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The growth of data-intensive applications such as large language
Al models has increased the demand for higher data throughput in
wireline links. Due to the bandwidth-limited nature of the wireline
channel, increasing the data rates across the same physical
distance of the communication channel results in more inter-symbol
interference (ISI). Consequently, more channel equalization is
required to compensate for ISI, which increases the energy/bit of
the communication link. Researchers have discovered that machine
learning (ML) inspired approaches [1-2] including feature extraction
and classification provide a more efficient solution for compensating
the channel loss compared to the conventional equalization
techniques like FFE, DFE, and CTLEs [3-7]. However, the prior
works on ML inspired links are limited to NRZ modulation only. In
this work, we introduce an energy-efficient ML inspired transceiver
that leverages feature extraction and classification to transmit
encoded PAM-4 data across a wide range of channel loss (13dB to
26dB) while maintaining BER < 10-"" without using any conventional
equalizers. Additionally, we propose a data encoding scheme,
consecutive symbol to center encoding (CSC) to encode PAM-4
and provide identifiable attributes to the transmitted signal, which
helps to increase the channel loss compensation range and reduce
the complexity of the classifier. Since ISl is a deterministic non-
ideality, the proposed decision-tree based classifier (on-chip) is
designed to learn both the channel characteristics and the CSC
data encoding, enabling it to accurately detect the original
transmitted data in the presence of ISI with a latency of only 10 unit
interval (Ul). The decision tree classifier operates with a low-power
feed-forward architecture without any feedback timing constraints,
allowing the proposed transceiver to achieve 0.055pJ/bit/dB, which
is ~2x lower than prior work [3-5] while compensating for nearly the
same channel loss.

Fig. 1 shows the proposed transceiver scheme. In the proposed
architecture, the multi-tap FFE, DFE, and high-peaking CTLE are
replaced with data encoding at the transmitter (Tx) and feature
extraction, classification, and decoding blocks at the receiver (Rx).
The encoder adds recognizable characteristics to the standard
PAM-4 data before sending the signal through the channel. At the
Rx front-end, relevant features are extracted from the closed eye,
and the classifier maps the received information to the voltage
levels corresponding to the transmitted data. The decoder then
converts the signal into the original PAM-4 data. In the proposed
CSC encoding scheme, four levels of PAM-4 (+3, +1, -1, -3) are
mapped to five distinct symbols (+3, +1.5, 0, -1.5, -3) with an
additional voltage level at 0V, which ensures that any consecutive
identical symbols (CIS) are shifted to a central common-mode
voltage (0V). This encoding approach increases transition density
during CIS, reduces the DC content of the data, and introduces
redundancy within the symbol space (voltage domain) without
increasing coding overhead. A conventional linear partial response
signaling scheme such as Dicode encoding (1-z'') on PAM-4 could
have also removed the CIS. However, Dicode on PAM-4 would
have created 7 voltage levels, which would reduce the SNR by
6dB. The proposed non-linear CSC encoding limits the voltage
levels to 5 and the SNR penalty is only 2.5dB.

Fig. 2 shows the off-chip training process of a decision tree
classifier in MATLAB. The CSC encoded data is transmitted
through an approximate channel model and received by the Rx
front-end. Simultaneously, CSC encoded data is fed directly to the
learning algorithm, bypassing the lossy channel. At the receiver 5
first-order features (F1-F5) are extracted at every Ul. Higher order
features such as slope are avoided to reduce the Rx front-end
power consumption [1]. Each of these 5 features generates a 1-bit
output based on the voltage thresholds Vth1 to Vth5 forming a
feature vector. Feature vectors consisting of the current Ul, past
6Uls, and future 3Uls (total 10Ul data) are then given to the
classifier. The classifier is trained with 5 features to compensate for

17dB to 26dB channel losses, while 3 features were sufficient to
train it for 13dB to 17dB. The programmability of features is added
in the transceiver to demonstrate this trade-off. By utilizing 5x10
bits of information in every Ul (5 Features x (6pre+1+3post) Ul) and
the fact that there is no CIS in the data pattern, the decision tree
classifier maps the received signal to one of the five encoded
voltage levels. Using supervised learning, the decision tree learns
from the labeled data during the training process, where the correct
voltage level (label) corresponding to each feature vector is known.
Since a large volume of data is essential for effectively training ML
models, PRBS-17 pattern was selected for training. Patterns
beyond PRBS-17 added complexity without improving classifier
performance. Additionally, employing CSC mapping significantly
increases redundancy, making PRBS-17 adequate to optimize
training and compensate for a wide range of channel losses, which
ensures robust performance in various conditions. Finally, the
MATLAB classifier is converted to Verilog code for on-chip
synthesis using a custom-developed algorithm.

