ECE 271, Design Project, Group 4

Nicholas Kim, Julian Brinkley
December 3rd, 2021

Contents

1 Project Description

2 High Level Description

2.1

2.2
2.3

2.4

Al
A2
A3
A4
A5
A6

PS/2 Interpreter
2.1.1 Shift Register 11-bit L
2.1.2 Latch 11-bit o
2.1.3 Clock Divider e
2.1.4 Counter e
2.1.5 Comparator
PS/2 Data to Select Decoder Lo
9:1 Multiplexer (Frequency Selector)
2.3.1 2:1 Multiplexer e
50MHz Clock to Note Frequency Converter

FPGA Implementation

SystemVerilog Files

Top Level e e
Clock Divider e
PS/2 Data to Select Decoder
2:1 Multiplexer e e
Counter e
Comparator L

—
O © 00~ O U

11
12
13
14

16

1 Project Description

Inputs: This design reads a PS/2 keyboard. The PS/2 keyboard device is powered by a MAX-
10 FPGA host using wires for a 5V source and ground. The PS/2 keyboard communicates with

the host using the clock and data lines.
Outputs: This design outputs a frequency onto a speaker. The speaker is connected to a source

with a digital frequency and a ground line from the host.

Decemlper 3"3 XX ECE 7+ ?m&wt- Crrove 4 Wicholay G, Tian &ML(VB

fall 207 Grovp U Detian Peoeck
oo

OMie
= v - SOMH=z i
2 ‘ Mux
?;/,: SQ'JXL.&(g—p
AN J %
P Loeg ot 5
\ 037 —dato-in . g
:
<7 e _in & a
‘ 4 M
L
~7
s(3.8] é7
Ceo 4o Data Dok, 4o Jeleck

8 Xcoder
4 dodo

BimiesLec

Figure 1: This is an overview of the piano project design.

The hardware modules used include a PS/2 keyboard and a speaker. The hardware diagram
in figure 2 shows the pin connections between the FPGA and the hardware modules. Table 1 is

an interface definition for each of the inputs and outputs on the FPGA.

.

Tollan BAnlele
o Y MNickolas Eta

2570

s

4\){‘ Ce /»«\or <

ot

73 Pote

TPahk Hoc dusace o cam

FPaA
PY/7 ewonard
Brown SN
Greou anp
\(t\\o‘ﬁ ?\N_\’\O
Recl PiN_NE
FeumA
Spealer
Fv\cl\,u\c,pB ?\LCL Y\ _WI\D
Creond | Black quD

CLYSOZ0L A - LIS

Figure 2: The hardware diagram shows which pins are used on the FPGA to supply power to
and communicate with the PS/2 keyboard and the speaker. The speaker is powered by a digital
frequency which also produces the sound.

Name I/0 Function FPGA Pin(s)
clk 50MHz In 50MHz signal is divided into P11 (Clock)
the desired note frequencies for the piano
reset In Resets PS/2 interpreter and C10 (Switch)
all frequency converters
enable In Enables PS/2 interpreter and C11 (Switch)
all frequency converters
ps2_clk_in In Clock signal from the PS/2 keyboard V10 (GPIO)
which allows data to be interpreted
ps2 data_in In Data signal from the PS/2 keyboard V8 (GPIO)
which sends the key data in accordance
with the PS/2 clock
freq_out Out Digital note frequency that W10 (GPIO)
is sent to the speaker to play
pulse_count[4..0] | Out Troubleshooting: Counts F18, F21,
the number of 11-bit data signals B20, C18,
sent by the keyboard C14, C10 (Hex 0’s)
datal9..1] Out A8, All,
Troubleshooting: 8 data bits D14, E14,
and odd parity bit sent by the keyboard C13, D13,
and combined into a bus by the PS/2 interpreter B10, A10,
A9 (LED’s)
s[3..0] Out Troubleshooting: Decoded D22, A19,
select signal from the PS/2 decoder which Al6, D15
selects the note frequency on the 9:1 Mux (Hex DP’s)

Table 1: Interface Definition for the FPGA inputs and outputs

2 High Level Description

Inputs: This reads a clock and data signal from a PS/2 keyboard. It also reads the internal
50MHz clock and two input switches for reset and enable.

