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The growth of data-intensive applications such as large language 
AI models has increased the demand for higher data throughput in 
wireline links. Due to the bandwidth-limited nature of the wireline 
channel, increasing the data rates across the same physical 
distance of the communication channel results in more inter-symbol 
interference (ISI). Consequently, more channel equalization is 
required to compensate for ISI, which increases the energy/bit of 
the communication link. Researchers have discovered that machine 
learning (ML) inspired approaches [1-2] including feature extraction 
and classification provide a more efficient solution for compensating 
the channel loss compared to the conventional equalization 
techniques like FFE, DFE, and CTLEs [3-7]. However, the prior 
works on ML inspired links are limited to NRZ modulation only. In 
this work, we introduce an energy-efficient ML inspired transceiver 
that leverages feature extraction and classification to transmit 
encoded PAM-4 data across a wide range of channel loss (13dB to 
26dB) while maintaining BER < 10-11 without using any conventional 
equalizers. Additionally, we propose a data encoding scheme, 
consecutive symbol to center encoding (CSC) to encode PAM-4 
and provide identifiable attributes to the transmitted signal, which 
helps to increase the channel loss compensation range and reduce 
the complexity of the classifier. Since ISI is a deterministic non-
ideality, the proposed decision-tree based classifier (on-chip) is 
designed to learn both the channel characteristics and the CSC 
data encoding, enabling it to accurately detect the original 
transmitted data in the presence of ISI with a latency of only 10 unit 
interval (UI). The decision tree classifier operates with a low-power 
feed-forward architecture without any feedback timing constraints, 
allowing the proposed transceiver to achieve 0.055pJ/bit/dB, which 
is ~2x lower than prior work [3-5] while compensating for nearly the 
same channel loss. 

Fig. 1 shows the proposed transceiver scheme. In the proposed 
architecture, the multi-tap FFE, DFE, and high-peaking CTLE are 
replaced with data encoding at the transmitter (Tx) and feature 
extraction, classification, and decoding blocks at the receiver (Rx). 
The encoder adds recognizable characteristics to the standard 
PAM-4 data before sending the signal through the channel. At the 
Rx front-end, relevant features are extracted from the closed eye, 
and the classifier maps the received information to the voltage 
levels corresponding to the transmitted data. The decoder then 
converts the signal into the original PAM-4 data. In the proposed 
CSC encoding scheme, four levels of PAM-4 (+3, +1, -1, -3) are 
mapped to five distinct symbols (+3, +1.5, 0, -1.5, -3) with an 
additional voltage level at 0V, which ensures that any consecutive 
identical symbols (CIS) are shifted to a central common-mode 
voltage (0V). This encoding approach increases transition density 
during CIS, reduces the DC content of the data, and introduces 
redundancy within the symbol space (voltage domain) without 
increasing coding overhead. A conventional linear partial response 
signaling scheme such as Dicode encoding (1-z-1) on PAM-4 could 
have also removed the CIS. However, Dicode on PAM-4 would 
have created 7 voltage levels, which would reduce the SNR by 
6dB. The proposed non-linear CSC encoding limits the voltage 
levels to 5 and the SNR penalty is only 2.5dB.  

Fig. 2 shows the off-chip training process of a decision tree 
classifier in MATLAB. The CSC encoded data is transmitted 
through an approximate channel model and received by the Rx 
front-end. Simultaneously, CSC encoded data is fed directly to the 
learning algorithm, bypassing the lossy channel. At the receiver 5 
first-order features (F1-F5) are extracted at every UI. Higher order 
features such as slope are avoided to reduce the Rx front-end 
power consumption [1]. Each of these 5 features generates a 1-bit 
output based on the voltage thresholds Vth1 to Vth5 forming a 
feature vector. Feature vectors consisting of the current UI, past 
6UIs, and future 3UIs (total 10UI data) are then given to the 
classifier. The classifier is trained with 5 features to compensate for 

17dB to 26dB channel losses, while 3 features were sufficient to 
train it for 13dB to 17dB. The programmability of features is added 
in the transceiver to demonstrate this trade-off. By utilizing 5x10 
bits of information in every UI (5 Features x (6pre+1+3post) UI) and 
the fact that there is no CIS in the data pattern, the decision tree 
classifier maps the received signal to one of the five encoded 
voltage levels. Using supervised learning, the decision tree learns 
from the labeled data during the training process, where the correct 
voltage level (label) corresponding to each feature vector is known. 
Since a large volume of data is essential for effectively training ML 
models, PRBS-17 pattern was selected for training. Patterns 
beyond PRBS-17 added complexity without improving classifier 
performance. Additionally, employing CSC mapping significantly 
increases redundancy, making PRBS-17 adequate to optimize 
training and compensate for a wide range of channel losses, which 
ensures robust performance in various conditions. Finally, the 
MATLAB classifier is converted to Verilog code for on-chip 
synthesis using a custom-developed algorithm. 

