ECE 375 Lab 8

Remotely Operated Vehicle

Lab Time: Friday 12-2

Nicholas Kim
Srikar Valluri

TA Signature

1 Introduction

The goal of this lab is to create a TekBot that has a variety of movement capabilities and can
respond to signals sent by its paired remote control. The concept of the design is to implement
a game of freeze tag between two TekBots. Each TekBot should be controlled via signals from
their remote controls, and should be able to send attack signals to each other which cause the
opponent’s TekBot to halt. After three successful freeze tags, the opponent’s TekBot should stop
and not respond to any signals.

In this lab, we use the Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
module on the TekBot AVR board to communicate between multiple TekBots. The end-product
of this lab is to develop a system of two boards, where one is a robot itself, and the other is a
remote that sends various different signals to the robot. These are known as the reciever and trans-
mitter respectively, and interactions between them result in a variety of capabilities from moving
or halting in different directions, freezing, and subroutine capabilities. The challenge code adds
slightly different functionality to the remote control system. This lab also used many concepts
from previous labs, such as Timer/Counters, external interrupts, and pulse width modulation.

2 Program Overview

2.1 Transmitter

The transmitter function’s main goal is to transmit two bytes of information whenever a specific
button is pressed. The first byte of the data is the bot address, which is specific to each pairing
of a TekBoard pair, and the second byte is the particular action that should be displayed on the
TekBot. In order for transmission to occur, the INIT function must have initialization of the stack
pointer, DDRD and PORTD for button inputs and the transmission pin, DDRB and PORTB for
LEDs, baud rate, and USART controls/settings. Since we are using polling to gather input from
the buttons, we will not be using any interrupts in this program. In the main function, polling
occurs to determine what information needs to be sent, and the appropriate 2 bytes are sent to
the reciever via UDRI.

2.1.1 Program Flow

The transmitter will use 6 button inputs representing 6 different commands to send to the receiver.
The program will repeatedly check for button inputs and send two data signals to the receiver when
a button is pressed. The first signal allows the receiver to confirm the Bot ID of the transmitter.
The second signal is the command.

2.2 Receiver

The reciever has the capability of performing the HitLeft and HitRight subroutines whenever the
left or right whiskers are hit, respectively. It also has the ability to recieve information from the
transmitter, and if the bot IDs match, it performs the subsequent action that is sent. It even has
the ability to send out a freeze signal to other TekBots, so it also performs transmission. In order

for the reciever to occur, the INIT function must have initialization of the stack pointer, DDRD
and PORTD for button inputs, transmission, and reciever pin, DDRB and PORTB for LEDs,
baud rate, USART controls/settings, and EIMSK and EICRA for the interrupt initializations for
the HitRight and HitLeft subroutine calls.

2.2.1 Program Flow

The MAIN part of the program simply loops, as all the functionality is interrupt-based. The same
functionality of the Bump Bot using external interrupts on two buttons is implemented.

Whenever info is recieved, the RECIEVE interrupt will trigger, and a set of checks will be
performed to determine what the input is. Any time a Freeze signal (from an opponent’s attack)
is received, the receiver will freeze for 5 seconds. Otherwise, it performs validation on the botID,
and ignores the next set of information if it doesn’t match. If a valid botID is recieved, the next
data to be received will be checked and implemented, whether it is sending out a Freeze signal to
other TekBots or changing its own movement.

3 Internal Register Definitions and Constants

3.1 Transmitter

The transmitter file defines two multi-purpose registers for handling data. Labels are created for
the engine controls and the action codes to make the code adjustable and readable. The Bot ID
is set to $3A.

3.1.1 Challenge

Action code labels for Halt and Freeze Attack are replaced with Speed Up and Speed Down. The
Bot ID is set to $1A.

3.2 Receiver

The receiver file defines two multi-purpose registers for handling data. The Freeze Count register
counts the number of times this receiver was frozen from an external attack. The Action Check
register indicates whether or not the previous received data contained the correct Bot ID so that
it can check for an action code. Several registers are defined for loop counting and delay functions.
Labels are created for the engine controls and the action codes to make the code adjustable and
readable. The Bot ID is set to $3A.

3.2.1 Challenge

The Brightness Multiplier register indicates the factor of 17 (defined by a constant label) used to
change the pulse width modulation on the engine enables for the purpose of adjusting between 15
speed levels. The Bot ID is set to $1A.

4 Initialization Routines

4.1 Transmitter

The stack pointer is initialized first. Port D pins are inputs except for pin 3 (TXD1) which is used
by the USART1 transmitter. Pins 7:4 and 1:0 are button inputs for the 6 commands and require
pull-up resistors. Note that Port D pin 3:2 are used by USART1 and cannot be implemented for
the command buttons. Port B pins are LED outputs.

The UBRRI1 registers are initialized to a value of 832 with the double data rate enabled in
UCSRI1A for a baud rate of 2400bps. The transmitter is enabled in UCSR1B. The frame format
(8 data bits, 2 stop bits) is configured in UCSR1C.

4.2 Receiver

The stack pointer is initialized first. Port D pins 1:0 are button inputs for the whiskers’ external
interrupts and require pull-up resistors. Port B pins are LED outputs.

The UBRRI1 registers are initialized to a value of 832 with the double data rate enabled in
UCSRI1A for a baud rate of 2400bps. The receiver and receive complete interrupt are enabled
in UCSR1B. The transmitter is enabled in UCSR1B for the purpose of sending Freeze signals to
other receivers. The frame format (8 data bits, 2 stop bits) is configured in UCSRI1C.

The EIMSK and EICRA registers are configured so that INT1:0 (PIND1:0, left and right
whiskers) trigger interrupts on the falling edge. Interrupt vectors for these pins are initialized for
HitRight and HitLeft.

All defined registers are initialized to zero. The TekBot initialized to move forward. The
interrupt flag is set to enable interrupts.

4.2.1 Challenge

The control registers for Timer/Counterl are configured for normal mode with a prescale of 1024
to achieve a 1 second delay. The control register for the 8-bit timers (Timer/Counter0 and
Timer/Counter2) are configured for Fast PWM mode, non-inverting, without prescaling. The
TIMSK enables the Timer/Counterl Overflow Interrupt for the 1 second delay and the 8-bit
timers’ Output Compare Match Interrupts for the engine enable pulse width modulation.

Port B LEDs 3:0 indicate the speed level, which is initialized to 15 (full speed). The OCRs are
set to zero to reflect full speed on the engine enables (fully dim).

5 Main Routines

5.1 Transmit

The polling method is used to repeatedly check all PIND inputs. When a PIND input signal is
received, a relative call is made to its corresponding subroutine.

5.2 Receiver

The receiver operates entirely on interrupts.

6 Subroutines

6.1 Transmitter

6.1.1 Action Code Loading

Functions MOV_FWD, MOV_BCK, TURN_R, TURN_L, HALT, and FRZ_ATK each load and transmit the Bot
ID followed by their respective action code. Port B is updated to indicate the most recent transmit.
6.1.2 TRANSMIT

The transmitter waits for the USART1 Data Register to be empty (by checking UCSR1A) before
loading it with a predefined action code and transmitting the signal.

6.1.3 Challenge

Functions HALT and FRZ_ATK are replaced with SPEED_UP and SPEED_DOWN.

6.2 Receiver
6.2.1 HitRight

The current action is pushed to the stack. The receiver is disabled in UCSR1B. The TekBot moves
backwards and turns left for 1 second each. The queue is cleared and the receiver is re-enabled
before returning to the previous action.

6.2.2 HitLeft

The current action is pushed to the stack. The receiver is disabled in UCSR1B. The TekBot moves
backwards and turns right for 1 second each. The queue is cleared and the receiver is re-enabled
before returning to the previous action.

6.2.3 FREEZE

The current action is pushed to the stack. The Freeze Signal is flashed for 100ms as an indication
that this TekBot was successfully attacked by the oppoenent. The receiver interrupts and exter-
nal interrupts are disabled in UCSR1B and EIMSK, and the TekBot is halted. At this point, the

TekBot is stopped and will not respond to any signals sent by the transmitter or the whisker inputs.

The Freeze Count is incremented after disabling interrupts and halting. If it is the third time
being frozen, the function enters an infinite loop so that it remains halted and unresponsive until
the TekBot is reset.

If it has not been frozen three times, the function delays for 5 seconds before re-enabling the
interrupts, clearing the queue, and returning to the previous action by popping from the stack.

6.2.4 RECEIVE

This function is called via receive complete interrupt. The data register is loaded and will either
cause a freeze, a Action Check register set, a freeze attack, or a TekBot movement. The receive
function is ended immediately after an action is taken.

The data is first compared to the Freeze Code to determine if this receiver is being frozen by
another receiver. If a Freeze Signal is received, the FREEZE function is called and RECEIVE ends.

If the Action Check register is not set, the data is compared the Bot ID. If the data matches the
Bot ID, the signal is being sent by the corresponding transmitter, and the Action Check register
is set so that the receiver can read the next data signal for a command.

If the Action Check register is set, the data is compared to the Freeze Attack action code. The
Freeze Attack sequence disables the receiver to avoid freezing itself via reflected IR signal. The
Freeze signal is then loaded and transmitted before re-enabling the receiver after a brief delay.