Outputs: A digital note frequency is the main output for the design. Additionally, there are
troubleshooting outputs for the pulse count, key data, and select signal, though these outputs are
not shown in top level diagram.

/\—D€ Lexied \ks{%m

3
< J
@ q ek p3T va\-u‘e«r\-u el Decoder
tresedt o
3‘ g ol ool Pl ceunk o\alf,&[(u_‘u] dota(®..1] i_:\mk s(3..qa7
r% i‘ PSVL &"— A\ i 7 ?5?— code S‘A
| Pt daka (n olaka dieak\e dipabls
J
1%
o
I el SdMu e oG
Uocke to Noke sfs-o]
& Tregqueacn Converkers
o
N 'Qrwl 1 Q.| Mux
\E\') [1(*@\ T (Fvu-\m%
Y B Selechoc)
%
J r 'erci e
y g out
fi .A(LNJ\S E:ﬁ
-LY‘Lﬂ G
5
';") "Cfu\?
X rede b
S nalole —

tee

Figure 3: This is the top level diagram for the piano project. For simplicity, the troubleshooting
outputs were excluded from this diagram.

Figure 4: Top level simulation results from ModelSim

The simulation above demonstrates that the piano driver functions as intended. The clock and
data signals are forced to timing specific values to simulate 11 bits of data sent on 11 clock pulses
from the PS/2 keyboard. The PS/2 input signals were simulated in accordance with the PS/2
keyboard protocol.!

Following the 11 clock pulses, the PS/2 interpreter correctly outputs the 11 data bits as an
11-bit bus. The PS/2 decoder correctly decodes the 8 key related data bits into a 4-bit select
signal. Information on the PS/2 decoder and select signal can be found in table 2.

The lower wave plots show the note frequencies as derived from the 50MHz clock input. The
output frequency remains off until the select signal switches to 0011, representing the fourth input
on the 9:1 multiplexer. The fourth input frequency is A4, and the output frequency matches that
A4 frequency correctly.

2.1 PS/2 Interpreter

Inputs: This reads two inputs: clk and data. These are the two signals sent by the keyboard.
The data is a string of 11 bits representing the pressed key, and the clock signal oscillates from
high to low 11 times while each piece of the data is sent.

Outputs: An 11-bit string, representing the pressed key. The 11 bits are the same 11 bits sent
through the data line, but stored as a bus. There is a disable output, which goes high only when
the previous code observed is equal to "FO0", which is half of the code for a key release.? This is
used later by the decoder.

Thttp://www.burtonsys.com/ps2_chapweske.htm
2https://techdocs.altium.com/display/FPGA/PS2+Keyboard+Scan+Codes

http://www.burtonsys.com/ps2_chapweske.htm
https://techdocs.altium.com/display/FPGA/PS2+Keyboard+Scan+Codes

=11

clk [: 11-bit Shift Register D 11-bit latch key [10:0]

. Q[io:0]
data in
11-bit Shift Register =11 11-bit latch
D prevKey[10:0]
Q] P[10:0]

prevKey[8]
prevKey[7]
prevKey[6]
prevKey[5]

dis_able

prevKey[4]
prevKey[3]

prevKey[2]

prevkey[1]

Figure 5: This is an overview of the PS/2 interpreter block that reads the data stream from the
keyboard and releases it as 11-bit busses.

(ammeooes [[T T Y1110 -

{11111100000 | I I I

Figure 6: Interpreter simulation results from ModelSim

2.1.1 Shift Register 11-bit

Inputs: Data is a single bit that changes between different values at each clock cycle, and clk
is the clock signal coming from the keyboard.
Outputs: 11 bits of a q bus, equal to the last 11 values that “data” had.

q10 q9 g8

data in

——— dff diff diff

N yib TD TD

Figure 7: This is an overview of the 11-bit shift register. Chaining D Flip-Flops is a standard
design for a shift register.

4 \ibitshiftregister /dk
4 iibitshiftregister /data_in
B q
4 [\11bitshiftregister fq11
4. \11bitshiftregister /q10
4. /\l1bitshiftregister /q9
4. M\ibitshiftregister /g8

“. M\ibitshiftregister /g7
4. M\1ibitshiftregister /g6
4. /\l1ibitshiftregister /g5
4. M\ibitshiftregister /g4
“.. M\ibitshiftregister /g3
4. M\1ibitshiftregister /g2
“. M\ibitshiftregister /q1

Figure 8: Register simulation results from ModelSim. The first bit of the data input reaches the
first bit (ql) of the data output after one clock cycle, then the second bit (q2) after two cycles. It
steps down the output ladder on each cycle. The next bit of the input follows, one cycle behind.
The rest of the data continues during following cycles.