Fig. 3 shows the proposed transceiver with half-rate architecture. 
The transmitter consists of two 32-bit PRBS generators (MSB and 
LSB), a CSC encoder, four 32:1 multiplexers, and a source-series 
terminated output driver. The receiver includes five half-rate 
samplers to extract 5 features, five 2:16 de-multiplexers, shift 
registers, 16 classifiers, and 16 CSC decoders. The encoder, 
decoders, and classifiers are positioned at the back-end, where 
they operate at a lower frequency, which results in lower power 
consumption. A Feature Enable signal can activate or deactivate 
features/slicers based on the channel loss requirement. An external 
clock source supplies the clock tree where two clock phases are 
distributed to the Tx and Rx. The chip is fabricated in 16nm FinFET. 

Fig. 4 depicts the measured power spectrum density (PSD) of both 
PAM-4 and proposed PAM-4+CSC which indicates PSD reduction 
at low frequencies in the CSC scheme. This PSD reshaping along 
with added pattern redundancy in CSC, archives a 10dB gain in 
channel loss compensation compared to standard PAM-4 while 
using fewer features with lower latency. Three near-end transmitter 
eye measurements show the voltage levels of the CSC encoded 
PAM-4 and the effect of ISI on CSC signaling across different 
channel losses and data rates. PRBS-7 data is transmitted through 
an SST driver with a supply voltage of 0.9V. At 8Gb/s, the Tx near-
end output clearly shows five distinct voltage levels corresponding 
to 5 symbols of the CSC encoding scheme. At 32Gb/s, the signal 
becomes affected by ISI due to the losses exhibited by the chip 
package and PCB, leading to a partial closure of the eye. At 
42Gb/s, the eye is completely closed at the Tx near-end, indicating 
severe ISI impact (~12dB loss at 10.5GHz). 

Fig. 5 shows the transceiver measurement results. The measured 
channel losses at 8GHz and 10.5GHz are 17dB and 26dB, 
respectively. At 42Gb/s and 32Gb/s with 5 features, the measured 
transceiver’s bathtub after the CSC decoder shows 0.06UI and 
0.1UI horizontal opening for BER < 10-11, respectively. At 32Gb/s 
and 17dB channel loss, the transceiver can operate with both 3 and 
5 features. Reducing the number of features from 5 to 3 improves 
the energy efficiency by 20% (1.53pJ/b to 1.23pJ/b). With 3 
features, the transceiver can compensate 13dB to 17dB, and with 5 
features, it can compensate 17dB to 26dB with a BER < 10-11. The 
transceiver’s ability to compensate for a wide channel loss range 
(13dB to 26dB) demonstrates the effectiveness of the decision tree 
training in preventing overfitting or underfitting. Vertical and 
horizontal margins for the 5 features are measured by sweeping the 
sampling time and individual threshold voltages (Vth1-Vth5). At 
42Gb/s and a BER < 10-11, the average horizontal and vertical 
margins of 5 features are 0.06UI and 10mV. The power breakdown 
and comparison with the state-of-the-art are shown in Fig. 6. When 
operating with 5 features over 26dB channel loss, the proposed 
transceiver consumes 60.3mW at 42Gb/s and energy efficiency of 
1.43pJ/b, with the encoder, decoders, and classifiers together 
accounting for 4.3mW, which represents only 7% of the total power 
consumption. This power includes the clock tree power: clock 
distribution buffers, delay lines, and dividers. Compared to other 
state-of-the-art designs, this work achieves a low energy efficiency 
per channel loss of 0.055pJ/b/dB. The die photo is shown in Fig. 7. 
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Fig. 1. Conventional ADC-DSP based wireline transceiver and 
proposed ML inspired wireline transceiver with the consecutive 
symbol to center (CSC) encoding. 
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Fig. 2.  Decision tree training process using supervised learning. 
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Fig. 3.  Block diagram of the proposed PAM-4 transceiver with 
consecutive symbol to center encoding, feature extraction and 
classification. 
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Fig. 4. Measured PSD of PAM-4 and PAM-4+CSC, transmitter’s 
near-end output at 8Gb/s, 32Gb/s, and 42Gb/s with PRBS-7 data 
along with simulated coding gain of the CSC encoding.  
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Fig. 5. Measured bathtub plot (CSC decoder output), channel 
loss profile, impact of number of features in channel loss 
compensation range, energy efficiency, and effects of feature’s 
threshold voltage on BER for the proposed transceiver at 42Gb/s 
with PRBS-7. 
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Fig. 6. Performance summary, power breakdown and comparison 
table with state-of-the-art designs. 
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