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Stefan Lee

DATA-DRIVEN COMPUTER VISION FOR

SCIENCE AND THE HUMANITIES

The rate at which humanity is producing visual data from both large-scale scientific

imaging and consumer photography has been greatly accelerating in the past decade.

This thesis is motivated by the hypothesis that this trend will necessarily change

the face of observational science and the humanities, requiring the development of

automated methods capable of distilling vast image collections to produce meaningful

analyses. Such methods are needed to empower novel science both by improving

throughput in traditionally quantitative disciplines and by developing new techniques

to study culture through large scale image datasets.

When computer vision or machine learning in general is leveraged to aid aca-

demic inquiry, it is important to consider the impact of erroneous solutions produced

by implicit ambiguity or model approximations. To that end, we argue for the impor-

tance of algorithms that are capable of generating multiple solutions and producing

measures of confidence. In addition to providing solutions to a number of multi-

disciplinary problems, this thesis develops techniques to address these overarching

themes of confidence estimation and solution diversity.

This thesis investigates a diverse set of problems across a broad range of studies

including glaciology, developmental psychology, architectural history, and demogra-

phy to develop and adapt computer vision algorithms to solve these domain-specific

applications. We begin by proposing vision techniques for automatically analyzing
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aerial radar imagery of polar ice sheets while simultaneously providing glaciologists

with point-wise estimates of solution confidence. We then move to psychology, intro-

ducing novel recognition techniques to produce robust hand localizations and segmen-

tations in egocentric video to empower psychologists studying child development with

automated annotations of grasping behaviors integral to learning. We then investi-

gate novel large-scale analysis for architectural history, leveraging tens of thousands

of publicly available images to identify and track distinctive architectural elements.

Finally, we show how rich estimates of demographic and geographic properties can

be predicted from a single photograph.

David Crandall, PhD

Michael Ryoo, PhD

Predrag Radivojac, PhD

Chunfeng Huang, PhD
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CHAPTER 1

INTRODUCTION

1.1 THESIS OVERVIEW

It is well-accepted and perhaps often over-stated that we have entered into the era of

“big data”; however, what is typically left unsaid is the fact that a large fraction of

this data takes the form of images and videos. Social media, photo-sharing websites,

and large-scale scientific imaging are producing tremendous quantities of visual data,

introducing new opportunities and challenges for many academic and scientific dis-

ciplines. When faced with the overwhelming flood of available images, traditionally

manual methods prevalent in many disciplines are insufficient in either throughput

or sensitivity to capture patterns in the data. The development of new computer

vision approaches informed by domain-specific knowledge will be an integral part of

overcoming these challenges and opening up novel avenues of data-driven academic

inquiry fueled by visual data.

In the following sections, we will argue for the need for automated visual analysis

in sciences and the humanities, discuss the taxonomy of tasks addressed in this thesis,

and then summarize our contributions and the structure for the remaining chapters.
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1.2 THE NEED FOR AUTOMATED VISUAL ANALYSIS

Recent work has shown great success using large-scale data analysis to enable aca-

demic inquiries; however, these methods have typically been based on non-visual

information. For example, collaborations between sociologists and computer scien-

tists are using social network data to measure human behavior at unprecedented

scales [72], while work in health informatics is using online data to monitor outbreaks

of diseases [46] and to predict their spread [111] (albeit with some controversy [110]

and missteps [71]), and geologists have applied machine learning to predict the mag-

nitude of upcoming earthquakes [1]. In the humanities, analysis of data has given

insight into historical legal records [67] and the dynamics of cultural history [112].

Large-scale analysis of digitized books through several centuries has been used to

quantify changes in linguistic and cultural phenomena over time [91]. The success of

these methods is encouraging and points to the potential of harnessing image data to

enable similar pursuits in both traditionally qualitative and quantitative domains.

In many academic domains, the introduction, development, and wide-spread use

of digital imaging has greatly increased the rate at which data can be extracted

from experiments; however, traditional means of analysis are not feasible at these

greater throughputs. In medical imaging and biology, high-speed microscopy has

opened new and promising avenues of research by capturing terabytes of images [64].

Satellites pointed towards the cosmos and back at Earth are constantly capturing

images of our universe at high resolution [131]. Archaeologists and art historians

are documenting artifacts and structures not only with traditional imagery but also

using reconstructions made from huge numbers of individual images [33, 69]. Social
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media platforms which share visual media such as Youtube, Instagram, Facebook,

and Flickr house billions of images and gain many millions more a day [15]. In order

to harness these new data sources and not find ourselves surrounded by mountains of

undecipherable data, we need to develop automated approaches to organize, annotate,

and analyze visual data.