2.1.2 Latch 11-bit

Inputs: Each q input represents a different bit of the pressed key’s code. Clk is the clock signal
that causes the latches to release the signals in the q inputs. (Where this module is used, clk is
the keyboard’s clock divided by 11.)

Outputs: An 11 bit bus, containing all 11 q inputs. Output is only updated on the rising edge
of clk.

clk

_9l0] ["SR jatch |<eYIO]

_ A SRatch |Lkevll

92 SR Tateh | keyl2]

Figure 9: This is an overview of the 11-bit latch. This module simplifies having 11 separate SR
latches by compressing them into one module.

£ /\ibitlatch /ck

8- iibitiatch fq r rrrrrrrrorroro .
-’ Niibitlatch fout 10000011011 (10000011011

Figure 10: Latch simulation results from ModelSim

2.1.3 Clock Divider

Inputs: A clock signal. For the place it is used, it takes in the clock signal that the keyboard
sends.

Outputs: A signal "clk divided 11" that pulses HIGH every 11 clock cycles of the input clock.
The "count" bus output shows how many times the divided clock signal has pulsed and is used for
testing purposes.

Clode Divieler

<9
< =
=i
r7 p

T Counter 'Eﬁﬁ" akoc

- e\ —SOMHl = Y F — .

:'j — e A\ —divide d _\\

- resesk L X ofe

el

3 , b=\

o} 3tate

o

%

-

h]

3

A Fm N

- S\ Counk [N-1: D]
TR

: d

)

&

o

Figure 11: This is an expanded view of the clock divider block shown in the PS/2 Interpreter block
diagram. The counter and comparator blocks are shown in figures 13 and 15.

£ jdock diiderfdk |sto
4. [dock_divider/dock.... |0
Erfdocdvdenjeonnti OO0 T v T Y T O T T T v T v T T T v Ty Ty Ty T

Figure 12: Clock divider simulation results from ModelSim

2.1.4 Counter

Inputs: This individual takes a clock, reset, enable, and multi-bit "d" value representing the
previous state of the counter. The clock signal counts up the counter on the rising edge. The "d"
value is incremented by 1 on the rising edge.

Output: A multi-bit "q" output is a value that is 1 higher than the "d" input and represents
the current state of the counter.

Covnter

gk ol
i cl— reset coont
R R e
—_— d
N

Figure 13: The counter block was written in System Verilog for Lab 5. The counter is also used in
the Clock to Note Frequency converter shown in figure 23.

feounterN g

£ Jcounter/dk sto
B¢ Jcounter/d 17
2 [counter/en st1
£-“. feounter/q 18

Figure 14: Counter simulation results from ModelSim

2.1.5 Comparator

Input: A multi-bit value "a" is taken in and compared to a parameter value "b".
Output: A logic value "gte" represents whether the comparison "a is greater than or equal to
b" is true (HIGH) or false (LOW).

Cawocakoc

N
] [, jjcu——%L
N

D&rzx,nw/{ff \0
v
a=b

Figure 15: The comparator block was written in System Verilog for Lab 5. The comparator is also
used in the Clock to Note Frequency converter shown in figure 23.

10

113636

Figure 16: Comparator simulation results from ModelSim

2.2 PS/2 Data to Select Decoder

Inputs: This reads an 8 bit value — the 8 bits out of the 11 bit bus that identify each key. It
also reads a "disable" selector, which is active when the previous key read by the interpreter was
"FO."

Outputs: This outputs a shorter code that represents one of the 8 keys used for the piano.
Each key used in the application gets a different code. When a key that is unused by the piano
application has been pressed, or the "disable" input is high, the output is 1000.

The simulation results can be seen in figure 18, and the specific outputs are outlined in this
table (Note: DC = don’t care). Any key outside of the first 8 in the table will provide an output
of 1000.

PS/2 Decoder

ps2 code[7:0]

—_ ps2_code[7:0]

decoded val[3:0]
decoded_val[3:0] ———

dis_able
dis_able

Figure 17: The PS/2 decoder module, written in System Verilog.

