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1. INTRODUCTION 

 

This article is written for engineers who want to understand how finite element analysis 

works but are not interested in developing a level of proficiency that would allow them to 

perform such an analysis themselves. Purists may find many of the explanations to be 

over-simplified.  If this is a concern, you should stop reading now. 

 

Finite element analysis was originally developed for analyzing complex structures. It is 

currently used to analyze a variety of physical systems including heat transfer, fluid 

mechanics, magnetism, etc. However, from an intuitive standpoint, the basic ideas are 

most easily developed using solid mechanics concepts. Most engineering curricula 

include a course on elementary mechanics of materials. Thus, we will use those concepts 

as building blocks to illustrate the process.  A brief review of some of these basic 

concepts and matrix mathematics is presented next. 

 

1.1 Elementary Mechanics of Materials 

 

Mechanics of Materials deals with simple structures that deform under load. A body is 

considered to be in equilibrium when the following is satisfied: 

  0xF     0intApoxM  

  0yF     0intApoyM     (1-1) 

  0zF     0intApozM  

i.e., when the net forces in the x, y, and z-directions are zero, and the net moments in the 

x,y, and z-directions about some reference point A are zero. 

 

The effect of applying external loads to a body is to cause stress inside the body. The 

stresses at an internal point can be represented on the faces of a small cube around the 

point as shown in Figure 1-1. 

 

              

 

 

 

 

 

 

 

       Figure 1-1 
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Note that on each face, there is one component of normal stress acting perpendicular to 

the face and two components of shear stress acting tangent to the face. The effect of the 

normal stress is to cause the body to stretch in the direction of the stress and to shrink in 

the two directions perpendicular to the stress. These deformations can be described by 

strains (elongation per unit length). The normal strains in the x, y, and z-directions (εx, εy, 

εz) are related to the normal stresses (σx, σy, σz ) through Hooke’s law as follows: 

)]([
1

zyxx
E

   

)]([
1

zxyy
E

        (1-2) 

)]([
1

yxzz
E

   

where E is Young’s modulus (or elastic modulus), and υ is Poisson’s ratio. E and υ are 

material properties.   

 

The effect of the shear stress is to cause a shear strain which represents the change in 

angle (in radians) between the sides of the cube to something smaller or larger than the 

original right angle. The shear strains (γxy, γxz, γyz) are related to the shear stresses (τxy, 

τxz, τyz,) as follows:  

Gxyxy /   

Gxzxz /          (1-3) 

Gyzyz /   

where G is the shear modulus and G=E/(1+2v). 

 

The simple definition of normal strain as stretch per unit length is inconvenient for cases 

where the strain is not uniform throughout the body.  In three dimensions each point on 

the body will have displacements in the x, y, and z-directions (u, v, and w, respectively).  

The Theory of Elasticity provides relations between the components of strain and the 

displacements as 
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    (1-5) 

 

1.2 Simultaneous Equations and Matrices 

 

Solving simultaneously linear algebraic equations is a routine task for a computer. 

Therefore, we are motivated to reduce the mathematics of our physical problem to a set 

of simultaneous equations. 

 

Let's consider the following set of equations 

1062  yx        (1-6) 

853  yx         (1-7) 
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where x and y are unknowns. We can rewrite these in matrix format as follows: 

  

























 8

10

53

62

y

x
       (1-8) 

On the left side of the equation, the terms in the row of the first matrix are multiplied by 

the terms in the columns of the second matrix to recover the original equations. 

We will find it convenient to use matrix methods to set up the equations for our physical 

problem for computer solution. 

 

 

2. MATRIX STRUCTURAL ANALYSIS 

 

Many of the techniques in the finite element procedure are common to those of matrix 

structural analysis. Therefore, we will review some of these basic concepts. 

 

2.1 Spring Structures 

 

We begin with the analysis of a very simple structure composed of springs (for example , 

see Figure 2-1). 

 

     

 Figure 2-1   

 

 

 

Although these structures are not particularly interesting in a practical sense, their 

simplicity allows for transparency in the mathematics. 

 

2.1.1 Spring element 

 

Let's consider a simple spring where loads fi and fj may be applied to its endpoints (which 

we will call nodes) and give them the labels i and j as shown in Figure 2-2. 