Some work has begun to fill this space and demonstrate how computer vision

techniques can enhance existing methodologies. Automated processing of medical

fMRI images has helped to identify brain abnormalities due to prenatal cocaine ex-

posure [35] and blood vessel detection in images of patients’ inner eyes has automated

early diagnosis of many diseases including diabetes [38]. Methods have been devel-

oped in biology to track the movement of both fine-grained bodies in microscopy

imaging [21] as well as whole animals in behavioral studies [29], helping to improve

our understanding of living organisms. Citizen science applications have used publicly

shared photographs to estimate ecological phenomena [134, 144], and automated an-

imal detection in trail cameras has helped to track biodiversity metrics for ecological

studies [141]. Vision techniques have begun to assist in sociological studies by auto-

matically estimating signs of hostility or rapport between interacting subjects [19].

Other work has estimated geospatially distributed statistics such as crime rate [7],

neighborhood safety, uniqueness, and wealth [98]. Work in the humanities has inves-

tigated using vision to organize and navigate historical images [8,113] and to discover

hidden features in artwork [65,123].

In an ideal world, academics working in visual domains would be able to utilize

computer vision techniques similarly to other established tools; however, general pur-

pose computer vision remains limited in its usefulness and applicability. Achieving
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suitable solutions for many tasks requires tailored models and techniques that con-

sider the characteristics of the source domains. Other problems can be reduced to

common frameworks; however, the difficulty in parameterizing these problems such

that they map to established techniques is still a substantial hurdle for non-experts.

Moreover, the latency in integrating novel methods into publicly available software

packages useful to non-experts often leaves results well behind state-of-the-art.

1.3 ANNOTATION AND DISCOVERY

This thesis contends that computer vision techniques will be necessary to enable

novel science in many academic disciplines and that computer vision may already

be powerful enough to meaningfully impact some domains. To this end, we develop

novel techniques that demonstrate the ability of computer vision to help answer an

exemplar set of four research questions related to diverse academic domains:

1) How well can ice layers be automatically found in polar radar imagery and to

what extent can solution confidence be estimated?

2) To what degree can spatial biases be leveraged to improve hand detection and

disambiguation in egocentric videos of social interaction?

3) Can architectural trends be discovered with large-scale visual pattern mining?

4) How informative are visual attributes of consumer photographs for predicting

high-level demographic and geographic attributes of a scene and to what extent

can they be recognized automatically?

In answering these questions, we demonstrate the usefulness of computer vision to

academic inquiry and show how common frameworks can be applied to seemingly

disjoint problems. These problems are both representative of the space of scientific
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In discovery tasks such as demographic attribute prediction and architectural

trend discovery, the amount of data is often so large and the signals are so weak that

they are unlikely to be found without years of human effort. Compared to annotation

tasks, discovery tasks do not start with a previously known characterization of the

visual elements important to the task. Instead, the relationships between higher-

level concepts and visual features must be discovered in these tasks. For example, a

training set for finding hands provides direct visual representations of hands, whereas

a set of image-level labels of poverty does not directly describe the visual evidence

of poverty. Automated solutions in this space give researchers enhanced analytical

abilities to discover relationships in large-scale data.

1.4 SUMMARY AND THESIS OUTLINE

In this thesis, we propose computer vision approaches to solve a diverse set of problems

arising in glaciology, developmental psychology, architectural history, and demogra-

phy. Common to many of these applications is the need for multiple good solutions

and confidence estimations. Systems which provide scientists and researchers inter-

pretable results and diverse solutions in the face of ambiguity produce more valuable

information for higher level analysis than “black box” solutions which simply yield a

single estimate. Throughout this thesis, we develop these themes while demonstrat-

ing effective solutions to multiple academic problems. The structure of the remainder

of this work is as follows:

– In Chapter 2, we provide background on the primary models used in this thesis.

– In Chapter 3, we present a novel technique that provides state-of-the-art precision
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for layer tracing in aerial radar imaging of polar ice sheets while simultaneously pro-

viding glaciologists with point-wise estimates of solution confidence. To overcome

the ambiguity and noise in the radar imagery and to estimate solution confidence,

we model the layer finding problem as a structured prediction task over a proba-

bilistic graphical model. We solve for layer positions through the use of a Markov

Chain Monte Carlo method.

– In Chapter 4, we estimate robust hand localizations in egocentric video to em-

power developmental psychologists with automated annotations of grasping behav-

iors integral to studying learning. Egocentric video exhibits more extreme camera

motion and much more frequent object and scene occlusions than traditional pho-

tography, but it also contains implicit spatial biases with respect to the camera

wearer’s body. We take advantage of these biases to provide solutions both for

videos taken in tightly constrained laboratory settings and general environments.