Key | PS/2 Code | Disable | Output
A 00011100 0 0000
S 00011011 0 0001
D 00100011 0 0010
F 00101011 0 0011
J 00111011 0 0100
K 01000010 0 0101
L 01001011 0 0110
; 01001100 0 0111

DC DC 1 1000
T 00101100 DC 1000
U 00111100 DC 1000

Table 2: PS/2 Key Data inputs and decoded select signal outputs

11

+) 39 /ps2_decoder/ps2_code 00000000 /00011100 00011011]00100011 J 00101011 J0011101] 01000010
£ Jps2_decoder/dis_able sto
B-“+ Jps2_decoder/decoded_val 1000 0000

Figure 18: PS/2 Decoder simulation results from ModelSim. The first 8 values for ps2code in the
simulation are the values for the 8 keys on the keyboard, so the block outputs select values 0000
to 0111. The next two tests have a high disable value, so the output is 1000. The last test is an
unknown key value, so even with a low disable output, the result is still 0000.

2.3 9:1 Multiplexer (Frequency Selector)

Inputs: This functional unit takes 8 input signals that represent digital note frequencies. The
9th input is grounded internally to represent an OFF signal. A 4-bit select bus input determines
which of the 9 inputs pass through to the output.

Output: One of the nine input signals goes to the output depending on the value of the select
bus. This output signal represents the selected digital frequency that will be played by the speaker.

- TEq Mu\%gluur Fm?uuos 3elector
s[e] s[1] s[z] s(3]

'F“i—l P mux 2

N wux 7

C7f'>J\° Y

|

~L wox T

& N~ wmox T
l \j_ﬁi:ou*
b

/s

e

Y

‘\}’(‘Cmb&r

Figure 19: This is an expanded view of the 9:1 multiplexer block shown in the top level diagram.

12

Figure 20: 9:1 Multiplexer (Frequency Selector) simulation results from ModelSim

The note frequencies used in the design were included in this simulation to demonstrate that
the output frequency matches the correct note frequency in accordance with the select signal.

2.3.1 2:1 Multiplexer

Inputs: This individual block takes one 1-bit select signal and two 1-bit inputs to select from.
Output: The select signal determines which of the two 1-bit inputs is directed to the 1-bit
output.

13

VV\\)X?’

Figure 21: This block was written in System Verilog using the conditional operator.

£ jmux2/do Mo Data-
£ jmux2/d1 -No Data-
£ jmux2/s -No Data-
“a fmux2fy -No Data-

Figure 22: 2:1 Multiplexer simulation results from ModelSim

2.4 50MHz Clock to Note Frequency Converter

Input: This functional unit takes a 50MHz clock signal input.

Output: The 50MHz clock signal input is deliberately divided by two comparators to produce
a wave pattern that rises and falls at specific times to match the frequency of any given note.

Parameters: This design includes 8 instances of this module template with varying parameter
values on the comparator blocks based on the desired note frequency output. The parameter for
the half wave comparator instance describes how many 50MHz clock cycles must pass before rising
from LOW to HIGH, representing half of the note frequency wave length. The parameter for the
full wave comparator instance describes how many 50MHz clock cycles pass in one cycle of the
note frequency.

The full wave parameter by, is calculated by dividing the frequency of the input clock by the
desired output frequency fyoe in Hz. The half wave parameter byq;y is found by dividing the full
wave parameter by 2.

50MH=z
brun = T
note
50MHz 1
bhalf = fit * 5

Table 3 shows the note frequencies of the 8 notes that are implemented in the design and the
calculated parameters for the 8 instances of the frequency converter.

In the wave plot simulations in figures 24 and 25, the 50MHz clock was forced LOW at Ons,
HIGH at 10ns, and repeating this pattern every 20ns to accurately represent the timing of a 50MHz

clock. The period of a 50MHz clock is SO]L;HZ =20 % 107 seconds (20ns).