 

      

 Figure 2-2 

 

 

When this spring is part of a larger spring structure, we will be interested in the 

displacements of its node points ui and uj. We will use the sign convention that forces and 

displacements that act to the right are positive and those to the left are negative. Before 

determining the relationship between the nodal forces fi and fj and nodal displacements ui 

and uj, we will use our knowledge that the stretch of the spring must be proportional to 

the force and vice versa.  Therefore, these quantities must be related mathematically as 

follows 

  ijijiii fuKuK         (2-1) 

  jjjjiji fuKuK         (2-2)   
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where Kii, Kij, Kji, and Kjj are constants. We will determine these constants by 

considering two special cases. In the first case we let uj=0. Then, the equations give 

  iiii fuK          (2-3)   

  jiji fuK          (2-4)   

Physically, we have the situation shown in Figure 2-3. 

 

     

 Figure 2-3 

 

 

The force in the spring is fi and the compression of the spring is ui . From the spring law 

we know 

  ii kuf          (2-5) 

where k is the spring constant. Comparing this to equation (2-3), we conclude 

  kKii          (2-6) 

The reaction force at node j must be equal and opposite to that at node i. Therefore, 

  iij kuff         (2-7) 

Comparing this to equation (2-4) we conclude that 

  kK ji          (2-8) 

For the second case, we set ui=0 . Then the equations (2-1) and (2-2) give 

  ijij fuK          (2-9)   

  jjjj fuK          (2-10) 

Physically, we have the situation shown in Figure 2-4. 

 

     

 Figure 2-4 
 

 

The force in the spring is fj, and the stretch of the spring is uj . Therefore, the spring law 

gives 

  jj kuf          (2-11) 

Comparing this to equation (2-10), we conclude 

  kK jj          (2-12) 

The reaction force at node i is equal and opposite to that at node j. Therefore, 

  jji kuff         (2-13) 

Comparing this to equation (2-9) gives 

  kKij          (2-14)   

Now that each K has been determined, we can write equations (2-1) and (2-2) as 

  iji fkuku          (2-15) 

  jji fkuku         (2-16)   

Rewriting this in matrix form gives 
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




























j

i

j

i

f

f

u

u

kk

kk
      (2-17) 

The first matrix in the equation above is called the element stiffness matrix. As we will 

see in the next section, we can use this matrix as a building block to determine the 

equations relating displacements to forces in a system with any number of springs. 

 

2.1.2 System of springs 

 

Let us now consider a spring structure composed of two springs a and b with spring 

constants ka and kb as shown in Figure 2-5. 

 

    

 Figure 2-5 

 

 

 

It will be helpful to imagine that the external forces F1, F2, and F3 are applied to pins that 

fit into loops at the ends of the springs, and the pins in turn apply internal forces to the 

springs. Now let's draw free body diagrams of the individual spring elements as shown in 

Figure 2-6. 

 

    

 Figure 2-6 
 

 

 

The forces shown above are the internal forces applied to the nodes by the pins.  Each of 

these elements essentially replicates the situation from the previous section for a spring 

element. Therefore, we can write 

  121 aaa fukuk         (2-18) 

  221 aaa fukuk         (2-19)   

 

for element a, and 

  232 bbb fukuk         (2-20) 

  332 bbb fukuk         (2-21) 

for element b. 

 

The next step involves some mathematical slight of hand that may seem contrived. 

However, the end result will be seen to be beneficial in later steps.  We rewrite the 

equations for element a as follows 

  1321 0 aaa fuukuk        (2-22)   

  2321 0 aaa fuukuk        (2-23)   

  0000 321  uuu        (2-24)   
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In matrix form of these become 

  






















































0000

0

0

2

1

3

2

1

a

a

aa

aa

f

f

u

u

u

kk

kk

    (2-25) 

Next we rewrite the equations for element b as follows 

  0000 321  uuu        (2-26)   

  23210 bbb fukuku        (2-27)  

33210 bbb fukuku        (2-28) 

In matrix form these become 

  






















































2

1

13

2

1 0

0

0

000

b

b

bb

bb

f

f

u

u

u

kk

kk     (2-29)   

Now let's draw free body diagrams of the individual pins which are subjected to the 

external forces and the reactions from the internal forces on the elements as show in 

Figure 2-7. 

