are commonly used to run through a set of
data. For example, the following is some code that iterates 10 times.

for (n = 0; n < 10; n++)
 sum += n;

The following assembly is the equivalent of the C code.

.def n = r0
.def sum = r3
.equ max = 10
...
 ldi n, 0 ; Initialize n to 0
FOR: cpi n, max ; Compare n to max value
 brlo EXEC ; If n < max, the goto EXEC
 rjmp NEXT ; Statement is false, break out of FOR loop
EXEC: add sum, n ; sum += n
 inc n ; decrement n
 rjmp FOR ; goto the start of FOR loop

TekBots¥ Oregon State University Page 45 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

NEXT: ... ; rest of code

There are several things to do to optimize this code, first, use a DO loop instead of a
WHILE loop. Next use the complemented form of the expression. And lastly, initialize
the variable n to max and decrement it. This will allow use to use the SREG technique
from Section 5.5.5.

.def n = r0
.def sum = r3
.equ max = 10
...
 ldi n, max ; Initialize n to max
FOR: add sum, n ; sum += n
 dec n ; decrement n
 brne FOR ; repeat loop if n does not equal 0
NEXT: ... ; rest of code

This removed seven instructions and two branches. In addition, the code is simpler and
easier to read. And more importantly, it has the same functionality as the C code. This is
also a good example of why to name constants. If we wanted the FOR loop to loop 25
times, then all we would have to do is change the max constant from 10 to 25. No sweat!

5.5.7 SWITCH Statement
The SWITCH statement is a multiway conditional statement generalizing the IF-ELSE
statement. The following is a typical example of a SWITCH statement:

switch (val) {
case 1:
 a_cnt++;
 break;
case 2:
case 3:
 b_cnt++;
 break;
default:
 c_cnt++;
}

The case statement is probably the most complicated to write in assembly. Here is the
logical form for the above C code example.

.def val = r0
.def a_cnt = r5
.def b_cnt = r6
.def c_cnt = r7
...
SWITCH: ; The beginning of the SWITCH statement
 cpi val, 1 ; Compare val to 1
 breq S_1 ; Branch to S_1 if val == 1
 cpi val, 2 ; Compare val to 2
 breq S_3 ; Branch to S_3 if val == 2
 cpi val, 3 ; Compare val to 3

TekBots¥ Oregon State University Page 46 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

 breq S_3 ; Branch to S_3 if val == 3
 inc c_cnt ; Execute Default
 rjmp NEXT ; Break out of switch
S_1: inc a_cnt ; Execute case 1
 rjmp NEXT ; Break out of switch
S_3: inc b_cnt ; Execute case 2
NEXT: ... ; The rest of the code

This is the general idea, although some might even nest the execution within condition
expressions to make it more logically correct. Yet, using the complementary Boolean
expression can optimize this code segment. (Do you a similar pattern yet!)

.def val = r0
.def a_cnt = r5
.def b_cnt = r6
.def c_cnt = r7
...
SWITCH: ; The beginning of the SWITCH statement
S_1: cpi val, 1 ; Compare val to 1
 brne S_2 ; Branch to S_2 if val != 1
 inc a_cnt ; Execute case 1
 rjmp NEXT ; Break out of switch
S_2: cpi val, 2 ; Compare val to 2
 brne S_3 ; Branch to S_3 if val != 2
 inc b_cnt ; Execute case 2
 rjmp NEXT ; Break out of switch
S_3: cpi val, 3 ; Compare val to 3
 brne DFLT ; Branch to DFLT if val != 3
 inc b_cnt ; Execute case 3
 rjmp NEXT ; Break out of switch
DFLT: inc c_cnt ; Execute default
NEXT: ... ; The rest of the code

Believe it or not, this code actually has better optimization than the former. In the
former, any given case statement will have to go through two branches before it is
executed. In the optimized version, it will only have to go through one branch. If you
take a look at the worse case scenario, there are fewer jumps to get to the default
statement as well. Therefore this is the optimal code, even though there are more
instructions.

5.6 Functions and Subroutines
AVR Assembly language has the ability create and execute functions and subroutines.
By simply using a subroutine or a function, a programmer can drastically reduce the size
and complexity of the code. Because of the importance, this topic is given its own
subsection. This section will cover the general topics of functions and subroutines,
included how to create one, when to create one, and how to use one.