If the Freeze Attack is not called, the data is compared to all action codes to determine if it
is a valid TekBot movement command. The MSB in a valid command is shifted out (to the left)
before sending the resulting TekBot action to the LEDs.

6.2.5 TRANSMIT

The receiver waits for the USART1 Data Register to be empty (by checking UCSR1A) before
loading it with a predefined action code and transmitting the signal. The receiver is only capable
of sending Freeze signals during a Freeze Attack. The Freeze Signal is flashed for 100ms as an
indicator.

6.2.6 DelaylOms

A triply nested loop creates a delay for any factor of 10ms as defined by the wait count register.
Delays of 100ms are frequently used for signal flashes and to avoid switch debouncing.

6.2.7 Challenge

For all instances of changing the TekBot movement on the Port B LED outputs, the engine controls
and speed indicators must be able to be adjusted without overriding one another. The set/clear
bits in register, and/or, and and/or immediate instructions are used throughout the subroutines
to avoid this error.

The HitRight and HitLeft subroutines call a different 1 second delay function which uses a
Timer/Counterl Overflow Interrupt. Because these functions are already occuring as a result of
an external interrupt, the global interrupt flag is cleared and set at the start of the subroutine to
enable interrupts. The Output Compare Match Interrupts are disabled for the 8-bit timers.

The FREEZE function saves and returns to the previous engine speed by pushing and popping
the OCRs to and from the stack. The OCRs must be fully set during the 5 second delay so that
the engines are fully disabled.

The RECEIVE function checks for each valid command during the action check before perform-
ing its corresponding action. The checks for the Speed Up and Speed Down action codes disable
and re-enable the receive interrupts to avoid receiving double-commands from the transmitter as
it calls the SPEED _UP and SPEED_DOWN subroutines.

6.2.8 SPEED_UP

If the speed factor is not 15, increments the speed factor and updates LEDs 3:0 by masking out
7:4. The speed factor times the speed constant is subtracted from the maximum speed (255) to
get the relative LED intensity. The OCRs are updated with the new LED intensity.

6.2.9 SPEED _DOWN

If the speed factor is not zero, decrements the speed factor and updates LEDs 3:0 by masking out
7:4. The speed factor times the speed constant is subtracted from the maximum speed (255) to
get the relative LED intensity. The OCRs are updated with the new LED intensity.

6.2.10 WAIT

Timer/Counterl Overflow Interrupt is used to implement a 1 second delay for the HitRight /HitLeft
sequence. The Overflow bit is reset by writing 1 to TIFR. The TCNT1 register is set to a calculated
value of 49911 to produce a 1 second delay. The Wait for Overflow loop delays for 1 second before
the continue register is set by the overflow interrupt.

6.2.11 TIMER1 OVF

When TCNT1 reaches MAX, 1 second has passed. This Overflow Interrupt is called and the
continue register is set so that the Wait for Overflow loop in WAIT will break.

7 Difficulties

A general difficulty throughout the receiver code was receiving incorrect signals or partial signals
from the transmitter, causing the receiver to display the Bot ID (which it had most recently re-
ceived) on the LED outputs. This issue was resolved by implementing a hard check on the action
code for each valid command before shifting and loading the action onto the LEDs.

There were many instances where brief 100ms delays and receive disables were included to
avoid switch debouncing and reflected signals. This error mainly occured during RECEIVE and
the speed changing functions for the challenge code. The RECEIVE function would receive multiple
queued commands and cause errors within the subroutine. The speed changing functions would
often queue multiple times within one press, so a brief delay as well as a disabling of the receiver
to avoid receiving a second reflected signal. This error-handling was already described for avoiding
self-freezes.

8 Conclusion

In this lab, we used the USART module on the TekBot AVR board to communicate between
multiple TekBots. The transmitter and reciever were able to communicate with various different
signals, which included verification of the correct remote, multiple movement actions, and freeze
actions. The challenge code included different features to the remote control system.

9 Source Code

9.1 Transmitter

5 2Kokokokok skok ok ok ok ok sk ok ok ok skokok ok okok ok okok ok

This is the TRANSMIT file for Lab 8 of ECE 375

*
*
*
;¥ Author: Nicholas Kim and Srikar Valluri
* Date: 2/25/2022

*

5 Kok skoko ok skok skok skok skok skok skok skok skok skok skok kol skok skok skok skok skok skok skok skokskok kol skokskok ko skokskok

.include "m128def.inc" ; Include definition file

; koo kokok ok sk sk sk sk sk sk ok sk ok ok ok sk sk sksk sk ok ok s ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk ok
;* Internal Register Definitions and Constants

; sk ok ok ok ok sk sk sk sk ok sk ok o o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk o sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
.def mpr = r16 ; Multi-Purpose Register

.def mpr2 = ri7

.equ EngEnR = 4 ; Right Engine Enable Bit
.equ EngEnl. = 7 ; Left Engine Enable Bit

.equ EngDirR = 5 ; Right Engine Direction Bit

.equ EngDirL = 6 ; Left Engine Direction Bit

; Use these action codes between the remote and robot

; MSB = 1 thus:

; control signals are shifted right by one and ORed with 0b10000000 = $80

.equ MovFwd = ($80|1<<(EngDirR-1) |1<<(EngDirL-1)) ;0b10110000 Move Forward Action Code
.equ MovBck = ($80]300) ;0b10000000 Move Backward Action Code

.equ TurnR = ($80|1<<(EngDirL-1)) ;0b10100000 Turn Right Action Code

.equ TurnL = ($80|1<<(EngDirR-1)) ;0b10010000 Turn Left Action Code

.equ Halt_Code = ($80|1<<(EngEnR-1) |1<<(EngEnL-1)) ;0b11001000 Halt Action Code
.equ Frz_Atk_Code = 0b11111000 ;0b11111000 Freeze Attack Action Code

.equ BotAddress = $3A

; okokokokokok ok sk ok sk sk sk sk ok sk ok ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ok ok ok sk sksk sk sk sk sk sk ok ok ok sk sk ok ok
;¥ Start of Code Segment

; sk kokok ok sk sk sk sk sk sk ok sk ok ok ok sk sk sksk sk ok ok sk ok ok sk sksksk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
.cseg ; Beginning of code segment

; okokokokokok ok sk ok ok ok sk sk ok sk ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sksk sk sk ok sk ok ok ok sk sksk sk sk sk sk sk ok ok ok sk sk ok ok
;¥ Interrupt Vectors

; sk kokokok sk sk sk sk sk sk sk sk ok ok ok sk sk sksk sk ok ok s ok ok sk sksksk sk sk sk sk o sk ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk ok
.org $0000 ; Beginning of IVs

rjmp INIT ; Reset interrupt

.org $0046 ; End of Interrupt Vectors

; sk kokok ok sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk ok ok o ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk ok
;* Program Initialization

; ook ok ok skokok ok ok ok ok sk ok ok ok sk sksk sk ok ok ok sk ok ok sk sk sksk sk sk ok sk ko ok sk sksk sk sk sk ok sk ok ok sk sk ok ok
INIT:

;Stack Pointer (VERY IMPORTANT!!!!)

1di mpr, low(RAMEND)

out SPL, mpr

1di mpr, high(RAMEND)

out SPH, mpr

;I/0 Ports

; Port D for button inputs with pull-up resistors

1di mpr, Ob00001000 ; TXD1 remains an output

out DDRD, mpr

1di mpr, Ob11110011 ; Pins 3 and 2 are not button inputs
out PORTD, mpr

; Port B for LEDs, initially off
1di mpr, $FF

out DDRB, mpr
1di mpr, $00
out PORTB, mpr

;USART1

;Set baudrate at 2400bps
1di mpr, high(832)

sts UBRR1H,mpr

1di mpr, low(832)

sts UBRRIL,mpr

; Set Double Data rate
1di mpr, (1<<U2X1)
sts UCSR1A,mpr

;Enable transmitter
1di mpr, (1<<TXEN1)
sts UCSR1B,mpr

;9et frame format: 8 data bits, 2 stop bits
1di mpr, (1<<USBS1 | 1<<UCSZ11 | 1<<UCSZ10)
sts UCSR1C,mpr

;External Interrupts

;Set the External Interrupt Mask
;1di mpr, 0b11110011

;out EIMSK, mpr

;S9et the Interrupt Sense Control to falling edge detection
;1di mpr, 0b00001010

;sts EICRA, mpr

;1di mpr, 0b10101010

;out EICRB, mpr

;0ther
;sel ; Enable interrupts

; koo kokok ok sk sk sk sk sk sk ok sk ok ok ok sk sk sk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok
;* Main Program

; sk ok ok ok ok ok sk sk sk ok ok sk sk o ok ok ok sk sk sk ok sk ok ok o ok ok ok sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk ok ok ok ok sk ok ok
MAIN:

; Load PIND into mpr

in mpr, PIND

andi mpr, Ob11110011

; Check PINDO

cpi mpr, 0b11110010

brne CHECK1 ; if this pin not pressed, check next
rcall MOV_FWD

rjmp MAIN

CHECK1:

; Check PIND1

cpi mpr, 0b11110001

brne CHECK4 ; if this pin not pressed, check next
rcall MOV_BCK

rjmp MAIN

CHECK4:

; Check PIND4

cpi mpr, 0b11100011

brne CHECKS ; if this pin not pressed, check next
rcall TURN_R

rjmp MAIN

CHECKS:

; Check PIND5S

cpi mpr, 0b11010011

brne CHECK6 ; if this pin not pressed, check next
rcall TURN_L

rjmp MAIN

CHECKG6:

; Check PIND6

cpi mpr, 0b10110011

brne CHECK7 ; if this pin not pressed, check next
rcall HALT

rjmp MAIN

CHECKT :

; Check PIND7

cpi mpr, 0b01110011

brne MAIN ; if this pin not pressed, check next
rcall FRZ_ATK

rjmp MAIN

5 KRk okoko ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok skok skok skok skok sk ok sk ok skokeskok skokoskokoskokoskokskok sk okskok ko

;¥ Functions and Subroutines
5 kst stk ok skokook ok ok sk sk ok ok sk skok ok skokok ok ok sk sk ok ok skoskok ok skokok ok ok sk ok ok sk ok

; sk ok ok ok ok ok sk sk sk ok ok sk ok o ok ok ok sk sk sk ok sk ok ok o ok ok sk sk sk sk sk sk sk s o sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk ok ok
;¥ Function: MOV_FWD
;* Description: Transmits the BotAddress and the Move

;* Forward action code to the receiver
; koo ok okok ok sk sk sk sk sk sk ok ok ok ok ok ok sk sk sk sk sk ok sk o sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok

MOV_FWD:
push mpr

10

1di mpr2, 0b00000001
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, MovFwd ; Load and send Move Foward action code
rcall TRANSMIT

pop mpr
ret ; Return

; sk ok ok ok ok sk sk sk sk ok sk ok ok o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk ok o sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
;% Function: MOV_BCK

;* Description: Transmits the BotAddress and the Move

;* Backward action code to the receiver

3 Kok sk sk sk ok ok ok sk sk sk sk ok ok R Rk ook ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ko ko sk ok ok ok ok ok ok ok
MOV_BCK:

push mpr

1di mpr2, O0b00000010
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, MovBck ; Load and send Move Backward action code
rcall TRANSMIT

pop mpr
ret ; Return

; Ksksksk sk koo ok okokokokokokok ok skokskskokosk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk skskskokokok kot ok k ok skokok sk ok sk ok ok
;% Function: TURN_R

;* Description: Transmits the BotAddress and the Turn

;* Right action code to the receiver

; skskskskok ok ook okokokokokokokokokokokokok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skttt kot ok ok kokokok ok ok ok ok
TURN_R:

push mpr

1di mpr2, 0b00010000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, TurnR ; Load and send Turn Rightdf action code
rcall TRANSMIT

11

pop mpr
ret ; Return

; ook ok sk ok sk sk sk sk ok sk ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ok ok sk sksk sk sk sk sk sk ok ok ok sk sk sk ok
;% Function: TURN_L

;% Description: Transmits the BotAddress and the Turn

; Left action code to the receiver

3 Sksksk sk sk sk sk ok sk sk sk ok ok ok ok ok ok ko sk ok ok ok sk ok ok sk sk sk sk ok

TURN_L:
push mpr

1di mpr2, 0b00100000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, TurnL ; Load and send Turn Left action code
rcall TRANSMIT

pop mpr
ret ; Return

5 Kok skokoskok skok kb kb sk ok sk ok skok kb skok kok kok skok skok skok skokeskokoskok skokskokskokoskok skokskokskokskokkok ko
;% Function: HALT
;* Description: Transmits the BotAddress and the Halt

;% action code to the receiver
; sk kokok ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok

HALT:
push mpr

1di mpr2, 0b01000000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress
rcall TRANSMIT

1di mpr, Halt_Code ; Load and send Halt action code
rcall TRANSMIT

pop mpr
ret ; Return

; SKskskskokokok ook okokofofokokok ok skok sk skok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk skskskkokokok ok k k ok sk kok sk sk sk sk ok
;% Function: FRZ_ATK

;* Description: Transmits the BotAddress and the Freeze

;% Attack action code to the receiver

12

; sk kokokok sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk ok sk o ok ok sk sk sksk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk ok
FRZ_ATK:
push mpr

1di mpr2, 0b10000000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, Frz_Atk_Code ; Load and send Freeze Attack action code
rcall TRANSMIT

pop mpr
ret ; Return

; sk kokok ok sk sk sk sk sk sk ok sk ok okok ok sk sksk sk sk ok ok s ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk ok sk ok ok ok sk sk ok
;% Function: TRANSMIT

;* Description: Waits for the USART1 Data Register to be

;* empty before loading it with mpr and transmitting the signal
; okokokokokok ok skt ok sk ok sk ok sk ok ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sksk sk sk ok sk ko ok sk sksk sk sk sk sk sk ok ok ok sk sk ok ok
TRANSMIT:

1ds mpr2, UCSR1A

andi mpr2, 0b00100000

cpi mpr2, 0b00100000 ; Proceed if UDR1 is empty

breq SKIP_T

rjmp TRANSMIT ; and ready to transmit data

SKIP_T:

sts UDR1, mpr ; Send action code through UDR1

ret ; Return

5 KRk okok okok sk okok ok ok ok ok ok ok ok

;* Stored Program Data
; sk ok ok ok ok sk sk sk sk sk sk ok o ok ok ok ok sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok

5 Kokokokok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok skok skok skok sk ok sk ok skokskokskokoskokoskokoskokskokskokkokkok

;* Additional Program Includes
5 kskokskokskokokokok skok ok ok ok skokokskok ok ok sk ok skokokskok ok ok ok skokokskok ok skok ok ook kok ok

9.2 Receiver

5 kookook ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok kok ok kok ok ok
5k

;% This is the RECEIVE file for Lab 8 of ECE 375

5k

;¥ Author: Nicholas Kim and Srikar Valluri

13

sk Date: 3/1/2022
<%

3

5 Kok skokoskok kok kb kb sk ok sk ok skok kb skok skok skokeskok skok skok skokeskok skok skok skok skokskok skokoskokoskokskokkok ko

.include "m128def.inc" ; Include definition file

; skokokokokokok ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk o sk ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
;* Internal Register Definitions and Constants

3 Sksksk sk sk sk sk sk sk sk sk ok sk ok ok ok ok ok sk ok sk ok ok ok sk sk sk sk sk sk sk ok
.def mpr = r16 ; Multi-Purpose Register

.def mpr2 = r20 ; Multi-Purpose Register

.def continue = rl17 ; Used for Delayl function

.def frz_cnt = r18 ; Freeze Count

.def loop_cnt = r19 ; Loop Count

.def action_check = r21 ; Check for action code if set

.def waitcnt = r22
.def olcnt = r23
.def ilcnt r24

.def mpr3 = r2b

.equ WskrR = 0 ; Right Whisker Input Bit

.equ WskrL = 1 ; Left Whisker Input Bit

.equ EngEnR = 4 ; Right Engine Enable Bit
.equ EngEnl. = 7 ; Left Engine Enable Bit

.equ EngDirR = ; Right Engine Direction Bit
.equ EngDirL = ; Left Engine Direction Bit

5
6
.equ BotAddress = $3A ; (Enter your robot’s address here (8 bits))

/1111177 777

;These macros are the values to make the TekBot Move.

/1111177 777

.equ MovFwd = (1<<EngDirR|1<<EngDirL) ;0b01100000 Move Forward Action Code
.equ MovBck = $00 ;0b00000000 Move Backward Action Code

.equ TurnR = (1<<EngDirL) ;0b01000000 Turn Right Action Code
.equ Turnl = (1<<EngDirR) ;0b00100000 Turn Left Action Code
.equ Halt = (1<<EngEnR|1<<EngEnL) ;0b10010000 Halt Action Code

.equ Freeze_Code = 0b01010101 ;0b01010101 Freeze Action Code

5 Kokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok skok ok ok sk ok sk ok skok skok skokoskokoskokoskokoskokskokokok ok ok

;* Start of Code Segment
; 3ok ok skok ok o ok sk ok ok o ok sk ok ok o ok sk ok sk o sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk ok sk ok sk ok sk ok sk ok

.cseg ; Beginning of code segment

14

; ook stk stk ok stk sk sk ok stk sk sk ok sksksk sk sk sk sk sk sk ok sk sk ok stk sk ok stk sk ok stk sk ok
;* Interrupt Vectors

; Sokoksrokoskokok stk sk ok sksk sk ok sk sksk sk ok sk sk sk sk sk sk sk sk sk sksk sk ok sksk sk ok sksk sk ok sksk sk ok sk sk sk ok
.org $0000 ; Beginning of IVs

rjmp INIT ; Reset interrupt

;Should have Interrupt vectors for:
;- Right whisker

.org $0002

rjmp HitRight

;— Left whisker
.org $0004
rjmp HitLeft

;— USART receive
.org $003C
rjmp RECEIVE

.org $0046 ; End of Interrupt Vectors

; sk kokokok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sksk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok ok sk ok sk ok
;* Program Initialization

; sk ok ok ok ok sk sk sk ok ok sk sk o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk s o sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok ok
INIT:

;Stack Pointer (VERY IMPORTANT!!!!)