 

    

 Figure 2-7 
 

 

 

Force equilibrium gives the following relations 

  11 afF          (2-30) 

  222 ba ffF          (2-31)   

  33 bfF          (2-32) 

We can rewrite these in matrix form as follows 

  






































































3

22

1

3

22

1

3

2

1 0

0 b

ba

a

b

ba

a

f

ff

f

f

ff

f

F

F

F

     (2-33) 

 

Note that the last two matrices are identical to those in equations (2-25) and (2-29). 

Therefore we can write 

  


























































































3

2

1

3

2

1

3

2

1

0

0

000

000

0

0

u

u

u

kk

kk

u

u

u

kk

kk

F

F

F

bb

bbaa

aa

  (2-34) 

Rearranging terms gives 

  
























































3

2

1

3

2

1

0

0

F

F

F

u

u

u

kk

kkkk

kk

bb

bbaa

aa

     (2-35) 
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The first matrix is called the structure stiffness matrix.  It relates the nodal displacements 

to the external loads for the two-spring structure.  We observe that it can be obtained by 

combining the element stiffness matrices in a specific pattern that is easy to generalize. 

For the general case shown in Figure 2-8, 

 

 
 

     Figure 2-8 
we can write 

 


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...00
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  (2-36) 

 

Example: Find the nodal displacements and reaction forces for the spring system in 

Figure 2-9. 

 

  
 

     Figure 2-9 

 

Using the pattern developed above, the system of equations becomes 

  






























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
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
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



































?

6

5

2

0

?

?
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4400

4410100

0101033

0033

4

1

1

1

4

3

2

1

F

F

F

F

u

u

u

u

   (2-37)   

We have four equations for the four unknowns which can be solved by computer. 

 

 

3. FINITE ELEMENT ANALYSIS 

 

A finite element analysis involves treating a structure as a collection of elements 

connected at node points. Within each element the response is assumed to follow a 

simple mathematical form which allows the formation of the element stiffness matrix in a 
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straightforward manner. The matrix structural analysis techniques of the previous section 

are then used to calculate the response of the whole structure. 

 

3.1 Energy Approach 

 

The most common approach to enforce equilibrium in a body is the requirement of 

satisfying Newton's laws. However, an alternative approach involving energy is more 

convenient for obtaining the element stiffness matrix. We begin by defining strain 

energy. Recall the situation of a simple spring as shown in Figure 2-10. 

 

     

 Figure 2-10 
 

 

The relationship between the force F and the stretch s is 

  ksF          (3-1) 

A plot of force versus stretch produces a straight line as shown in Figure 2-11. 

 

      

 

 

 

 Figure 2-11 
 

 

 

 

 

 

The work done by the force is equal to the area under the curve; i.e., 

  
2

2

1
)(

2

1

2

1
kssksFsW        (3-2) 

The work done by the force is stored in the spring as strain energy U where 

  
2

2

1
ksU          (3-3)   

We also define the potential V of the external force as the negative of the product of the 

force times the displacement in the direction of the force. 

  FsV          (3-4) 

The total potential is defined as the sum of the strain energy and potential of the external 

force. 

  FsksVU  2

2

1
      (3-5) 

A plot of Π versus s is shown Figure 2-12. 
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 Figure 2-12 
 

 

 

 

 

 

 

This curve has a minimum at s=F/k which is the value that s takes on when the spring is 

in equilibrium. This is not a coincidence. There is a principle of mechanics that states that 

the total potential of a structure is a minimum when it is in equilibrium. Henceforth, we 

will use this principle to develop the stiffness matrix for an element.  

 

We need an expression for strain energy in a solid body. Consider a small block with 

dimensions dx by dy by dz inside a solid with a normal stress σx in the x-direction as 

shown in Figure 2-13. 