5.6.1 Definitions
A function or a subroutine can generally be thought as “reusable code”. Reusable code is
any segment of code that can be used over and over through out the program without

TekBots¥ Oregon State University Page 47 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

duplicity or two copies of the same code. You can think of functions and subroutines as
they are implemented in a C program. The function is created outside of the main
program and then is later called within the main program, sometimes in multiple areas.

Reusable code within an assembly program can be thought of as either a function or a
subroutine. Both are very similar in terms of how they are implemented, but have subtle
differences.

A subroutine is a reusable piece of code that requires no input from the main program.
Generally, the state of the program is saved upon entering the subroutine and is restored
before leaving the subroutine. This is perfect for when servicing interrupts.

A function, on the other hand, is involved within the main code and requires some
interaction. This usually means that some registers or other memory has to be initialized
before the function is called. In addition, a function will most likely alter the state of the
program.

In general, a subroutine must not alter the state of a running program and no care must be
taken to ensure the proper operation of a subroutine. For a function, the main program
must initialize data for the function to work properly and must be able to handle any
changes caused by the function.

5.6.2 Operational Overview
A subroutine or function is called via the CALL, RCALL, ICALL, or EICALL
instructions and is matched with an RET instruction to return to the instruction address
after the call. The function or subroutine is preceded by a label that signifies the name of
function or subroutine. When a CALL instruction is implement, the processor first
pushes the address of the next instruction after the CALL instruction onto the stack. This
is important to realize since it means that the stack must be initialized before functions or
subroutines can be used. The CALL instruction will then jump to the address specified
by label used as the parameter. The next instruction to be executed will then be the first
instruction with the subroutine or function. Upon exiting the subroutine or function, the
return instruction, RET, must be called. The RET instruction will then pop the address of
the next instruction after the CALL instruction from the stack and load into the PC. Thus
the next instruction to be executed is the instruction after the CALL instruction.

It is important to keep track of what is pushed and popped on the stack. If within a
subroutine or function, data is not popped correctly, the RET instruction can pop the
wrong data values for the address and thus the program will not function correctly.
Additionally, never exit a subroutine or function via another jump instruction other than
RET. Doing so will cause the data in the stack to never be popped and thus the stack will
become out of sink.

So when does a programmer decide to create a subroutine or function? This can often be
a tough call and can get really complicated. The general rule of thumb is that a
subroutine or function is needed when the programmer finds that the same segment of

TekBots¥ Oregon State University Page 48 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

code is being written in several places within the program. This can be very troublesome
since an error within the code segment result in several hours of work trying to fix every
instance of the code segment. On the other hand, if the program were to use a function or
subroutine, the fixing the code is easy since there is only one instance and it is in a
common location.

5.6.3 Implementation
In the last section, we briefly talked about how a function or a subroutine works. This
section will give detailed explanations on how to implement both the function and the
subroutine.

5.6.3.1 Setup
The first thing to do for any function and subroutine is to initialize the stack. This can be
done in four lines of code at the beginning of the program. Optimally, the stack should
be initialized for any program. Here is the code:

.include “m128def.inc”

INIT: ; Initial the stack pointer

ldi r16, low(RAMEND) ; Load the lo byte of the ram’s end addr
out SPL, r16 ; Set the Stack Pointer Low register
ldi r16, high(RAMEND) ; Load the hi byte of the ram’s end addr
out SPH, r16 ; Set the Stack Pointer High register

After this point, any function or subroutine will correctly in regards to the stack.

5.6.3.2 Subroutine Implementation
The subroutine does not require any outside influence for its performance. Therefore it is
a good idea to save the state of the program before executing the subroutine. This means
that certain registers must be pushed to the stack in the beginning of the subroutine and
popped just before the subroutine ends. It is important to remember to pop registers in
reverse order from which they where pushed. These registers include the SREG
(essentially the state of the program) and any general purpose registers that are used
throughout subroutine.

A good example of a routine is a wait loop that will wait for a specific amount of time.
For our case, we will want the wait subroutine to wait for 1000 cycles (not including the
subroutine overhead cycles.)