In the laboratory data, we pose hand tracking as structured prediction on a proba-

bilistic graphical model and once again solve using a MCMC method. For general

environments, we treat locating hands as an object detection task and leverage

the spatial biases to direct powerful Convolutional Neural Network (CNN)-based

appearance models.

– In Chapter 5, we enable novel large-scale analysis for architectural history by

leveraging tens of thousands of publicly available images to identify and track the

changes of temporally distinctive architectural elements, providing architecture

historians with a large collection of relevant facade elements. We pose this as a

large-scale visual data mining problem using image features to estimate real world
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occurrence frequency and develop a graph-based framework to identify and track

changing elements.

– In Chapter 6 we show the effectiveness of state-of-the-art classification architec-

tures at estimating the demographic and geographic properties of places in the

world, based on single images. This enables automatic estimation of coarse demo-

graphic properties without the need for a formal survey. To discover the weak visual

signals that inform these attributes, we automatically annotate a large collection of

publicly available images to train powerful CNN-based image classification models.

– Chapter 7 consists of closing statements regarding the work presented in this

thesis, its place in the larger scientific community, and potential directions for

future work.
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CHAPTER 2

MODELING VISUAL PHENOMENON

The visual world is a landscape of colors, illuminations, and textures moving on de-

formable agents and objects, which dynamically interact with each other and the

space around them. Consequentially, modeling it effectively is complex and many

sophisticated models have been adapted from machine learning and statistics to at-

tempt to manage the ambiguity of the visual world. In this chapter, we will provide

background on the major models used in this thesis, with a special focus on how these

models can be used to provide confidence estimation or be made to produce multiple

high-quality solutions.

2.1 MARKOV RANDOM FIELDS

The visual world is full of many sources of ambiguity which can make reasoning about

images and video difficult. Take for example the task of identifying the species of dog

in a photograph. Partial occlusion, poor lighting, and even the similarity of many

species of dog can easily make this seemingly simple problem extremely complex.

Probability theory provides a natural foundation on which to build systems that

must reason under uncertainty. Probabilistic models are flexible enough to model

a wide range of problems while still being amicable to a set of standard inference
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algorithms under reasonable conditions. These facts have made probabilistic models

very popular in computer vision, being the de facto standard for many years. This

thesis makes use of one popular class of probabilistic model, the Markov Random

Field (or MRF) [66], which the remainder of this section covers.

Markov Random Fields are a class of undirected (and possibly cyclic) probabilis-

tic graphical models, i.e. they are a collection of random variables having Markov

properties described by some undirected graph. In these MRF graphs, each node

corresponds to a random variable and the edges between them indicate some form

of interaction; therefore, designing these graphs is equivalent to explicitly encoding

independence and conditional relationships between the random variables. Because

these models have undirected dependencies (in contrast to Bayesian networks [28]),

these dependencies are modeled as general set functions called factors rather than by

true conditional probability distributions [68]. The full joint probability distribution

over an MRF can be written as the normalized product of these factors; however, this

distribution is typically intractably large to compute or store in vision contexts. The

flexibility offered by MRFs both in terms of encoding undirected dependencies and

allowing for generalized factors between variables makes them an attractive model for

vision problems, which often have complex relationships between many image regions.

Inference and Confidence Estimation in Markov Random Fields

Similar to other probabilistic graphical models, inference in MRFs can be accom-

plished using a variety of algorithms. Often the goal of inference is to produce the

maximum a posteriori or MAP estimate from the model given some setting of model

variables corresponding to a specific image; however, exact inference for cyclic MRFs

10



1: Initialize X(0) = {x1, ..., xm};
2: j = 1;
3: while j < J do
4: X(j) = X(j−1);
5: for all xi in X(j) do
6: x

(j)
i ∼ P (xi|X(j) − {x(j)i });

7: end for
8: j = j + 1;
9: end while

Figure 2.1: The general algorithm for Gibbs sampling iteratively draws new values
for random variables conditioned both on observed variables and other unknowns.

is NP-hard in the general case. The related problem of estimating the marginal distri-

bution of each unobserved variable conditioned on the observed variables has efficient

approximate solutions using either loopy belief propagation [101] (i.e. sum-product

message passing) or sampling approaches.