 

      

 

 

 

 

 Figure 2-13 
 

 

 

 

 

The net force Fx on the block in the x-direction is the stress times the area dydz.  

  dydzF xx          (3-6) 

The stretch of the block in the x-direction is the strain εx times the length dx.  

    dxs x         (3-7) 

As in the case of a spring, the strain energy in the block dU is 

  dxdydzdxdydzsFdU xxxxx 
2

1
))((

2

1

2

1
    (3-7) 

We note that dxdydz equals the volume of the block dvol so that 

  dvoldU xx
2

1
        (3-8) 

The strain energy for the whole body will consist of a summation (integration) of the 

strain energy in all of the blocks that make up the body; i.e., 
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   dvolU xx
2

1
       (3-9)   

For general three-dimensional loading, all the stresses and strains will contribute to the 

strain energy in the body. Therefore, the general expression for strain energy is 

      dvolU yzyzxzxzxyxyzzyyxx )(
2

1
   (3-10)   

Also, for the general case, there will be multiple external loads iF


 experiencing 

displacements iu


which leads to the potential of the external loads as 

  



N

i

ii uFV
1


       (3-11) 

The total potential Π will again be the sum of U and V. 

 

3.2 Bar Element 

 

We will now apply the principles of the previous section to develop the stiffness matrix 

for a bar element. This element will be used to analyze structures consisting of bars under 

axial loading like the one shown Figure 2-14. 

 

  

  

 Figure 2-14 
 

 

Let's examine one of these bar elements with an x-axis indicating a position on the bar 

relative to the left end as shown Figure 2-15. 

 

      

 Figure 2-15 
 

 

As part of a larger structure, we expect that points on this bar will have a horizontal 

displacement u, and the amount of displacement in the bar will vary from point to point 

between the left end (node i) and in the right end (node j). We want to represent this 

variation mathematically. Therefore, we will pick a mathematical function that we think 

will be a reasonable representation of this, even if it may not be the exact one. In making 

this selection, we seek a balance between the desire for mathematical simplicity and the 

need for replicating what is happening physically with reasonable accuracy. Let's assume 

that the horizontal displacement in the element can be represented with a first order 

polynomial (a straight line); i.e., 

 xaau 10           (3-12) 

The values for a0 and a1 can be determined by the following requirements: 

 At ,0x  iuu          (3-13)   

 At ,Lx   juu          (3-14) 

Thus, we obtain 
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 x
L

uu
uu

ij

i

)( 
         (3-15) 

This step will always be the starting point in the process of determining the element 

stiffness matrix; i.e., we will choose mathematical functions that we expect have the 

capability of representing the displacements in the element, at least approximately. Next, 

we will determine the strain energy in the bar element. We start by finding the axial 

strain.  Rather than using the simple definition of the normal strain as the stretch of the 

bar divided by the original length of the bar, we will use the more general definition from 

the Theory of Elasticity (Section 1) which states that the normal strain is the rate of 

change of displacement with respect to position; i.e.,  

  
x

u
x




         (3-16) 

Using this on equation (3-15 ) gives  

  
L

uu ij

x

)( 
         (3-17)   

which agrees with the simplified definition. 

 

Since the only nonzero stress in the bar is σx, the strain energy is 

   dvolU xx
2

1
       (3-18)   

The stress σx can be related to the strain by Hooke’s law giving 

  
L

uu
EE

ij

xx

)( 
        (3-19) 

The strain energy becomes 

   






 







 
 dvol

L

uu

L

uu
EU

ijij )()(

2

1
    (3-20) 

   dvoluuuu
L

E
U iijj )2(

2

1 22

2
     (3-21)   

The integral is easy to evaluate and is simply equal to the volume of the bar; i.e., 

  ALvol          (3-22)  

where A is the cross-section area. Therefore, 

  )2(
2

1 22

iijj uuuu
L

EA
U        (3-23) 

Next, we will find potential of the applied loads. If we have horizontal forces fi and fj 

acting at nodes i and j respectively, using equation (3-11) gives 

  jjii ufufV         (3-24) 

This gives the total potential as 

  jjiiiijj ufufuuuu
L

EA
VU  )2(

2

1 22
  (3-25)   

Now we apply the principle of minimum total potential which for this case states that the 

correct values of ui and uj are those that make Π a minimum. Recall from second year 

calculus that a minimum of a function of several variables can be found by differentiating 
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the function with respect to each variable and setting the derivative equal to zero. For our 

case this gives 

  0)22(
2

1





iij

i

fuu
L

EA

u
     (3-26) 

  0)22(
2

1





jij

j

fuu
L

EA

u
     (3-27) 