1di mpr, low(RAMEND)

out SPL, mpr

1di mpr, high(RAMEND)

out SPH, mpr

;I/0 Ports

; Port B for LED outputs (initially off)
1di mpr, $FF

out DDRB, mpr

1di mpr, $00

out PORTB, mpr

; Port D for button inputs with pull-up resistors
1di mpr, 0b11111100

out DDRD, mpr

1di mpr, 0b0O0O000011

out PORTD, mpr

;USART1
;Set baudrate at 2400bps

15

1di mpr, high(832)
sts UBRR1H,mpr
1di mpr, low(832)
sts UBRRIL,mpr

; Set Double Data rate
1di mpr, (1<<U2X1)
sts UCSR1A,mpr

;Enable receiver and enable receive interrupts,
; and tramsmitter for Freeze Attack

1di mpr, (1<<RXCIE1l | 1<<RXEN1 | 1<<TXEN1)

sts UCSR1B,mpr

;9et frame format: 8 data bits, 2 stop bits
1di mpr, (1<<USBS1 | 1<<UCSZ11 | 1<<UCSZ10)
sts UCSR1C,mpr

;External Interrupts

;Set the External Interrupt Mask
1di mpr, O0b00000011

out EIMSK, mpr

;S9et the Interrupt Sense Control to falling edge detection
1di mpr, 0b00001010
sts EICRA, mpr

; Initialize Registers
1di continue,$00

1di frz_cnt,$00

1di loop_cnt,$00

1di action_check,$00

1di waitcnt,$0A ; for 100ms delay

1di olcnt,$00

1di ilcnt,$00

1di mpr3,3$00

; Initialize TekBot Forward Movement

1di mpr, MovFwd ; Load Move Forward Command

out PORTB, mpr ; Send command to motors

;0ther
sei ; Enable interrupts

16

; sk kokokok sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk ok sk o ok ok sk sk sksk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk ok
;* Main Program

; sk ok ok ok ok sk sk sk ok ok sk sk o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk ok o sk sk sk sk sk sk sk sk sk ok ok ok ok sk ok ok
MAIN:

rjmp MAIN

5 Kok skokoskokeskok skok skokeskok skok skok kol kol kol skok kol kol skok kol skokeskok kol kol skokskokeskok skokeskokskokskokskok

; Functions and Subroutines

3 Sksksk sk sk sk sk ok sk sk sk ok ok ok ok ok ok ko sk ok ok ok sk ok ok sk sk sk sk ok

; Func: HitRight

; Desc: This function is called whenever the INTO is activated.

; Since the right whisker is activated, it moves backwards for a
; second, turns left, and moves forward again.

HitRight:

push mpr
in mpr, PORTB ; Save current action
push mpr

; Disable receiver
1di mpr, (O<<RXCIE1 | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Move Backwards for a second

1di mpr, MovBck ; Load Move Backward command
out PORTB, mpr ; Send command to port

1di waitcnt, 100 ; Load 1000(ms) into waitcnt
rcall DelaylOms ; Delay one second

; Turn left for a second

1di mpr, TurnlL ; Load Turn Left Command

out PORTB, mpr ; Send command to port

1di waitcnt, 100 ; Load 1000(ms) into waitcnt
rcall DelaylOms ; Delay one second

; Move Forward again

1di mpr, MovFwd ; Load Move Forward command
out PORTB, mpr ; Send command to port

; Clear queue

1di mpr, $FF ; Clear EIFR by setting all bits

out EIFR, mpr ; to avoid queued interrupts

; Re—enable receiver and receive interrupts

17

1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

pop mpr
out PORTB, mpr ; Resume previous action

pop mpr

; Func: HitLeft

; Desc: This function is called whenever the INT1 is activated.
; Since the left whisker is activated, it moves backwards for a
; second, turns right, and moves forward again.

HitlLeft:

push mpr
in mpr, PORTB ; Save current action
push mpr

; Disable receiver
1di mpr, (O<<RXCIE1 | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Move Backwards for a second

1di mpr, MovBck ; Load Move Backward command
out PORTB, mpr ; Send command to port

1di waitcnt, 100 ; Load 1000(ms) into waitcnt
rcall DelaylOms ; Delay one second

; Turn right for a second

1di mpr, TurnR ; Load Turn Right Command

out PORTB, mpr ; Send command to port

1di waitcnt, 100 ; Load 1000(ms) into waitcnt
rcall DelaylOms ; Delay one second

; Move Forward again

1di mpr, MovFwd ; Load Move Forward command
out PORTB, mpr ; Send command to port

; Clear queue

1di mpr, $FF ; Clear EIFR by setting all bits

out EIFR, mpr ; to avoid queued interrupts

; Re—enable receiver and receive interrupts

18

1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

pop mpr
out PORTB, mpr ; Resume previous action

pop mpr

; Func: FREEZE

; Desc: "Freeze" for 5 seconds. Halts, disables whisker response,
; and disables transmitter command response

FREEZE:

push mpr

in mpr, PORTB ; Save current action

push mpr

; Flash Freeze signal for 100ms second as an indicator
in mpr2, PORTB ; Save previous action

1di mpr, $55

out PORTB, mpr ; Flash Freeze signal
1di waitcnt, 10

rcall Delayl1Oms

out PORTB, mpr2 ; Return to previous action

; Immediately disable interrupts
;Disable receiver, receive interrupts,
; and tramsmitter for Freeze Attack
1di mpr, $00

sts UCSR1B,mpr

;Clear the External Interrupt Mask
1di mpr, $00

out EIMSK, mpr

; Halt

1di mpr, Halt ; Load Halt Command

out PORTB, mpr ; Send command to port

inc frz_cnt ; Increment Freeze Count

; If third time being frozen, stay frozen

19

cpi frz_cnt, $03

brne SKIP_3F

FROZEN:

rjmp FROZEN ; Infinite Loop

SKIP_3F:

; Wait for 5 seconds

1di loop_cnt, $05

WAIT_b:

1di waitcnt, 100

rcall DelaylOms ; Delay one second
dec loop_cnt ; Decrement count
brne WAIT_5 ; Wait for 5 loops

; Re—enable interrupts

;Enable receiver, receive interrupts,

; and tramsmitter for Freeze Attack

1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

;Set the External Interrupt Mask
1di mpr, O0b0O0O000011
out EIMSK, mpr

; Clear queue
1di mpr, $FF ; Clear EIFR by setting all bits
out EIFR, mpr ; to avoid queued interrupts

pop mpr
out PORTB, mpr ; Resume previous action

pop mpr
ret ; Return from FREEZE

; Sub: DelaylOms

; Desc: A wait loop that is 16 + 159975%waitcnt cycles or roughly
; waltcnt*10ms. Just initialize wait for the specific amount

; of time in 10ms intervals. Here is the general eqaution

for the number of clock cycles in the wait loop:

((3 * ilcnt + 3) * olent + 3) * waitcnt + 13 + call

Delay10Oms:

push waitcnt ; Save wait register

push ilcnt ; Save ilcnt register

20

push olcnt ; Save olcnt register

Loop: 1di olcnt, 224 ; load olcnt register
OLoop: 1di ilcnt, 237 ; load ilcnt register
ILoop: dec ilcnt ; decrement ilcnt

brne ILoop ; Continue Inner Loop

dec olcnt ; decrement olcnt

brne OLoop ; Continue Outer Loop

dec waitcnt ; Decrement wait

brne Loop ; Continue Wait loop

pop olcnt ; Restore olcnt register
pop ilcnt ; Restore ilcnt register
pop waitcnt ; Restore wait register
ret ; Return from subroutine

; Func: RECEIVE
; Desc: Read in data from Receive Data Buffer

RECEIVE:
push mpr
push mpr2

1di waitcnt, 10
rcall DelaylOms ; Brief delay to avoid switch debouncing

1lds mpr, UDR1

; Check for Freeze

cpi mpr, Freeze_Code

brne SKIP_F ; If not being frozen, skip
rcall FREEZE

rjmp END_R

SKIP_F:

; If previous receive was correct address, check for action
cpi action_check, $FF

breq ACT_CHECK

; Otherwise, check for address

ADR_CHECK:
cpi mpr, BotAddress
brne END_R ; Skip all if wrong address

; If address is correct

21

1di action_check,$FF ; Load action check
rjmp END_R

ACT_CHECK:
1di action_check,$00 ; Clear action check

; Check for Freeze Attack action code
cpi mpr, 0b11111000
brne SKIP_ATK ; Skip attack sequence

; Freeze Attack Sequence

; Disable receiver to avoid self-freeze
1di mpr, (O<<RXCIE1 | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Send out Freeze signal
1di mpr, 0b01010101
rcall TRANSMIT

1di waitcnt, 10
rcall DelaylOms ; Brief delay to avoid self-freeze

; Re—enable receiver and receive interrupts
1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

rjmp END_R

SKIP_ATK:

; Check each command code to determine if valid or junk
CHECK_FWD:

cpi mpr, 0b10110000 ; Move Forward action code
brne CHECK_BCK

rjmp VALID

CHECK_BCK:

cpi mpr, 0b10000000 ; Move Back action code
brne CHECK_R

rjmp VALID

CHECK_R:

cpi mpr, 0b10100000 ;Turn Right action code
brne CHECK_L

rjmp VALID

CHECK_L:

cpi mpr, 0b10010000 ; Turn Left action code
brne CHECK_HALT

22

rjmp VALID
CHECK_HALT:
cpi mpr, 0b11001000
brne END_R

VALID:

; If not Freeze Attack, load action code onto LEDs
1sl mpr ; TekBot movement is Action Code

out PORTB, mpr ; with MSB (1) shifted out

rjmp END_R
END_R:

pop mpr2
pop mpr
reti ; Return from interrupt

5 Kok skoko ok kok sk ok sk ok sk ok sk ok skok kb sk ok skok skok skokesk ok skok skokeskokeskok skokeskokskokoskokeskokoskokoskokskokkok ko
;% Function: TRANSMIT
;* Description: Waits for the USART1 Data Register to be

;* empty before loading it with mpr and transmitting the signal
; sk okokok ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok

TRANSMIT:

lds mpr2, UCSR1A

andi mpr2, 0b00100000

cpi mpr2, 0b00100000 ; Proceed if UDR1 is empty
breq EMPTY

rjmp TRANSMIT ; and ready to transmit data
EMPTY:

sts UDR1, mpr ; Send action code through UDR1

; Flash Freeze signal for 100ms as an indicator
in mpr2, PORTB ; Save previous action

out PORTB, mpr ; Flash Freeze signal

1di waitcnt, 10
rcall DelaylOms ; Brief delay to flash signal

out PORTB, mpr2 ; Return to previous action

ret ; Return

5 Kok skokoskok skok kb sk ok sk ok sk ok skok kb kok kok skok skokeskok skok skokeskokeskok skokeskokskokskokoskokoskokskokskokkok ko

;* Stored Program Data

23

3 Skoksk sk sk sk sk sk sk sk sk sk sk ok ok ko ook ok ok ok ok sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ks ok sk ok ok ok ok ok ok ok

5 Kok skokoskok kok kb kb sk ok sk ok skok kb skok skok skokeskok skok skok skokeskok skok skok skok skokskok skokoskokoskokskokkok ko

;* Additional Program Includes
;3 koo ok ok ok ok skokokok sk ok ok sk sk ok ok skokok ok sk ok sk sk sk ok ok skokok ok sk ok ok sk sk ok sk skokok ok ok ok ok ok ok ok

10 Challenge Code

10.1 Transmitter

5 KRk okokookok ok ok sk ok ok ok sk ok sk ok sk ok sk ok sk ok skok skok sk ok sk ok skok sk ok skok skok skokoskokoskokoskokoskokoskokoskokskokkokkok

This is the TRANSMIT file for Lab 8 Challenge of ECE 375

*
*
*
;% Author: Nicholas Kim and Srikar Valluri
* Date: 2/25/2022

*

5 2Kokokokok skok sk ok ok ok sk ok skok sk okok ok ok okokok ok ok

.include "m128def.inc" ; Include definition file

; okokokokokok ok sk ok ok ok sk sk ok sk ok ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sksk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk ok ok
;* Internal Register Definitions and Constants

; sk kokokok sk sk sk sk sk sk sk ok ok ok ok sk sk sksk sk ok sk s ok ok sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
.def mpr = r16 ; Multi-Purpose Register

.def mpr2 = ri17

.equ EngEnR = 4 ; Right Engine Enable Bit

.equ EngEnl = 7 ; Left Engine Enable Bit

.equ EngDirR = 5 ; Right Engine Direction Bit

.equ EngDirlL = 6 ; Left Engine Direction Bit

; Use these action codes between the remote and robot

; MSB = 1 thus:

; control signals are shifted right by one and ORed with 0b10000000 = $80

.equ MovFwd = ($80|1<<(EngDirR-1) |1<<(EngDirL-1)) ;0b10110000 Move Forward Action Code
.equ MovBck = ($80]/300) ;0b10000000 Move Backward Action Code

.equ TurnR = ($80]|1<<(EngDirL-1)) ;0b10100000 Turn Right Action Code

.equ Turnl = ($80|1<<(EngDirR-1)) ;0b10010000 Turn Left Action Code

.equ SpeedUp = ($80|1<<(EngEnR-1) |1<<(EngEnL-1)) ;0b11001000 Speed Up Action Code
.equ SpeedDown = 0b11111000 ;0b11111000 Speed Down Action Code

.equ BotAddress = $1A
3 KK ok Kok K ok Kok K ok K ok oK ok K ok K o K o K K K K K KK oK K K KoK KoK KoK KoK K oK Kok ok ok K o

;* Start of Code Segment
; 3ok ok skok ok o ok sk ok ok o ok sk ok ok o ok sk ok ok o sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok

24

.cseg ; Beginning of code segment

; Sksksksk ok sk ok ok sk sfokokokokok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk stttk ok ok ok ok sk sk ok sk sk sk sk ok
;* Interrupt Vectors

; skskskskokok ook ok okokokokokokokokkok koo sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk skskokkk kot ok kokok ok ok ok ok ok ok
.org $0000 ; Beginning of IVs

rjmp INIT ; Reset interrupt

.org $0046 ; End of Interrupt Vectors

; koo kokok ok sk sk sk sk sk sk sk sk o okok ok sk sk sk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
;* Program Initialization

; sk ok okok ok sk sk sk sk ok sk ok ok ok ok ok sk sk sk sk sk ok sk o ok ok sk sk sk sk sk sk sk ok o sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
INIT:

;Stack Pointer (VERY IMPORTANT!!!!)

1di mpr, low(RAMEND)

out SPL, mpr

1di mpr, high(RAMEND)
out SPH, mpr

;I/0 Ports

; Port D for button inputs with pull-up resistors

1di mpr, Ob00001000 ; TXD1 remains an output

out DDRD, mpr

1di mpr, Ob11110011 ; Pins 3 and 2 are not button inputs
out PORTD, mpr

; Port B for LEDs, initially off

1di mpr, $FF
out DDRB, mpr
1di mpr, $00

out PORTB, mpr

;USART1

;Set baudrate at 2400bps
1di mpr, high(832)

sts UBRR1H,mpr

1di mpr, low(832)

sts UBRRIL,mpr

; Set Double Data rate
1di mpr, (1<<U2X1)
sts UCSR1A,mpr

;Enable transmitter
1di mpr, (1<<TXEN1)

25

sts UCSR1B,mpr

;9et frame format: 8 data bits, 2 stop bits
1di mpr, (1<<USBS1 | 1<<UCSZ11 | 1<<UCSZ10)
sts UCSR1C,mpr

;External Interrupts

;9et the External Interrupt Mask
;1di mpr, 0b11110011

;out EIMSK, mpr

;9et the Interrupt Sense Control to falling edge detection
;1di mpr, O0b00001010

;sts EICRA, mpr

;1di mpr, 0b10101010

;out EICRB, mpr

;0ther
;sel ; Enable interrupts

5 skokokokokok sk ok ok ok ok sk sk ok ok ok ok sk sk sk sk ok ok sk sk sk sk sk sk ok sk sk sk ok sk ok sk sk sk skok ko sk sk sk skok ok sk sk sk ok ok ok ok ok
;* Main Program

; SKskskokokskok ok sk okokokokokok ok kR kokoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk skskskkokokok ok ok ok ok sk sk ok sk sk sk sk ok
MAIN:

; Load PIND into mpr

in mpr, PIND

andi mpr, Ob11110011

; Check PINDO

cpi mpr, 0b11110010

brne CHECK1 ; if this pin not pressed, check next
rcall MOV_FWD

rjmp MAIN

CHECK1:

; Check PIND1

cpi mpr, 0b11110001

brne CHECK4 ; if this pin not pressed, check next
rcall MOV_BCK

rjmp MAIN

CHECK4 :

; Check PIND4

cpi mpr, 0b11100011

brne CHECKS ; if this pin not pressed, check next
rcall TURN_R

rjmp MAIN

CHECK5:

26

; Check PINDS5S

cpi mpr, 0b11010011

brne CHECK6 ; if this pin not pressed, check next
rcall TURN_L

rjmp MAIN

CHECKG:

; Check PIND6

cpi mpr, 0b10110011

brne CHECK7 ; if this pin not pressed, check next
rcall SPEED_UP

rjmp MAIN

CHECKT :

; Check PIND7

cpi mpr, 0b01110011

brne MAIN ; if this pin not pressed, check next
rcall SPEED_DOWN

rjmp MAIN

5 Kskok ok skok kb sk ok kb sk ok sk ok sk ok sk ok sk ok skok skok sk ok skok skok skokeskokoskok skokskokoskokoskokoskokskokskokoskokskok ko

;¥ Functions and Subroutines
;5 sksksk sk sk sk ok sk sk sk sk sk sk sk sk ok ok ko kR sk ok ok sk kst ok ok sk ok ok sk ok ok sk ok

; SKskskskokskok ok sk okokokokokok ok okok sk koskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk stttk kok ok ok ok ok sk ok ok sk sk sk sk ok
;¥ Function: MOV_FWD