Fig. 3 shows the proposed transceiver with half-rate architecture.
The transmitter consists of two 32-bit PRBS generators (MSB and
LSB), a CSC encoder, four 32:1 multiplexers, and a source-series
terminated output driver. The receiver includes five half-rate
samplers to extract 5 features, five 2:16 de-multiplexers, shift
registers, 16 classifiers, and 16 CSC decoders. The encoder,
decoders, and classifiers are positioned at the back-end, where
they operate at a lower frequency, which results in lower power
consumption. A Feature Enable signal can activate or deactivate
features/slicers based on the channel loss requirement. An external
clock source supplies the clock tree where two clock phases are
distributed to the Tx and Rx. The chip is fabricated in 16nm FinFET.

Fig. 4 depicts the measured power spectrum density (PSD) of both
PAM-4 and proposed PAM-4+CSC which indicates PSD reduction
at low frequencies in the CSC scheme. This PSD reshaping along
with added pattern redundancy in CSC, archives a 10dB gain in
channel loss compensation compared to standard PAM-4 while
using fewer features with lower latency. Three near-end transmitter
eye measurements show the voltage levels of the CSC encoded
PAM-4 and the effect of ISI on CSC signaling across different
channel losses and data rates. PRBS-7 data is transmitted through
an SST driver with a supply voltage of 0.9V. At 8Gb/s, the Tx near-
end output clearly shows five distinct voltage levels corresponding
to 5 symbols of the CSC encoding scheme. At 32Gb/s, the signal
becomes affected by ISI due to the losses exhibited by the chip
package and PCB, leading to a partial closure of the eye. At
42Gb/s, the eye is completely closed at the Tx near-end, indicating
severe IS| impact (~12dB loss at 10.5GHz).

Fig. 5 shows the transceiver measurement results. The measured
channel losses at 8GHz and 10.5GHz are 17dB and 26dB,
respectively. At 42Gb/s and 32Gb/s with 5 features, the measured
transceiver's bathtub after the CSC decoder shows 0.06Ul and
0.1Ul horizontal opening for BER < 10", respectively. At 32Gb/s
and 17dB channel loss, the transceiver can operate with both 3 and
5 features. Reducing the number of features from 5 to 3 improves
the energy efficiency by 20% (1.53pJ/b to 1.23pJ/b). With 3
features, the transceiver can compensate 13dB to 17dB, and with 5
features, it can compensate 17dB to 26dB with a BER < 10", The
transceiver's ability to compensate for a wide channel loss range
(13dB to 26dB) demonstrates the effectiveness of the decision tree
training in preventing overfitting or underfitting. Vertical and
horizontal margins for the 5 features are measured by sweeping the
sampling time and individual threshold voltages (Vth1-Vth5). At
42Gb/s and a BER < 10", the average horizontal and vertical
margins of 5 features are 0.06Ul and 10mV. The power breakdown
and comparison with the state-of-the-art are shown in Fig. 6. When
operating with 5 features over 26dB channel loss, the proposed
transceiver consumes 60.3mW at 42Gb/s and energy efficiency of
1.43pJd/b, with the encoder, decoders, and classifiers together
accounting for 4.3mW, which represents only 7% of the total power
consumption. This power includes the clock tree power: clock
distribution buffers, delay lines, and dividers. Compared to other
state-of-the-art designs, this work achieves a low energy efficiency
per channel loss of 0.055pJ/b/dB. The die photo is shown in Fig. 7.
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Fig. 1. Conventional ADC-DSP based wireline transceiver and
proposed ML inspired wireline transceiver with the consecutive
symbol to center (CSC) encoding.
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Fig. 3. Block diagram of the proposed PAM-4 transceiver with
consecutive symbol to center encoding, feature extraction and
classification.
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Fig. 5. Measured bathtub plot (CSC decoder output), channel
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compensation range, energy efficiency, and effects of feature’s
threshold voltage on BER for the proposed transceiver at 42Gb/s
with PRBS-7.
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