Rearranging gives 

  iji fu
L

EA
u

L

EA
        (3-28)   

  jji fu
L

EA
u

L

EA
        (3-29) 

Rewriting this in matrix form gives the element stiffness matrix from the relation 
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L
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L
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L
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      (3-30)   

Comparing this to equation (2-17) for a spring, we see that the bar element is identical to 

a spring element with stiffness k=EA/L. This new approach for finding the stiffness 

matrix may seem unnecessarily complicated compared to the relatively simple steps used 

for the spring element. However, as elements increase in complexity, this new approach 

that begins with the selection of a displacement function is the only tractable one. With 

the element stiffness matrix for a bar element, we can use matrix structural analysis 

methods of the previous section to analyze bar structures. 

 

 

3.3 Beam Element 

 

Now we will examine beam structures subjected to transverse forces as shown in Figure 

2-16. 

 

     

 

 Figure 2-16 
 

 

 

Consider a beam element which experiences transverse displacement v(x) as shown in 

Figure 2-17. 

 

 

 

 Figure 2-17 
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As we did for the bar element, we need to select a mathematical function to represent the 

displacement v as a function of position x. For the bar element, we chose a first order 

polynomial (a straight-line function). However, we expect the beam to deflect in a curved 

shape which makes the straight line poor choice. It turns out that the ideal choice for a 

beam element is a third order (cubic) polynomial.  

 3

3

2

210 xaxaxaav         (3-31) 

Could we have chosen a different type of polynomial or a different class of functions 

(e.g., trigonometric)?  In principle, the answer is yes. However, the mathematics works 

out perfectly for the third order polynomial. In fact, for most elements, there is an ideal 

choice for the displacement function that makes all of the mathematics work out in a very 

convenient manner. 

 

The rest of the steps for determining the element stiffness matrix follow the same pattern 

as that for the bar element. Once the element stiffness matrix is known, constructing the 

structure stiffness matrix and solving for the response of the beam structure follows the 

same logic as described in Section 3.2. If there are distributed loads acting on the beam, 

they are replaced by approximately equivalent concentrated loads acting at node points. 

 

Simple beam structure problems can be solved by hand using Elementary Mechanics of 

Materials methods. Does the finite element solution match the exact hand solution? The 

answer depends on how well the cubic polynomial used for the displacement function 

matches the exact solution. Beams subjected to concentrated loads deflect in the shape of 

a cubic polynomial.  In this case, the finite element results will match exactly. Beams 

subjected to distributed loads generally do not deflect in the shape of a cubic polynomial, 

and the finite element solution will be approximate. To see this, consider the very simple 

case of simply supported beam under a uniformly distributed load as shown in Figure 2-

18. 

 

      

 

 

 Figure 2-18 
 

 

 

Elementary beam theory gives the beam displacement in the form of a fourth order 

polynomial and the center deflection as 

  
EI

qL
v

4

0130.0        (3-32) 

If we model the game with a single finite element, we get the center deflection as 

  
EI

qL
vFE

4

0104.0        (3-33) 

which shows the limitations of the cubic polynomial in matching the correct center 

deflection. If we divide the beam into two equal length elements, we get the center 

deflection as 
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EI

qL
vFE

4

0130.0        (3-34) 

By refining the model with more elements we are able to get a more exact solution. The 

effects of model refinement will be discussed in more detail in the next section. 

 

So far we have looked at structures that are effectively one-dimensional; i.e., all of the 

beams/bars are in a single horizontal line. If we want to model a bicycle frame, for 

example, we will need three-dimensional versions of these elements. The process for 

extending these elements to two or three dimensions is straightforward but tedious and 

will not be done here.  The logic for assembling the structure stiffness matrix from the 

element stiffness matrices is also more complex. 