;* Description: Transmits the BotAddress and the Move

;* Forward action code to the receiver

; KKKtk ko ook ok okokofokokok ok skokskskoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk skskskokok kot ok sk ok skok sk sk sk sk ok ok
MOV_FWD:

push mpr

1di mpr2, 0b00000001
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, MovFwd ; Load and send Move Foward action code
rcall TRANSMIT

pop mpr
ret ; Return

; Sokokokokokok ok sk ok sk sk sk sk ok sk ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ok ok sk sksk sk sk sk sk sk ok ok ok sk ok sk ok
;% Function: MOV_BCK
;* Description: Transmits the BotAddress and the Move

;% Backward action code to the receiver
; Sksk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk ok sk ok ok ok k sk sk sk sk sk ok sk ok

27

MOV_BCK:
push mpr

1di mpr2, 0b00000010
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, MovBck ; Load and send Move Backward action code
rcall TRANSMIT

pop mpr
ret ; Return

3 sksksk sk sk sk ok sk sk sk sk sk sk ok ok ok ok ok ok ok sk ok ok ok sk sk sk sk sk sk sk ok
;% Function: TURN_R
;* Description: Transmits the BotAddress and the Turn

;* Right action code to the receiver
; sk ok ok ok ok ok sk sk sk ok ok sk sk o ok ok ok sk sk sk ok sk ok ok o ok sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok ok ok sk sk sk ok

TURN_R:
push mpr

1di mpr2, 0b00010000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, TurnR ; Load and send Turn Rightdf action code
rcall TRANSMIT

pop mpr
ret ; Return

; SKsksksk sk sk ok ok sk sfokokokokok ok ok ok ok k ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk stttk ok ok ok ok ok sk ok sk sk sk sk sk ok
;* Function: TURN_L
;* Description: Transmits the BotAddress and the Turn

; Left action code to the receiver
5 kskokskokskokokokok skok ok ok ok skokok skok ok ok ok ok ok skok stk ok ok skokokskok ok skok ok ook kok ok

TURN_L:
push mpr

1di mpr2, 0b00100000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress
rcall TRANSMIT

28

1di mpr, TurnL ; Load and send Turn Left action code
rcall TRANSMIT

pop mpr
ret ; Return

; skokokokokokok ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk o sk ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
;% Function: SPEED_UP

;* Description: Transmits the BotAddress and the Speed

;¥ Up action code to the receiver

; ook kokokok sk sk sk sk sk sk ok sk ok ok ok sk sk sksk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk ok sk ok ok ok sk sk sk ok
SPEED_UP:

push mpr

1di mpr2, 0b01000000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, SpeedUp ; Load and send Speed Up action code
rcall TRANSMIT

pop mpr
ret ; Return

; ook ok sk ok sk sk sk sk ok sk ok ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ko ok sk sksk sk sk sk sk sk ok ok ok sk sk ok ok
;% Function: SPEED_DOWN
;* Description: Transmits the BotAddress and the Speed

; Down action code to the receiver
;3 Sksksk sk sk sk sk sk sk sk ok sk ok ok ok ok ok ook sk ok sk ok ok ok sk sk sk sk sk sk sk ok

SPEED_DOWN :
push mpr

1di mpr2, 0b10000000
out PORTB, mpr2

1di mpr, BotAddress ; Load and send BotAddress

rcall TRANSMIT

1di mpr, SpeedDown ; Load and send Speed Down action code
rcall TRANSMIT

pop mpr
ret ; Return

; sk ok ok ok ok ok sk sk sk ok ok ok ok o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk ok o sk sk sk sk sk sk sk sk sk ok o ok ok ok sk sk ok
;% Function: TRANSMIT

29

;* Description: Waits for the USART1 Data Register to be

;* empty before loading it with mpr and transmitting the signal
; sk ok ok ok ok sk sk sk ok ok sk sk o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk ok o sk sk sk sk sk sk sk sk sk ok ok ok ok sk ok ok

TRANSMIT:

lds mpr2, UCSR1A

andi mpr2, 0b00100000

cpi mpr2, 0b00100000 ; Proceed if UDR1 is empty
breq SKIP_T

rjmp TRANSMIT ; and ready to transmit data
SKIP_T:

sts UDR1, mpr ; Send action code through UDR1

ret ; Return

5 Kokokokoko ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok skok skok skok sk ok sk ok skok skok skokoskokoskokoskokoskokskokskokkok

;* Stored Program Data
5 kst skokok ook skokok ok ok sk sk ok stk sk ok stk skoksk sk ok ok sk sk ok ok skoskok ok skokok ok ok sk ok ok sk ok

5 Kok skokoskok sk ok kok sk ok sk ok sk ok kb kb sk ok skokeskok sk ok sk ok skok skokeskokeskok skokeskokskokoskokeskokoskokoskokoskokskok ko

;* Additional Program Includes
;3 ko koo ok sk ok ok skokokok ok ok ok sk ok sk skokok ok sk ok ok sk sk ok skskokok ok s ke k ok sk sk ok ok skokok ok ok ok ok ok ok ok

10.2 Receiver

5 Kokokokoko ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok skok sk ok skok skok skok skok skok skokoskokoskokoskokoskokoskokoskokskokkokkok

This is the RECEIVE file for Lab 8 Challenge of ECE 375

*
*
*
;¥ Author: Nicholas Kim and Srikar Valluri
* Date: 3/1/2022

*

3 Sksksk sk sk sk ok sk sk sk sk sk sk sk ok ok ok sk ko ok sk ok ok sk ks ko sk ok ok sk ok sk ok ok

.include "m128def.inc" ; Include definition file

; okokokokokok ok sk ok sk sk sk sk ok sk ok ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sksk sk sk sk sk ko ok sk sksk sk sk sk sk sk ok ok ok ok sk ok ok
;* Internal Register Definitions and Constants

; sk kokok ok sk sk sk sk sk sk ok sk ok ok ok sk sk sksk sk ok ok ok ok sk sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk ok
.def mpr = r16 ; Multi-Purpose Register

.def mpr2 = r20 ; Multi-Purpose Register

.def continue = r17 ; Used for Delayl function

.def frz_cnt = r18 ; Freeze Count

.def loop_cnt = r19 ; Loop Count

.def action_check = r21 ; Check for action code if set

.def waitcnt = r22

30

.def
.def

.def

.equ
.equ
.equ
.equ
.equ
.equ

.equ

.equ

olcnt
ilcnt

multi

WskrR
WskrL
EngEnR
EngEnL
EngDirR
EngDirL

BotAddr

const =

r23
r24

r25 ; Brightness multiplier (applied to const)

0 ; Right Whisker Input Bit
1 ; Left Whisker Input Bit
= 4 ; Right Engine Enable Bit
= 7 ; Left Engine Enable Bit
= 5 ;, Right Engine Direction Bit
= 6 ; Left Engine Direction Bit

ess = $1A ; (Enter your robot’s address here (8 bits))

17 ; brightness width

/1111117777777 777

;These macros are the values to make the TekBot Move.

/111111077777 77

.equ
.equ
.equ
.equ
.equ

MovFwd
MovBck
TurnR =
Turnl =
Freeze_

= (1<<EngDirR|1<<EngDirL) ;0b01100000 Move Forward Action Code
$00 ;0b00000000 Move Backward Action Code

(1<<EngDirL) ;0b01000000 Turn Right Action Code

(1<<EngDirR) ;0b00100000 Turn Left Action Code

Code = $55 ;0b01010101 Freeze Action Code

5 KRk okokook ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok skok sk ok skok sk ok sk ok sk ok skokoskokoskokoskokoskokoskokoskokskokskok ok ok

;* Start of Code Segment
; 3ok ok kR ok o ok sk ok ok o ok sk ok sk o ok sk sk sk o sk sk ok ok sk sk ok sk sk sk ok ok sk sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok

.cseg ; Beginning of code segment

5 Kokokokokook ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok skok sk ok sk ok sk ok skok skokoskokoskokoskokoskokskokskokskokkok

;* Interrupt Vectors
5 Kok skokoskokskoko skok ok kok skok skok kol skok kol skok skokeskok skok kol skok skok kol ok skokskok skok kol skok skokskokskok

.org $0000 ; Beginning of IVs
rjmp INIT ; Reset interrupt

;Should have Interrupt vectors for:
;- Right whisker

.org

$0002

rjmp HitRight

;- Left whisker

.org
rjmp

$0004
HitLeft

;- Timer/Counterl (for delays)

31

.org $001C
rijmp TIMER1_OVF

;— USART receive
.org $003C
rjmp RECEIVE

.org $0046 ; End of Interrupt Vectors

; ook ok sk ok sk sk sk sk ok sk ok ok ok ok sk sksk sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk ko ok sk sksk sk sk sk sk sk ok ok ok ok sk ok ok
;* Program Initialization

; sk kokok ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk ok
INIT:

;Stack Pointer (VERY IMPORTANT!!!!)