.def ocnt = r16 ; Outer loop count variable
.def icnt = r17 ; Inner loop count variable
WAIT: ; Wait subroutine

push icnt ; Save icnt register
push ocnt ; Save ocnt register
in ocnt, SREG ; Get the SREG value
push ocnt ; Save the value of the SREG
ldi ocnt, 55 ; Loop outer loop 55 times

WTL1: ldi icnt, 5 ; Loop inner loop 5 times
WTL2: dec icnt ; Decrement inner loop counter

TekBots¥ Oregon State University Page 49 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

 brne WTL2 ; Continue through inner loop
 dec ocnt ; Decrement outer loop counter
 brne WTL1 ; Continue through outer loop
 ldi ocnt, 3 ; This next loop just uses 9 cycles
WTL3: dec ocnt ; that is need for the 1000 cycles
 brne WTL3 ; Repeat last loop 3 times
 nop ; We still come up 1 cycle short
 pop ocnt ; Get the SREG value
 out SREG, ocnt ; Restore the value of the SREG
 pop ocnt ; Restore ocnt register
 pop icnt ; Restore icnt register
 ret ; Return from subroutine

We are going to stray off topic for a second to discuss this code. From the time first LDI
instruction is called to the last NOP, there are exactly 1000 cycles of execution. To
calculate this, you must take into consideration the number of cycles it takes to execute
each instruction. With the exception of the branches, every instruction takes one cycle.
The branches take 1 cycle if false and 2 cycles if true. With this in mind, the main loop
follows the equation ((3*icnt + 3)*ocnt . The optimal values for icnt and ocnt are 5 and
55 respectively. This yields the total number of cycles for the main to be 990 cycles.
This is unfortunately 10 cycles short of our goal. We could just shove 10 consecutive
NOPs at the end, but instead opted for a second small loop. This second loop follows the
equation 3*ocnt and with a value of ocnt being 3 yields 9 cycles. Therefore, with the
addition of a single NOP instruction, our total number of cycles is 1000 cycles.

Now back to the topic of subroutines. As you can see in the example code, the very first
thing we do is push the SREG to the stack. Additionally, we also push the registers icnt
and ocnt since they are used within the subroutine. We then execute the main subroutine
code. This followed up by popping the data from the stack in the reverse order that it is
pushed. And finally, we leave the subroutine with the RET instruction. Another item to
notice is that PUSH and POP only deal with the general-purpose registers. Therefore, if
we wanted to push an I/O Register, such as the SREG, we must first load it into a
general-purpose register. Since we were already using the ocnt register within the
subroutine, we used it to temporarily hold the SREG value. We made sure the ocnt
register was first pushed to the stack so that we didn’t loose any data that might have
been there.

So now how does a programmer use a subroutine once it has been created? Well, this is
easier than it sounds. Since a label precedes the subroutine, we can just make a call to the
label with one of the CALL instructions.

MAIN: ldi r16, 4 ; Set r16 to 4
LOOP: rcall WAIT ; Call our WAIT routine
 dec r16 ; Decrement r16
 brne LOOP ; Call the wait statement 4 times
 ... ; Additional code
 rcall WAIT ; Call our WAIT routine
 ... ; Even more code
DONE: rjmp DONE ; Program complete

TekBots¥ Oregon State University Page 50 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

As you can see, this program will call the WAIT routine in several places. Now if the
routine did not exist, then we would have to write all that code twice in several places.
While this is not hard with modern technologies such as cut and paste, the might still
initially be incorrect. This means that we now have to search through the rest of the code
and this can quickly become a headache. By now, you should be able to understand how
subroutines can make your programming experience better.

5.6.3.3 Function Implementation
A function is a bit different from a subroutine in the fact that it alters the state of the
program. Unlike the subroutine, the function will most likely need to be initialized prior
to the function call. This is how to create input to a function. Also the function will most
likely modify some registers to provide output. With the exceptions of the input and
output, a function behaves just like a routine. Any registers that used within a function
but do not correspond to any input or output, must still be pushed and popped from the
stack.

