CMOS Integrated Circuits I Operational Amplifier Design Project

Emily Becher Nicholas Kim

December 2023

Contents

1	Design Objective	2
2	Design Process	2
3	Cadence Simulation Results	3
	3.1 Result Tables and Schematics	3
	3.2 Simulation Plots	6

1 Design Objective

The objective of the project is to design a two-stage single-ended CMOS operational amplifier in the 0.18um process with the following specifications:

- Load capacitance: 4pF
- Power supply: $V_{dd} = 0.9$ V, $V_{ss} = -0.9$ V
- Open-loop gain: $\geq 60 dB$
- Phase margin: $\geq 60^{\circ}$
- Unity gain frequency: ≥ 12 MHz

2 Design Process

The first step in the design process was to determine a CMOS configuration that would meet the requirements. This op-amp was implemented with a single-ended differential amplifier followed by a telescopic cascode gain stage.

After calculating the differential gain of the op-amp in terms of gm and r_{ds} , the gm and r_{ds} values were assumed to be equal across all gain stage devices in order to approximate a gm- r_{ds} relationship that would achieve a DC gain well above the requirement.

By setting a gm of 1mS, a transconductance efficiency of 10 for moderate inversion was targeted on all gain stage devices in order to determine an I_d of 0.1mA. In Cadence simulations on isolated NMOS and PMOS devices, an I_d of 0.1mA was set to determine device sizes such that gm = 1mS. The drain-source resistances, channel length modulation parameters, transconductance parameters, and threshold voltages were determined for NMOS and PMOS devices during this step.

The differential amplifier and telescopic cascode are supplied by a current mirror, approximating a current draw of 0.5mA and power consumption of 0.9mW.

Initial calculations and fine-tuning in Cadence simulation determined the bias voltages on the telescopic cascode achieving saturation on all devices with a DC output of ≈ 0 V.

The final design choice was to shift the pole frequencies by adding a capacitor across the output and V_{ss} to achieve an appropriate phase margin at $\approx 80^{\circ}$.

3 Cadence Simulation Results

3.1 Result Tables and Schematics

Requirement	Specification	Simulated Result	
Load capacitance	$4 \mathrm{pF}$	$4 \mathrm{pF}$	
Power supply	$V_{dd} = 0.9 \mathrm{V}, V_{ss} = -0.9 \mathrm{V}$	$V_{dd} = 0.9 \mathrm{V}, V_{ss} = -0.9 \mathrm{V}$	
Open-loop gain	$\geq 60 dB$	73.6dB	
Phase margin	$\geq 60^{\circ}$	80.3°	
Unity gain frequency	$\geq 12 \mathrm{MHz}$	48.8MHz	
Power	N/A	$0.878\mathrm{mW}$	

Table 1: Specifications and Simulated Results

Device label	Width	Length	Drain-source current
NM0	3.5µm	180nm	94.4572µA
NM1	$3.5 \mu m$	$180 \mathrm{nm}$	94.4572µA
NM2	$3.5 \mu m$	$180 \mathrm{nm}$	96.581µA
NM3	3.5µm	180nm	96.581µA
PM0	24µm	180nm	193.162µA
PM1	12µm	180nm	94.4572µA
PM2	12µm	180nm	94.4572µA
PM3	12µm	180nm	96.581µA
PM4	12µm	180nm	96.581µA
PM5	12µm	180nm	200µA

Table 2: Device sizes and drain-source currents (see Figure 3)

Node label	DC voltage
V_{dd}	$0.9\mathrm{V}$
V_{ss}	-0.9V
V_1	$242.893 \mathrm{mV}$
V_2	$356.267 \mathrm{mV}$
V_3	$-227.625 \mathrm{mV}$
V_4	$-227.625 \mathrm{mV}$
V_5	$-300.267 \mathrm{mV}$
V_6	$410.267 \mathrm{mV}$
V_{b1}	$385 \mathrm{mV}$
V_{b2}	-250mVmV
V_{out}	$-0.936 \mathrm{mV}$

Table 3: DC voltages at all nodes (refer to Figure 2 node labels)

Figure 1: Op-Amp Schematic

Figure 2: Schematic with Node Voltages

Figure 3: Schematic with Device Currents

3.2 Simulation Plots

Figure 4: Common-Mode Input Range

Figure 4 is a plot of all transistor regions of operation as a function of the common-mode input voltage. Region 2 indicates saturation. The op-amp has a common-mode input range of approximately -325mV to -285mV.

Figure 5: Output Swing

Figure 5 is a plot of the gain as a function of the output voltage. The DC gain of the op-amp is 73.627dB. The output swing is defined as the output voltage range within which the gain remains within 3dB of the DC gain. The op-amp has an output swing of approximately -142mV to 145mV.

Figure 6: Open-Loop Gain

Figure 7: Gain and Phase Plots

Figures 6 and 7 are gain and phase plots. The DC gain is 73.627 dB. The unity gain frequency is 48.797 MHz. The phase margin is $80.3442^\circ.$