 

3.4 Two-Dimensional Solid Body Element 

 

So far, we have examined the analysis of structures made of a collection of “sticks.” The 

elements used in these stick-like structures would clearly not work for the case shown in 

Figure 2-19 

 

     

 

 

 

 

 

 

 

 

 Figure 2-19 
 

 

 

 

 

 

 

 

 

 

which consists of a rectangular plate under tension stress σ0 with a circular hole with 

radius a at the center. Suppose we were to divide this plate into a number of rectangular 

plate elements, like that shown in Figure 2-20 with node points at the corners and edges 

parallel to the x and y axes. In general, points on the plate experience a horizontal 

displacement u and a vertical displacement v. These displacements will vary with 

position on the plate. Therefore, they will be functions of both x and y. 
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 Figure 2-20 
 

 

 

 

 

As before, our starting point for determining the element stiffness matrix is to select 

mathematical functions that can, at least approximately, represent the displacements in 

the element. It turns out that the mathematics works out very conveniently if the 

following displacement functions are chosen. 

  xyayaxaayxu 3210),(       (3-35)   

  xybybxbbyxv 3210),(       (3-36)   

From elasticity theory, the strains can be obtained from the derivatives of the 

displacements as follows. 
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        (3-37) 
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




      (3-39) 

Hooke’s law for the two-dimensional stress case gives the stresses in terms of the strains 

as 

  )(
1 2 yxx

E
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
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       (3-40) 
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        (3-42) 

Substituting equations (3-37) to (3-39) into equations (3-40) to (3-42) gives the stresses 

as 
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      (3-45)   

We observe that our choice of element displacement functions leads to stresses that are 

assumed to vary linearly (i.e., in a straight-line) from point to point inside the element. 

This assumption will affect the manner in which we divide up the plate into elements. 
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The process of determining the element stiffness matrix proceeds as before with the 

application of the minimum total potential principle. Before proceeding to this step, it is 

probably clear to the reader that a rectangular element will have a serious problem 

representing the geometry around the circular hole. In fact, any geometry where the edges 

of the body do not run parallel to x or y will be problematic. Therefore, before 

proceeding, the next step is typically to generalize the rectangular shape into a 

quadrilateral shape through a coordinate transformation. The mathematics for 

accomplishing this is straightforward but somewhat tedious. The end result is that we 

have an element layout (mesh) that might look like that in Figure 2-21 for the upper right 

quadrant of the plate for the case where the width of the plate is 5 times the diameter. 

 

     

 

 

 

 

 

 

 

 Figure 2-21 
 

 

 

 

 

 

 

 

 

 

Will this mesh provide accurate analysis results? To answer this question, it is helpful to 

have some idea of how the stress distribution should look.  There is an analytical solution 

to this problem for the case of the plate being very large (effectively infinite) compared to 

the size of the hole. The stress σy/σ0 is plotted as a function of position x/a near the edge 

of the hole in Figure 2-22.  



 18 

        

 

 

 

 

 

 

 

      Figure 2-22 
 

 

 

 

 

 

 

We see a rapid rise in stress as we approach the hole.  In this element the stress is 

assumed to vary linearly across the element. The mesh shown in Figure 2-21 appears that 

it may be too coarse to represent a rapidly varying stress. It is interesting to compare the 

results from this mesh to the results from the more refined one shown in Figure 2-23.  

 

   

    

 

 

 

 

 

 Figure 2-23 
 

 

 

 

 

 

 

 

 

 

 

After performing an analysis using the commercial program ANSYS, we can make a plot 

of stress σy/σ0 versus position x/a for each mesh as shown in Figure 2-24.  
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  Figure 2-24 
 

 

 

 

 

 

 

 

 

We see that the refined mesh gives a steeper stress gradient than the coarse mesh. If we 

look up this case in a handbook for stress concentration factors, it would tell us that the 

stress at the edge of the hole should be σy/σ0=3.14. The refined mesh gives a value very 

close to this, but the coarse mesh is low by about 14%. In general, as the mesh is refined, 

the finite element solution will converge to the correct solution. 

 

What would we have done if we had no idea how the stress distribution should look? In 

this case, we could have used the coarse mesh results to construct a contour map of the 

maximum principal stress as shown in Figure 2-25.  

 

                 

  

 

 

 

 

 

          Figure 2-25 
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This contour map is similar to a contour map for ground elevation except that, in this 

case, various stress levels are represented by different colors. We see quite clearly that 

there is a steep gradient in stress near the hole, which will require a fine mesh in this area 

 

There is another version of this quadrilateral element that uses higher order polynomials 

for the displacement functions. To make the mathematics work out, additional nodes need 

to be added to the mid-side of the edges of the element. This element allows for a coarse 

mesh to give accurate results, but the total number of equations to be solved does not 

decrease because there are eight nodes per element in this element, as opposed to four 

nodes per element is in the lower order element. 