In this thesis, we primarily rely on Gibbs sampling as our inference algorithm of

choice. Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method which is

capable of producing samples X(1), ..., X(J) from a distribution f(x) without requiring

the ability to directly sample or even know the form of f(x) [16]. This is accomplished

by iteratively sampling each variable conditioned on the remaining variables. Pseudo-

code for Gibbs sampling is shown in Figure 2.1. This sampler provides a flexible

framework for generating samples from a complex distribution, assuming samples

can be taken from usually simpler full conditionals. At run-time the mJ samples

must be drawn from the full conditionals where m is the number of variables and

J is the number of iterations such that efficiency largely depends on the ease of

sampling from the full conditionals. As the Gibbs sampler requires some initialization

of the model states, many early samples may not reflect the true distribution and are
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often discarded as ‘burn-in’ samples; however, theory guarantees that the stationary

distribution of these samples is exactly the joint distribution over the model in the

limit.

Armed with these samples from the joint distribution, we can easily compute

functionals over the samples. For instance, the mean of the samples approximates

the expectation of the joint. In Chapter 3, we use this property to estimate point-wise

confidence intervals for our models prediction, producing estimates of error as part

of the inference process.

2.2 CONVOLUTIONAL NEURAL NETWORKS

In recent years, the widespread use of Convolutional Neural Networks (CNNs) and

other deep networks architectures has led to large performance improvements across

a variety of computer vision and natural language processing tasks including im-

age classification [55, 70, 125], object detection [97, 107], face recognition [126], pose

estimation [127], semantic segmentation [20, 88], visual question answering [5], and

machine translation [9,132] to name a few. In this chapter, we will review the mech-

anisms of these models by tracing the evolution of CNN architectures starting from

a simple artificial neural classifier and increasing in complexity until we arrive at the

contemporary CNN models we use in Chapters 3 and 5. We will also discuss popular

training mechanisms for these models and introduce our recent work on producing

multiple solutions from structured prediction networks.

12



∑
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x2 w2
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(a) Artificial Neuron

x1

x2

x3

y1

y2

(b) Feed-Forward Neural Network

Figure 2.2: (a) A single artificial neuron is depicted above and is comprised of linear
input weights w = [w1, . . . , w3] and an activation function f(·). Given input x =
[x1, . . . , x3], the output y of the neuron is the result of f(xTw). (b) Arranging many
of these neurons with the outputs of one layer used as input to the next results in
a feed-forward neural network. A two layer feed-forward neural network with three
inputs and two outputs is shown above.

Artificial Neurons and Feed-Forward Neural Networks

First proposed in 1943 by McCulloch and Pitts [89], the artificial neuron is a biolog-

ically inspired class of functions which we illustrate in Figure 2.2a. In these models,

the output is computed as a function of the weighted sum of the input. More for-

mally, given a neuron with weights w = [w1, . . . , wk] and activation function f(·), the

output is defined as y = f(wTx) for input x = [x1, . . . , xk]. Depending on the form

of the activation function f(·), this simple schema can be used to model regression as

well as classification tasks. One canonical form of artificial neuron is the perception

binary classifier introduced in 1957 by Frank Rosenblatt [108] that sets f(·) to be the

sign(·) function. Like other single neuron classifiers, the perceptron is limited in its

expressibility, modeling only linearly separable tasks effectively (without the use of

kernels [56] which transform input non-linearly before training).

Given the interconnected structure of neurons in the brain, one natural remedy to

this limited representational power of single artificial neurons is to connect many into

13



a single neural network. If such a network contains no loops, it is called a feed-forward

neural network. We present an example feed-forward neural network in Figure 2.2b.

In these models, neurons are arranged into layers with the outputs of each layer being

used as inputs to the next. These models have been shown to be incredibly powerful

universal function approximators given a sufficient number of neurons and layers [57].

The most widely used approach to train feed-forward neural networks is the gra-

dient descent-based backpropagation algorithm [136]. Given a differential loss (for

example, the L2 norm for a multi-variate regression), backpropagation computes the

gradient of the loss function with respect to all weights in the network, utilizing the

chain rule to remove redundant computation by operating in a sequential output-

to-input order. Most commonly, backpropagation is used stochastically with small

batches of data being processed at a time and the parameters being updated with

respect to the loss on those examples only. The batch is processed by the network

in what is called the forward pass, and then the gradient information is computed

with backpropagation in the backward pass. This approach is simple to implement

and computationally efficient to the extent that it has seen nearly complete adop-

tion; however, backpropagation and feed-forward neural networks have historically

had difficulties scaling to high-dimension problems.