Note | Frequency (Hz) | Full Wave parameter | Half wave parameter | Period (ns)
FF 369.99 135139 67569 2702776
Gy 392.00 127551 63776 2551020
G7 415.30 120395 60197 2407898
Ay 440.00 113636 56818 2272727
Af 466.16 107259 53630 2145186
By 493.88 101239 50620 2024783
Cs 523.25 95557 47778 1911132
c¥ 554.37 90192 45096 1803849

Table 3: This table shows the note frequencies and instance parameters used in the frequency
converter. The period of each note is included for simulation purposes in figures 24 and 25.

14

{ SO MU Clock to wWeke ?\rtﬁmu\ Connvacter

C s
Bz

jQ/ N C))‘)(\‘k’gt a*\)

: e _SomMye el a CovnOCaKRS
c2=HE | - ’_L
b et
e] I * c\\h_@_
d

Q stote halk_ vawe

‘\;M QD\(V\PM(

g o j"" re}.&,{’

5

’ A Lasve

SO™MH

- Lol —vsare ?arn/vszc(o 2l = rﬁ

2 " quen

o SO MHA e

_ \I\(A(‘Q_(,oo\:\IL ()Arp\me«’rtr a=b = SiE . o

o note ‘#N?Mc\§ 2z

%

Figure 23: This is an expanded view of the frequency converter block shown in the top level
diagram. This block is a template for each note frequency, which is determined by adjusting
the parameters in both comparator instances. Refer to figures 13 and 15 for the counter and
comparator blocks.

These simulations include a timestamp at the end of the first output cycle to show that the
output frequency matches with the expected period of the desired note. For example, one wave
cycle for G4 is correctly measured to be 2552750ns as predicted in table 3.

P01ns
Cursor 1 750 ns 25 ns
T AT i

Figure 24: Clock to G4 simulation results from ModelSim

15

£ jck_to_A4/ck_S50MHz
£ jck_to_A4/enable
“a [dk_to_Adffreq

£ [ck_to_A4jreset
B4 [dk_to_Ad/state

Cursor 1 |522ns

Figure 25: Clock to A4 simulation results from ModelSim

3 FPGA Implementation

The following link is a YouTube video demonstrating the FPGA implementation of the piano
driver functioning as intended.

https://youtu.be/ZEomzQGTn8U

A SystemVerilog Files
A.1 Top Level

1 Copyright (C) 2018 Intel Corporation. All rights rc ved
2 Your use of Intel Corporation’s design tools, logic functions
3 and other software and tools, and its AMPP partner logic
4 functions , and any output files from any of the foregoing
5 (including device programming or simulation files), and any
6 associated documentation or information are expressly subject
7 to the terms and conditions of the Intel Program License
8 Subscription Agreement, the Intel Quartus Prime Li eement ,
9 the Intel FPGA IP License Agreement, or other applic

10 agreement , including, without limitation, that your use is for

11 the sole purpose of programming logic devices manufactured by

12 Intel and sold by Intel or its authorized distributors. Please

13 refer to the applicable agreement for further details.

14

15 PROGRAM "Quartus Prime"

16 VE ON "Version 18.0.0 Build 614 04/24/2018 SJ Lite Edition"

17 "Sun Nov 28 16:12:36 2021"

18

19 module top (

20 clk_50MHz,

21 reset ,

22 enable ,

23 ps2 clk_in,

24 ps2 data in,

25 gnd, -

26 freq out

27) -

28

29

30 input wire clk 50MHz;

31 input wire reset ;

32 input wire enable ;

33 input wire ps2_clk_in;

34 input wire ps2 _data in;

35 output wire gnd; -

36 output wire freq_out;

37 -

38 wire [10:0] data;

39 wire freq_A4;

40 wire freq _Asharp4;

41 wire freq B4 ;

42 wire freq_C5;

43 wire freq_ Csharp5h;

44 wire freq Fsharp4;

45 wire freq G4

46 wire freq Gsharp4;

47 wire [3:0] s;

48

49 assign gnd 0;

50

51

52

53

54 clk_to_ Csharp5 b2v_inst(

55 ~ 7 .clk_50MHz(clk_50MHz) ,

56 .reset (reset) .