1di mpr, low(RAMEND)

out SPL, mpr

1di mpr, high(RAMEND)

out SPH, mpr

;I/0 Ports

; Port B for LED outputs (initially off)
1di mpr, $FF

out DDRB, mpr

1di mpr, $00

out PORTB, mpr

; Port D for button inputs with pull-up resistors
1di mpr, 0b11111100

out DDRD, mpr

1di mpr, 0b0O0000011

out PORTD, mpr

;USART1

;Set baudrate at 2400bps
1di mpr, high(832)

sts UBRR1H,mpr

1di mpr, low(832)

sts UBRRIL,mpr

; Set Double Data rate
1di mpr, (1<<U2X1)
sts UCSR1A,mpr

;Enable receiver and enable receive interrupts,
; and tramsmitter for Freeze Attack
1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)

32

sts UCSR1B,mpr

;9et frame format: 8 data bits, 2 stop bits
1di mpr, (1<<USBS1 | 1<<UCSZ11 | 1<<UCSZ10)
sts UCSR1C,mpr

;External Interrupts

;9et the External Interrupt Mask
1di mpr, 0b0O0000011

out EIMSK, mpr

;9et the Interrupt Sense Control to falling edge detection
1di mpr, 0b00001010
sts EICRA, mpr

;Timer/Counterl Initialization

; Configure 16-bit Timer/Counters

1di mpr, 0b0O0000000

out TCCR1A, mpr

1di mpr, O0b00000101 ; prescaling of 1024 to get 1s count
out TCCR1B, mpr

1di mpr, ObO0O000000

sts TCCR1C, mpr

; Enable Overflow Interrupt for Timer/Counterl

; CHALLENGE: enable Output Compare Match for 0/2
1di mpr, Ob10000110 ; Set TOEI1l, OCIE2, and OCIEO
out TIMSK, mpr

; Configure 8-bit Timer/Counters

1di mpr, 0b01101001 ; Fast PWM Mode, non-inverting
out TCCRO, mpr

out TCCR2, mpr

; No prescaling

; Initialize TekBot Forward Movement at full speed
1di mpr, 0b01101111 ; Load Move Forward Command and multi = 15
out PORTB, mpr ; Send command to motors

; Set initial speed, display on Port B pins 3:0

; Set OCRs to zero (low LED intensity = full speed)
1di mpr, ObO0O000000

out OCRO, mpr

out OCR2, mpr

; Initialize Registers

33

1di continue, $00
1di frz_cnt,$00
1di loop_cnt,$00
1di action_check, $00

1di waitcnt,$0A ; for 100ms delay
1di olcnt,$00
1di ilecnt,$00

1di multi,15 ; Full speed

;0ther
sei ; Enable interrupts

3 Rk ok ok ok ok skokokok sk ok ok sk sk ok ok okokok ok sk ok ok sk sk ok ok okokok ok ok ok sk sk ok sk okokok ok ok ok ok ok ok ok ok
;* Main Program

3 okokokokokok ok sk ok ok skok ok ok ok ok ok ok sk sk ok sk ok ok o ok ok sk sk sk sk sk ok o ok ok ok ok skok sk sk ko ok ko ok ok ok ok ok
MAIN:

rjmp MAIN

5 Kokokokokook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok skok ok ok sk ok skok skok skokoskokoskokoskokoskokoskokskokokok ok ok

;% Functions and Subroutines

; SKskskokokskok ok sk okokokokokok ok kR kokoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk skskskkokokok ok ok ok ok sk sk ok sk sk sk sk ok

; Func: HitRight

; Desc: This function is called whenever the INTO is activated.

; Since the right whisker is activated, it moves backwards for a
; second, turns left, and moves forward again.

HitRight:

push mpr
in mpr, PORTB ; Save current action
push mpr

; Clear interrupt flag in order to generate another interrupt
cli ; Clear interrupt flag

; Disable receiver
1di mpr, (O<<RXCIE1l | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Clear the External Interrupt Mask

1di mpr, $00
out EIMSK, mpr

34

; Disable Output Compare Match for 0/2
1di mpr, 0b00000100 ; Set TOEI1
out TIMSK, mpr

; Enable interrupts to allow Overflow Interrupt
sei ; Set interrupt flag

1di continue, $00

; Move Backwards for a second

in mpr, PORTB ; Save speed indicator

cbr mpr, 0b01100000 ; Only clear pins 5 and 6
out PORTB, mpr ; Send command to port

rcall WAIT

; Turn left for a second

; Toggle on pin 5 from previous command to turn left

in mpr, PORTB ; Save speed indicator

sbr mpr, 0b00100000 ; Set pin 5 without altering other pins
out PORTB, mpr ; Send command to port

rcall WAIT

; Clear queue
1di mpr, $FF ; Clear EIFR by setting all bits
out EIFR, mpr ; to avoid queued interrupts

; Re—enable receiver and receive interrupts
1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Set the External Interrupt Mask
1di mpr, 0b00000011
out EIMSK, mpr

; Enable Overflow Interrupt for Timer/Counterl

; CHALLENGE: enable Output Compare Match for 0/2
1di mpr, Ob10000110 ; Set TOEI1l, OCIE2, and OCIEO
out TIMSK, mpr

pop mpr

out PORTB, mpr ; Resume previous action
pop mpr

; Func: HitLeft

; Desc: This function is called whenever the INT1 is activated.
; Since the left whisker is activated, it moves backwards for a
second, turns right, and moves forward again.

HitLeft:

push mpr
in mpr, PORTB ; Save current action
push mpr

; Clear interrupt flag in order to generate another interrupt
cli ; Clear interrupt flag

; Disable receiver
1di mpr, (O<<RXCIE1 | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Clear the External Interrupt Mask
1di mpr, $00
out EIMSK, mpr

; Disable Output Compare Match for 0/2
1di mpr, Ob0O0000100 ; Set TOEI1
out TIMSK, mpr

; Enable interrupts to allow Overflow Interrupt
sel ; Set interrupt flag

1di continue, $00

; Move Backwards for a second

in mpr, PORTB ; Save speed indicator

cbr mpr, 0b01100000 ; Only clear pins 5 and 6
out PORTB, mpr ; Send command to port

rcall WAIT

; Reset TOV1 by writing 1 to it
1di mpr, 0b00000100
out TIFR, mpr

; Turn left for a second

; Toggle on pin 6 from previous command to turn right

in mpr, PORTB ; Save speed indicator

sbr mpr, 0b01000000 ; Set pin 6 without altering other pins
out PORTB, mpr ; Send command to port

36

rcall WAIT

; Clear queue
1di mpr, $FF ; Clear EIFR by setting all bits
out EIFR, mpr ; to avoid queued interrupts

; Re—enable receiver and receive interrupts
1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

; Set the External Interrupt Mask
1di mpr, 0b00000011
out EIMSK, mpr

; Enable Overflow Interrupt for Timer/Counterl

; CHALLENGE: enable Output Compare Match for 0/2
1di mpr, 0b10000110 ; Set TOEI1, OCIE2, and OCIEO
out TIMSK, mpr

pop mpr
out PORTB, mpr ; Resume previous action

pop mpr

; Func: FREEZE

; Desc: "Freeze" for 5 seconds. Halts, disables whisker response,
; and disables transmitter command response
FREEZE:

push mpr

in mpr, PORTB ; Save current action

push mpr

in mpr, OCRO

push mpr

in mpr, OCR2

push mpr

; Flash Freeze signal for 100ms as an indicator
in mpr2, PORTB ; Save previous action

1di mpr, $55

out PORTB, mpr ; Flash Freeze signal
1di waitcnt, 10

rcall Delayl1Oms

37

out PORTB, mpr2 ; Return to previous action

; Immediately disable interrupts
;Disable receiver, receive interrupts,
; and tramsmitter for Freeze Attack
1di mpr, $00

sts UCSR1B,mpr

;Clear the External Interrupt Mask
1di mpr, $00
out EIMSK, mpr

; Halt

in mpr, PORTB ; Save speed indicator

andi mpr, Ob00001111 ; Mask out engine control
ori mpr, Obl10010000 ; Disable engines

out PORTB, mpr

1di mpr, Ob11111111
out OCRO, mpr
out OCR2, mpr

inc frz_cnt ; Increment Freeze Count

; If third time being frozen, stay frozen
cpi frz_cnt, $03

brne SKIP_3F

FROZEN:

rjmp FROZEN ; Infinite Loop

SKIP_3F:

; Wait for 5 seconds

1di loop_cnt, $05

WAIT_b:

1di waitcnt, 100

rcall DelaylOms ; Delay one second
dec loop_cnt ; Decrement count
brne WAIT_5 ; Wait for 5 loops

; Re—enable interrupts

;Enable receiver, receive interrupts,

; and tramsmitter for Freeze Attack

1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

38

;9et the External Interrupt Mask
1di mpr, 0b0O0000011
out EIMSK, mpr

; Clear queue
1di mpr, $FF ; Clear EIFR by setting all bits
out EIFR, mpr ; to avoid queued interrupts

pop mpr
out OCR2, mpr

pop mpr
out OCRO, mpr

pop mpr
out PORTB, mpr ; Resume previous action

pop mpr
ret ; Return from FREEZE

; Func: SPEED_DOWN
; Desc: Increases the OCRO and OCR2 to decrease the speed
; of the TekBot motors