Modern Convolutional Architectures

Despite their usefulness to other domains, feed-forward neural networks have his-

torically had limited success on computer vision tasks for two major reasons: the

exponential scaling of the number of between-layer connections, and the difficulty

in training large (and especially deep) neural networks that are capable of modeling
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sembles convolutional filtering. Figure 2.4 shows the shared weight structure for a

one-dimensional Convolutional Neural Network with a filter size of three. Given a

set of weights represented as a filter W, activation function f(·), and concatenated

outputs of the previous layer Li−1, the output of all neurons in layer Li can be com-

puted as f(W�Li−1) where f(·) is applied to each element of the discrete convolution

between Li−1 and W. Since color images are three-dimensional matrices (R×C×3),

filters for image tasks are also three-dimensional and their outputs are two dimen-

sional matrices.

This design greatly decreases the number of weights to be learned while adding

a number of additional positive qualities. Learning relevant image structures or ob-

jects using convolutional filters removes (usually irrelevant) spatial dependencies that

would exist in a standard fully-connected architecture (i.e. learning the representa-

tion of a cat in a traditional feed-forward neural network would require a neuron to

represent how a cat looks at every point in the image rather than how a cat looks

in general). Additionally, both the forward pass and backward pass for these filters

in CNNs can be computed using efficient matrix libraries on powerful GPUs, making

training on large datasets with batch computation feasible [22]. Finally, the hierarchi-

cal learning of later filters based on the output of previous filters results in learning a

pyramid of increasingly complex features [143] that spans the space from simple Ga-

bor filters to full or partial objects such as wheels or eyes. This hierarchical approach

has been shown to be advantageous [93]. In practice, a single filter for each layer

is insufficient to model the diversity of the visual world so each convolutional layer

often contains multiple filters such that the concatenation of the outputs remains a

three dimensional matrix.
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Despite the massive reduction in the number of edge weights achieved through

the use of convolution filters, training deep Convolutional Neural Networks (i.e.

those with many layers) is still difficult using standard practices from traditional

feed-forward neural networks. The primary algorithmic advancements that allow

the training and regularization of extremely deep networks are the introduction of

the rectified linear unit (ReLU) activation function [48] and the dropout regular-

ization method [121]; however, it is worth mentioning that increasingly large scale

datasets [30, 86], the widespread adoption of GPUs for scientific computation, and

use of dataset augmentation techniques [18] has also contributed significantly to the

rise in popularity and effectiveness of Convolutional Neural Networks.

The ReLU is a piecewise linear function f(x) = max(0, x) which has been shown

to be biologically plausible [48]. One the greatest challenges with using backpropaga-

tion for deep neural networks is that the magnitude of the corrective signal (i.e. the

gradient of the loss) diminishes greatly as it is diluted through many layers. Re-

LUs both sparsify this dilution process by restricting negative activations, and reduce

the decay of the gradient by maintaining a linear relationship between inputs and

activated outputs. Compared to standard feed-forward neural network activation

functions such as the sigmoid or hyperbolic tangent functions, networks using RELU

activations have shown to be significantly easier to train, especially when architec-

tures become increasingly deep (which is shown to improve performance for many

problems).

Deep neural networks have a tendency to over-fit to training data due to the large

number of parameters and representative power of these models, and standard reg-

ularizers such as penalizing the magnitude of weights are not effective at improving
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Layer i

Layer i + 1

Figure 2.4: Two layers in a one-dimensional Convolutional Neural Network are shown
above. Weights are color-coded to indicate weight sharing between neurons (i.e. all
red edges share the same weight). Note that weights are shared spatially, similar to
a convolutional filter.

generalization. The dropout regularization technique randomly retains or drops indi-

vidual neurons for each example with a probability α during training. At test time,

the outgoing weights from each neuron are scaled by α to approximately perform

model averaging. This approximation compares favorably to Monte-Carlo model av-

eraging at substantially reduced cost [121]. In effect, dropout temporarily creates a

new, thinned network for each example which forces neuronal activations to behave

more independently. Dropout is typically applied to the fully connected layers and

not the convolutional layers of CNNs.

We note that Convolutional Neural Networks for classification tasks are typically

trained to output a probability distribution over the classes, providing an implicit

estimate of confidence; however, methods to produce multiple diverse outputs from

CNNs have not been developed. Our ongoing work on this topic is presented in

Section 7.1 as future work.

While there have been further advancements beyond those described here (such

as batch normalization [60] and skip-connections [55]), which improve the stability of

network training, the architectures and training procedures described here form the

basis for the modern Convolutional Neural Networks used in this thesis.
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CHAPTER 3

ICE LAYER BOUNDARY ESTIMATION FOR GLACIOLOGY

A straight forward annotation task typical of many problems in the physical sciences

is to identify simple structures in an image in order to aid larger scientific inquiry and

increase the throughput of analysis. These images are often the product of advanced

sensing devices such as radar or microscopes and as a result tend to have substan-

tial image noise. Common in-domain approaches to these problems typically involve

pipelines of filtering that rely on fine-tuned thresholds. While these methods are suc-

cessful enough to be somewhat useful, modern computer vision approaches could allow

more principled solutions. In this chapter, we develop a computer vision system to

solve one of these problems in a holistic manner, simultaneously estimating solutions

and response confidence. We consider one particular domain of radar layer-finding,

but the same technique could be applied to many other structured segmentations

problems.