We will use a common example of a function that takes two 8-bit numbers and multiplies
them together. Since an 8-bit multiplication results in a 16-bit number, the result will be
stored in the same registers that were used for the input. The two input registers are the
multiplier (mplr) and the multiplicand (mplc). The high byte of the result will be stored
in mplr and the low byte will be stored in the mplc. The basic multiplication algorithm
will be to repeatedly add the multiplicand to itself for the amount specified in the
multiplicand. So here is the function.

.def mplr = r18 ; The multiplier
.def mplc = r19 ; The multiplicand
.def resh = r1 ; The high byte of the result
.def resl = r2 ; The low byte of the result
.def zero = r0 ; Zero register that always contains 0

MUL: ; The multiplication function
 push resh ; Save the state of resh
 push resl ; Save the state of resl
 push zero ; Save the zero register
 clr zero ; Enforce the 0 in the zero register
 clr resh ; Clear the result high byte
 clr resl ; Clear the result low byte
 cpi mplr, 0 ; Initially check mplr for 0
 breq EXIT ; Check for end condition
ADD: add resl, mplc ; Add multiplicand to result
 adc resh, zero ; This just add the carry bit, if any
 dec mplr ; Decrement mplr
 brne ADD ; Repeat loop if mplr is not 0
EXIT: mov mplr, resh ; Move high byte of result to mplr
 mov mplc, resl ; Move low byte of result to mplc
 pop zero ; Restore zero register
 pop resl ; Restore resl register
 pop resh ; Restore resh register
 ret ; Return from function

TekBots¥ Oregon State University Page 51 of 53

AVR Studio 4 and ATmega128: A Beginner’s Guide

As you can see, the general structure and layout is very similar to a subroutine. The only
difference is that we did not push and pop the registers mplr and mplc, since they are used
for input and output. You will also note the SREG was not saved. Sometimes, a function
will want to return the value of the SREG and therefore it is not necessarily vital to save
it.

Now we will see how to utilize a function. The process is very similar to subroutine
except that the input values need to be initialized before the function is called. It is also
important to note that register renaming for the functions input and outputs should be
done at the beginning of the program with the programs renamed registers. Like the
subroutine, any register that is used internally can be renamed before the instance of the
function. So here is an example of how to use the function we created in the above
example.

.def mplr = r18
.def mplc = r19

INIT: ldi r16, high(RAMEND) ; Initialize the stack pointer high byte
 out SPH, r16
 ldi r16, low(RAMEND) ; Initialize the stack pointer low byte
 out SPL, r16
MAIN: ... ; Other code in the main program
 ldi mplr, 25 ; Load 25 into multiplier
 ldi mplc, 93 ; Load 93 into multiplicand
 rcall MUL ; Multiply 93 * 25
 st X+, mplr ; Do something with the result
 st X, mplc ; by storing it into memory
 ... ; Additional Code
 mov mplr, r5 ; Setup another multiplication function
 mov mplc, r8 ; with the registers r5 and r8
 rcall MUL ; Multiply r8 * r5
 mov r0, mplr ; Do something with the result
 mov r1, mplc ; by storing the result into r0:r1
 ... ; More code
DONE: rjmp DONE ; Program complete

As you can see, we initialize the function by storing the value we want to multiply into
the mplr and mplc. We then call the multiplication function, MUL. And finally we
handle the results. What values you want to multiply and what to do with the result
depends on the program. By now, you should have a good understanding as how to
create and use a function.

TekBots¥ Oregon State University Page 52 of 53

	Introduction
	Purpose
	Atmel Studio 6 Overview
	ATmega128Overview
	Nomenclature
	Disclaimer

	Atmel Studio 6
	Startup Tutorial
	Installation
	Project Creation
	Project Simulation

	Simulation Tips
	Line-By-Line Debugging
	Workspace Window
	Memory Windows

	Debugging Strategies

	Programming the ATmega128
	Parts and Cables Needed
	Downloading the Necessary Software
	Connecting the Universal Programmer
	Programming Your Microcontroller

	ATmega128
	Useful Registers
	General Purpose Registers
	Special Function Registers

	Interrupt Vectors
	Memory Specifications
	Program Memory
	SRAM Data Memory
	EEPROM Data Memory

	Starter Code