SPEED_DOWN: ; Begin a function with a label

; If needed, save variables by pushing to the stack
push mpr

push mpr2

1di waitcnt, 10
rcall DelaylOms ; Brief delay to avoid switch debouncing

cpi multi, ObO000O0000 ; if multi is zero
breq SKIP_DEC ; cannot decrease speed, so skip

dec multi ; decrease multi
mov mpr, multi

in mpr2, PORTB ; Save engine control
andi mpr2, 0b11110000 ; Mask out previous speed indicator

or mpr, mpr2 ; OR with engine direction bits
out PORTB, mpr ; output new multi onto PORTB

1di mpr, const

39

mul multi, mpr ; multiply multi with 17
1di mpr, 255
sub mpr, r0O ; subtract from 255 to get LED intensity

out OCRO, mpr ; output new LED intensity
out OCR2, mpr

SKIP_DEC:

; Clear queue
1di mpr, $FF ; Clear EIFR by setting all bits
out EIFR, mpr ; to avoid queued interrupts

; Restore any saved variables by popping from stack
pop mpr2
pop mpr

ret ; Return from Speed Down

; Func: SPEED_UP
; Desc: Decreases the OCRO and OCR2 to increase the speed
; of the TekBot motors

SPEED_UP: ; Begin a function with a label

; If needed, save variables by pushing to the stack
push mpr

push mpr2

1di waitcnt, 10
rcall DelaylOms ; Brief delay to avoid switch debouncing

cpi multi, Ob00001111 ; if multi is 15
breq SKIP_INC ; cannot increase speed, so skip

inc multi ; increase multi
mov mpr, multi

in mpr2, PORTB ; Save engine control
andi mpr2, 0b11110000 ; Mask out previous speed indicator

or mpr, mpr2 ; OR with engine direction bits
out PORTB, mpr ; output new multi onto PORTB

1di mpr, const

40

mul multi, mpr ; multiply multi with 17
1di mpr, 255
sub mpr, r0O ; subtract from 255 to get LED intensity

out OCRO, mpr ; output new LED intensity
out OCR2, mpr

SKIP_INC:

; Clear queue
1di mpr, $FF ; Clear EIFR by setting all bits
out EIFR, mpr ; to avoid queued interrupts

; Restore any saved variables by popping from stack
pop mpr2
pop mpr

ret ; Return from Speed Up

; Func: Wait
; Desc: One second delay using Timer/Counterl Interrupt

; Reset TOV1 by writing 1 to it
1di mpr, 0b00000100
out TIFR, mpr

; Initialize TCNT1 for 1s
1di mpr, high(49911)

out TCNT1H, mpr

1di mpr, low(49911)

out TCNT1L, mpr

; Wait for TOV1 to be set before continuing
;WAIT_TOV1:

; Polling method

;in mpr, TIFR ; Check if TOV1 is set

;andi mpr, 0b00000100

;breq WAIT_TOV1 ; Wait if TOV1 is not set

; Overflow Interrupt method

; Wait for Timer/Counterl Overflow Interrupt
WAIT_OVF:

41

cpi continue, $FF ; Will be set during interrupt
brne WAIT_OVF ; Wait if continue is not set

; Reset continue by clearing
1di continue, $00

; Restore any saved variables by popping from stack
pop mpr

ret ; Return from WAIT

; Sub: DelaylOms

; Desc: A wait loop that is 16 + 159975*waitcnt cycles or roughly
; waitcnt*10ms. Just initialize wait for the specific amount

; of time in 10ms intervals. Here is the general eqaution

; for the number of clock cycles in the wait loop:

; ((8 x ilcnt + 3) * olcnt + 3) * waitcnt + 13 + call

Delay1Oms:

push waitcnt ; Save wait register

push ilcnt ; Save ilcnt register

push olcnt ; Save olcnt register

Loop: 1di olcnt, 224 ; load olcnt register
OLoop: 1di ilcnt, 237 ; load ilcnt register
ILoop: dec ilcnt ; decrement ilcnt

brne ILoop ; Continue Inner Loop

dec olcnt ; decrement olcnt

brne OLoop ; Continue Outer Loop

dec waitcnt ; Decrement wait

brne Loop ; Continue Wait loop

pop olcnt ; Restore olcnt register
pop ilcnt ; Restore ilcnt register
pop waitcnt ; Restore wait register
ret ; Return from subroutine

; Func: TIMER1_OVF
; Desc: Sets the continue register at timer overflow

TIMER1_OVF:
push mpr

; Set continue register so subroutine can proceed
1di continue, $FF

42

; Debug with LED
;1di mpr, $02
;out PORTB, mpr

; Reset TOV1 by writing 1 to it
1di mpr, 0b00000100
out TIFR, mpr

pop mpr
reti ; Return from Overflow Interrupt

; Func: RECEIVE

; Desc: Read in data from Receive Data Buffer
RECEIVE:

push mpr

push mpr2

1di waitcnt, 10
rcall DelaylOms ; Brief delay to avoid switch debouncing

lds mpr, UDR1

; Check for Freeze
cpi mpr, Freeze_Code
brne SKIP_F

rcall FREEZE

rjmp END_R

SKIP_F:

; If previous receive was correct address, check for action
cpi action_check, $FF

breq ACT_CHECK

; Otherwise, check for address

ADR_CHECK:
cpi mpr, BotAddress
brne END_R ; Skip all if wrong address

; If address is correct

1di action_check,$FF ; Load action check
rjmp END_R

43

ACT_CHECK:

1di action_check,$00 ; Clear action check

CHECK_FWD:

cpi mpr, 0b10110000 ; Move Forward action code

brne CHECK_BCK

; If Move Forward command received
in mpr, PORTB ; Save speed indicator

ori mpr, 0b01100000 ; Only set pins 5 and 6

out PORTB, mpr ; Send command to port

rjmp END_R

CHECK_BCK:

cpi mpr, 0bl10000000 ; Move Back action
brne CHECK_R

; If Move Back command received

in mpr, PORTB ; Save speed indicator
andi mpr, 0b10011111 ; Only clear pins
out PORTB, mpr ; Send command to port

rjmp END_R

CHECK_R:

cpi mpr, 0b10100000 ;Turn Right action
brne CHECK_L

; If Turn Right command received

in mpr, PORTB ; Save speed indicator
andi mpr, 0b10011111 ; Only clear pins
ori mpr, 0b01000000 ; Only set pin 6
out PORTB, mpr ; Send command to port

rjmp END_R

CHECK_L:

cpi mpr, 0b10010000 ; Turn Left action
brne CHECK_SPD_UP

; If Turn Left command received

in mpr, PORTB ; Save speed indicator
andi mpr, 0b10011111 ; Only clear pins
ori mpr, Ob00100000 ; Only set pin 5
out PORTB, mpr ; Send command to port

rjmp END_R

code

5 and 6

code

5 and 6

code

5 and 6

44

CHECK_SPD_UP:
cpi mpr, 0b11001000 ; Speed Up action code
brne CHECK_SPD_DOWN

; If Speed Up command received

; Disable receiver to avoid double-command
1di mpr, (O<<RXCIE1l | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

rcall SPEED_UP

; Re—enable receiver and receive interrupts
1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

rjmp END_R

CHECK_SPD_DOWN :

cpi mpr, 0Ob11111000 ; Speed Down action code
brne END_R

; If Speed Down command received

; Disable receiver to avoid double-command
1di mpr, (O<<RXCIE1l | O<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

rcall SPEED_DOWN

; Re—enable receiver and receive interrupts
1di mpr, (1<<RXCIE1 | 1<<RXEN1 | 1<<TXEN1)
sts UCSR1B,mpr

rjmp END_R
END_R:

pop mpr2
pop mpr
reti ; Return from interrupt

5 Kok skoko ok sk ok sk ok sk ok sk ok sk ok sk ok kb sk ok skok skokeskokeskok skok skokeskok skok skokeskokeskokoskokoskokoskokoskokoskokskok ko
;% Function: TRANSMIT
;* Description: Waits for the USART1 Data Register to be

;* empty before loading it with mpr and transmitting the signal
; koo okokok ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk ok ok o sk ok sk sk sk sk sk sk sk sk o sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok

TRANSMIT:
lds mpr2, UCSR1A

45

andi mpr2, 0b00100000

cpi mpr2, 0b00100000 ; Proceed if UDR1 is empty
breq EMPTY

rjmp TRANSMIT ; and ready to transmit data
EMPTY:

sts UDR1, mpr ; Send action code through UDR1

; Flash Freeze signal for 100ms as an indicator
in mpr2, PORTB ; Save previous action

out PORTB, mpr ; Flash Freeze signal

1di waitcnt, 10
rcall DelaylOms ; Brief delay to flash signal

out PORTB, mpr2 ; Return to previous action

ret ; Return

;3 Sksk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok sk ok ok sk sk sk sk sk sk sk ok
;* Stored Program Data

3 Skeoksk sk sk sk sk sk sk sk sk sk sk ok ko ks ook sk ok ok ok ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ko ko sk ok ok ok ok ok ok ok
; sk ok ok ok ok sk sk sk ok ok sk ok o ok ok ok sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk ok o sk ok sk sk sk sk sk sk sk ok ok ok ok sk sk sk ok

;* Additional Program Includes
;3 koo ok ok ok ok skokokok ok ok sk sk ok ok skokok ok sk ok ok sk sk ok ok skokok ok sk ok ok sk sk ok sk skokok ok ok ok ok ok ok ok

46