3.1 LAYER-FINDING IN RADAR SOUNDING IMAGES

Observing the structure and dynamics of polar ice sheets is critical for developing

accurate climate models. Glaciologists have traditionally had to drill ice cores in

order to observe the subterranean structure of an ice sheet, which is a slow and labor-
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intensive process. Fortunately, ground-penetrating radar systems have matured in the

last few years to allow surveying large areas of ice from aerial and ground vehicles with

minimal human intervention [3]; however, identifying the depth of the ice sheet and

the topography of the underlying bedrock is often a manual task requiring tremendous

human effort.

Figure 3.1 (right) presents an example of an echogram produced by the multi-

channel coherent radar depth sounder system of the Center for Remote Sensing of

Ice Sheets (CReSIS) [3]. This echogram is a virtual cross-section of the ice, where

the horizontal axis is distance along a flight path of the aircraft-based radar system

and the vertical axis is vertical distance from the plane (i.e. depth). The echograms

capture the radar signal’s scattering properties and can be used to estimate an ice

sheet’s depth and the topography of the bedrock beneath the ice (the dark erratic

line near the middle of the figure). These observations are used in models to forecast

ice sheet behavior.

In this chapter, we pose identifying the surface and bedrock layers in these echogram

images as an inference problem on a probabilistic graphical model [74], building on

the approach introduced by Crandall et al. [26]. Our probabilistic framework allows

for multiple sources of evidence to be integrated to determine layer boundary esti-

mates. We introduce several important contributions to improve both the accuracy

and utility of the approach. Our technical innovation uses Gibbs sampling to perform

inference instead of the dynamic programming-based solver of [26]. This allows us to

strengthen the underlying model to solve for both layer boundaries simultaneously,

yielding automatic layer detection results that are significantly better than prior ap-

proaches. Moreover, the Gibbs sampler produces explicit confidence intervals, thus

20





ers, which can limit applicability due to the need to fine-tune these parameters. Ilisei

et al. [59] developed a two-phase technique to exploit the properties of a radar signal

to generate a statistical map and then apply a segmentation algorithm. Although our

application focuses on detecting bedrock and surface layers, other studies use similar

techniques to identify internal layers in radar imagery [?, 34, 92, 99, 118].

3.2 A MARKOV CHAIN MONTE CARLO APPROACH

An echogram is a 2D matrix which represents the scattering properties of the subsur-

face at each along-track coordinate of the radar platform. Our task is to find two key

features in these echograms: the ice surface boundary (the strong reflector near the

top) and the bedrock boundary (the dark reflector near the middle of the image).

We want to estimate the location of layer boundaries by determining their paths

through the image. Assume that an echogram has k layer boundaries (with k=2 in

our case). Given an echogram I of dimension M×N , we wish to estimate unknown

variables L={L1, ..., Lk}, where Li={li1, ..., liN} and lij denotes the row coordinate

of layer i in column j.

We take advantage of the structure of this problem by posing it as a grid-shaped

probabilistic graphical model. In this framework, we are interested in estimating

P (L1, ..., Lk|I), the joint probability over the layer boundaries given the echogram.

Given this distribution, we could apply any function over the set of possible layers

including computing moments, drawing multiple highly likely solutions, and providing

estimates of variance. Unfortunately, this distribution has an alarming dimension of

order O
(
MkN

)
such that computation and storage are intractable. To address this

problem, we make two assumptions,
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(1) image characteristics are determined by local layer boundaries, and

(2) variables in L exhibit a Markov property with respect to their local neighbors,

which greatly simplify the model and enable finding an efficient solution.

Under Bayes’ Law we can decompose the joint distribution into a product of two

intuitive distributions as

P (L1, ..., Lk|I) ∝ P (I|L1, ..., Lk)P (L1, ..., Lk). (3.1)

The image likelihood term P (I|L1, ..., Lk) captures how well the image data can be

explained by a set of layers and the layer likelihood P (L1, ..., Lk) captures prior knowl-

edge about the boundaries, such as that they are smooth and do not intersect.