57 .enable(enable) ,

58 .freq (freq Csharp5)):

59 -

60

61 ps2_decoder b2v_inst13(

62 .ps2_code(data[9:2]) ,

63 .decoded val(s)):

64 -

65

66 ps2 data b2v _instl4(

67 - .clk (ps2 clk_in) ,

68 .d(ps2 data_ in) ,

69 .reset (reset),

70 .key (data)) ;

71

72

16

https://youtu.be/ZEomzQGTn8U

73
74
75
76

78
79

81
82
83
84
85
86
87
88
89

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

© 00U W

© 00O U W

clk to Fsharp4 b2v_ inst25(
~ 7 .clk_50MHz(clk 50MHz) ,
.reset (reset) ,
.enable (enable) ,
.freq (freq_Fsharp4));

clk _to_ G4 b2v _inst26 (
~ 7 .clk_50MHz(clk_50MHz) ,
.reset (reset) .
.enable(enable) ,
.freq (freq_G4));

clk to Gsharp4 b2v inst27(
T 7 .clk_50MHz(clk 50MHz) ,
.reset (reset) .,
.enable (enable) ,
.freq (freq Gsharp4)):

clk _to A4 b2v _ inst28(
~ 7 .clk_50MHz(clk 50MHz) ,
.reset (reset) ,
.enable(enable) ,
.freq (freq_A4));

clk _to_ Asharp4 b2v_inst29(

T 7 .clk_50MHz(clk _50MHz) ,
.reset (reset) .
.enable(enable) ,

.freq (freq_Asharp4));

clk_to_B4 b2v_inst31(
.clk_50MHz (clk_50MHz) ,
.reset (reset),
.enable (enable) ,
Cfreq (freq B4));

clk_to C5 b2v _ inst32(
~ 7 .clk_50MHz(clk 50MHz) ,
.reset (reset) .
.enable (enable) ,
.freq (freq_C5));

mux9 b2v_inst35 (

.freq A4 (freq Fsharp4),
.freq_ B4 (freq G4) ,
.freq_C5(freq Gsharp4) ,
.freq D5 (freq A4),

.freq E5(freq Asharp4) ,
.freq:FS(freq:B4).

.freq G5 (freq_C5) ,
.freq_A5(freq_Csharp5),
.s(s),
.freq_out (freq out));

endmodule

A.2 Clock Divider

module clock divider (input logic clk,
output logic clock divided 11,
output logic [4:0] count = 0);
always @(posedge clk)
begin
if (count == 10)
begin
clock divided 11 < 1;
count < 0; -
end
else
begin
clock divided 11 0;
count <= count | 1;
end
end
endmodule
A.3 PS/2 Data to Select Decoder
module ps2_decoder_v2(input logic [7:0] ps2_code,
input logic dis_able ,
output logic [3:0] decoded_ val);
always comb -
T if(dis_able) begin
~ decoded _val = 4°b1000:
end else begin
case (ps2 code)
8°b00011100 decoded val 4°b0000 ;
8°b00011011 decoded_val 4°b0001 ;
8°b00100011 decoded_val 4°b0010;
8°b00101011 decoded_val = 4’b0011;
8°b00111011 decoded _val = 4°b0100;
8°b01000010 decoded _val = 4°b0101;
8°b01001011 decoded _val = 4°b0110;
8°b01001100 decoded _val = 4°b0111;
default decoded _val = 4°b1000;
endcase -
end

endmodule

A.4 2:1 Multiplexer

17

o UR W

COWNO U WN -

[

HO®©ONO U A WN -

o

module mux2 (input logic d0, di1,

input logic s,
output logic v
assign y = s ? d1 : doO;
endmodule
A.5 Counter
module counter #(parameter N—8)
(input logic clk, reset, en,
input logic [N—1:0] d,
output logic [N—1:0]
always ff@(posedge clk, posedge reset)
if (reset) q <= 0;
else if(en) q <= d+1;

endmodule
A.6 Comparator

module comparator #(parameter N—=18, b=113636)
(input logic [N—1:0]a,
output logic gte);

eq
neq
1t

assign lte

assign gt
assign gte —
endmodule

18

	Project Description
	High Level Description
	PS/2 Interpreter
	Shift Register 11-bit
	Latch 11-bit
	Clock Divider
	Counter
	Comparator

	PS/2 Data to Select Decoder
	9:1 Multiplexer (Frequency Selector)
	2:1 Multiplexer

	50MHz Clock to Note Frequency Converter

	FPGA Implementation
	SystemVerilog Files
	Top Level
	Clock Divider
	PS/2 Data to Select Decoder
	2:1 Multiplexer
	Counter
	Comparator