 

3.5 Three-Dimensional Solid Body Element 

 

Suppose we wanted to determine the stresses in a solid cylinder with a hole running 

perpendicular to the central axis as shown in Figure 2-26. 

 

      

 

 

 

 

 

 Figure 2-26 
 

 

 

 

 

 

 

We would need to add a third dimension to the quadrilateral element in the previous 

section to create a brick-like hexahedral element (i.e., a block whose sides are not 

necessarily at right angles to each other) for three-dimensional bodies. Complex three-

dimensional shapes can be challenging to mesh using this element.  In these cases, a 

tetrahedral element (i.e., a pyramid-like element with four triangular-shaped sides) can be 

used. The mesh of the cylinder using this element is shown in Figure 2-27. 
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 Figure 2-27 
 

 

 

 

 

 

 

For bodies that consists of thin-walled three-dimensional surfaces like the section of an 

aircraft fuselage shown in Figure 2-28, 

 

          

 

 

 

 

 

 

 

 

 

 Figure 2-28 
 

 

 

 

 

 

 

a quadrilateral shell element can be used. This element has the same properties as the  

two-dimensional quadrilateral element discussed in the previous section, but with the 

added capability for allowing out-of-plane displacement and bending.  A mesh of a 

section of fuselage using this element is shown in Figure 2-29. 
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 Figure 2-29 

 

 

 

 

 

 

 

3.6 Nonlinear and Dynamic Effects 

 

Nonlinear effects can be a complicating factor. If we re-examine the bar element, we 

observe that the element stiffness matrix contains area A, modulus E, and length L. If the 

element experiences a large deformation, the change in length could be large enough that 

using the original length in the calculations would lead to significant inaccuracy. In this 

case, the length L becomes a function of nodal displacements. This will change the 

resulting equations from linear algebraic equations to nonlinear algebraic equations. 

Nonlinear material behavior (e.g., plasticity) will also cause the resulting equations to 

become nonlinear.  These equations can be tricky to solve and often require some finesse 

on the part of the analyst to arrive at a converged solution. 

 

Dynamic effects from structural vibrations or impulsive loading can also complicate the 

analysis. In this case Newton’s law contains the inertia term am


in amF


 . This results 

in a need for an element mass matrix as well as a stiffness matrix. The system equations 

become differential equations which are considerably more challenging to solve then 

linear algebraic equations. 

 

3.7 Non-Structural Applications 

 

Finite element analysis can be applied to a variety processes outside of solid mechanics.  

In these cases, the development of a minimization principle tends to be more 

mathematically abstract than was the case for solid mechanics and will not be described 

here. 

 

As an example, suppose we replace the stress analysis problem depicted in Figure (2-19) 

with a steady-state heat conduction problem where surface temperature Ts or surface heat 

flux qs is prescribed around the boundary of the plate.  The correct internal temperature 

distribution is the one that causes the potential 
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to be a minimum.  We would proceed in exactly the same manner as that for the 

quadrilateral element by assuming a mathematical function to represent the temperature 

inside the element as 

  xyayaxaayxT 3210),(       (3-48)   

Using this we would develop an equivalent “stiffness” matrix following the same 

procedures as described earlier.  

 

 

4. CONCLUSION 

 

Finite element analysis provides a means of conducting a computer simulation of the 

response of a body to external stimulation.  The overall response of the body may be 

difficult or impossible to be described mathematically in closed form. In a finite element 

analysis, the body is imagined to be composed of a number of smaller elements where the 

response inside a given element can be approximated by simple mathematical 

expressions.  Commercial finite element programs are available for analyzing a variety of 

physical phenomena.  The creators of these programs have made great strides in making 

these programs sufficiently “idiot-proof” that almost anyone with a minimal amount of 

training can perform an analysis and get ”results.”  However, it should be kept in mind 

that a finite element analysis merely provides an approximate solution to a mathematical 

problem.  Sound engineering judgment will always be required to reduce a physical 

problem to an idealized case they can be successfully modeled and to determine if the 

results of the analysis provide a realistic representation of the original physical system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