Our first assumption implies that image pixels not near the layer boundaries are

generated by noise, so we need only model pixels near boundaries. Under this as-

sumption, we can factor P (I|L1, ..., Lk) into a product over layer positions,

P (I|L1, ...Lk) =
k∏

i=1

n∏
j=1

P (I|li,j). (3.2)

Since boundaries are dark edges, we model the right hand term as a product of

gradient magnitude and image intensity,

P (I|li,j) ∝ |∇I(li,j, j)| · (1− I(li,j, j)), (3.3)

where |∇I(x, y)| is the gradient magnitude at coordinate (x, y) of the image and pixel

values have been scaled such that I(x, y) ∈ [0, 1]. We approximate gradient magnitude

through finite differences on a 5× 5 window.
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The second assumption simplifies the problem by imbuing the graphical model

with the property that each node li,j is independent of the remaining variables in L

given its immediate neighbors in the graph. Under this assumption, we have

P (L1, ..., Lk) ∝
k∏

i=1

n∏
j=1

P (li,j|N(li,j)), (3.4)

where N(li,j) is the set of directly connected nodes in the graph (i.e. N(li,j) =

{la,b | 1 = |a − i| and 1 = |b − j|}). We define P (li,j|N(li,j)) as the product of in-

dependent vertical and horizontal components. Along the same layer, the li’s are

encouraged to be smooth by a zero-mean Gaussian which is truncated to zero out-

side a fixed interval, and distance between layers is penalized as a step function to

encourage layers not to overlap.

Figure 3.2 shows a graphical representation of our two-layer model for an echogram

of width N . For each layer, each column n of the image is associated with random

variables l1,n and l2,n corresponding to the positions of each layer in that column.

These variables are connected via dependency relationships to the image I and their

immediate neighbors (both along a layer and between layers). In Figure 3.2, the node

representing l1,1 is highlighted and the conditional distributions with respect to l1,1

are written.

This model is similar to [26] but with important improvements. In [26], the vertical

pairwise potentials are zero at and above intersection points and uniform elsewhere.

But it is common in this data to see radar reflections of the surface layer directly

below the actual surface, so we add a fixed-width low probability region directly

below them to reduce false bedrock detections on these reflections. Perhaps more

24



P(l1,1|l1,2)

P
(l
1
,1
|l 2

,1
)

P(I|l1,1)

l1,1

I

l1,2

I

l1,3

I

· · · l1,N

I

l2,1

I

l2,2

I

l2,3

I

· · · l2,N

I

Figure 3.2: Graphical depiction of our model for two layers, where each row rep-
resents a layer through the image. Along-layer links enforce pixel-wise smooth-
ness of the layers, the between-layer links model repulsiveness between layers, and
the image-likelihood links condition layer locations on local image characteristics.
These conditional distributions are written out for the l1,1 node outlined in red.

importantly, the model in [26] breaks these vertical constraints in order to simplify

inference by greedily solving each layer conditioned on the previous one. We avoid

doing this, and our experiments show that this holistic inference approach offers

substantial improvements in accuracy.

Statistical inference

The model defined by equations (3.1), (3.2), and (3.4) is a first-order Markov Random

Field. Unfortunately, finding the values of L that maximizes equation (3.1) is NP-

hard in the general case [68]. Rather than trying to solve this as an optimization

problem, we instead attempt to estimate functionals of the full joint distribution via

Gibbs sampling (a Markov Chain Monte Carlo technique discussed in Section 2.1).

It can be shown via Bayes Law and the independence assumptions in equa-

tions (3.2) and (3.4) that the full conditionals for each lij can be computed easily
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as

P (lij|L, I) = P (lij|I,N(lij)) = P (I|lij)P (lij|N(lij)). (3.5)

As the domain of lij is discrete and finite, sampling from this conditional is simple. As

an additional optimization, we make use of the vertical and horizontal thresholds in

the layer conditionals to sparsify the computation of P (lij|N(lij)), as most entries are

known to be near zero. We apply the Gibbs sampler to generate a sequence of samples

L(B), ..., L(J) where B is a burn-in time during which samples are discarded. This is

a common practice with MCMC methods to reduce sensitivity to initial values. To

predict the layer locations we take the mean of our J−B samples, which approximates

the expectation of the joint distribution. We also utilize these samples to produce

point-wise 95% confidence intervals by taking the 0.025 and 0.975 quantiles of these

approximate marginal distributions.

3.3 LAYER FINDING PERFORMANCE

We tested our layer-finding approach using a set of 826 publicly-available radar

echograms from the 2009 NASA Operation Ice Bridge program, collected with the

airborne Multichannel Coherent Radar Depth Sounder system [3]. The images have

‘ground truth’ labels produced by human annotators; however, these labellings are

often quite noisy. For instance, sometimes the annotators could not find a reason-

able layer boundary and did not mark anything at all. To decouple the error in

the ground truth from the method evaluation, we removed images with obviously

incomplete ground truth (including those with partially defined layers and those with

fewer than two layer boundaries). We ran our method on the remaining 560 images.
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Figure 3.3: Results on three sample echograms. Each pane includes the hand-labeled
image (top-left), the output of [26] (bottom-left), and our output with 95% confidence
intervals shaded (right). Best viewed in color.
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For each image, we collected 10,000 samples (after a burn-in period of B=20,000

iterations to overcome initialization) and took the mean as our output.

We measure accuracy by viewing ground truth and estimated layer boundaries

as 1-D signals and computing the mean absolute errors across images. We compare

with [26] as it is most similar to our technique. For this experiment we find we

outperform the method of [26] significantly, reducing the mean absolute error by

44.3% for surface boundaries and 48.3% for bedrock. Figure 3.3 shows results on three

sample echograms, presenting the output of our technique (including the estimated

confidence interval) as well as the ground truth and the baseline technique of [26].

Our method not only tends to find better layers but also captures confusion in an

interpretable way (e.g. the closeness between layers in the first example coupled with

the artifacts in the top-right corner causes our model to be uncertain about that

area.). We find that 94.7% of the surface boundary points and 78.1% of the bedrock

boundary points are within their respective confidence intervals.

3.4 CONCLUSION AND FUTURE WORK

In this chapter, we proposed an automated approach to estimate the locations of

bedrock and surface layers in multichannel coherent radar imagery and demonstrated

its effectiveness on a real-world dataset against the state-of-the-art. Our method not

only outperforms existing approaches, but also provides point-wise confidence inter-

vals for identified layers. This is important because ice sheet depth maps computed

from radar images are used in downstream glaciology models to predict phenomena

of global concern including the effect of global warming on sea level rise. Given the

seriousness of these topics, it is important for automated approaches not only to have
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low error in the general case, but also to be able to identify when and where errors

occur through robust confidence estimation. In future work, extending this model to

a Reversible-Jump MCMC [49] framework such that the number and form of layers

are both found via the model would allow broader application, such as to the task of

annotating annual snow-accumulation layers in near-surface radar imagery.

This simple annotation task is representative of a larger class of visual analysis

problems in the physical sciences that require identifying simple structures in images.

Other examples include tracking cells [21] in biology and blood vessel detection in

inner-eye images to automate disease diagnosis [38]. Typically these problems have

been addressed by domain specialists using filtering approaches that are often years

behind analogous work in computer vision; however, due to the simplicity of the

structures to be identified, these näıve approaches often perform well enough to be

useful. In the following chapter, we will show an annotation task that is not amica-

ble to simple filter based approaches due to the complexity of the structures to be

identified, and we present powerful computer vision models to provide more robust

annotations.
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CHAPTER 4

DETECTING HANDS FOR DEVELOPMENTAL PSYCHOLOGY

Many academic disciplines are interested in studying the interaction of organisms

with each other and with the world. Traditionally, research in these domains has been

dominated by the careful manual observation and recording of the behavior of subjects

(visual or otherwise) both in constrained settings and in the wild. With the increasing

ubiquity of video recording devices, data collection for many of these studies can be at

least partially automated; however, coding of the recorded video data is still typically

a manual procedure. Unlike the examples in the previous chapter, the structures

and events to be annotated in this imagery are substantially more complex, often

being highly-deformable body parts. As the subjects move around, the environment

changes in imaging conditions (sudden change of illumination exiting a house) and

frequent occlusions increase the difficulty of annotation. Despite this increase in

complexity, humans are still highly accurate annotators, but the time consumed in

manual annotation is prohibitive for large scale analysis. In this chapter, we will take

hand detection in egocentric video from child development studies as an example for

the potential of powerful computer vision models to provide quality annotations in

even these adverse conditions.
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4.1 EGOCENTRIC HAND DETECTION

Head-mounted cameras capture video that is fundamentally different from traditional

hand-held consumer cameras. Instead of capturing posed and intentionally framed

moments, egocentric (head-mounted) cameras continuously record an approximation

of a person’s field of view during everyday life. This technology is empowering novel

applications in cognitive research, for instance by recording fine-grained information

about people’s activities and interactions [10,42]. However, these applications create

huge volumes of video, so automated techniques are needed to process and understand

them.

This chapter is motivated by recent psychology experiments conducted by the

Computational Cognition and Learning Laboratory [17] at Indiana University as part

of a multi-sensory approach to study embodied attention and statistical learning in

toddlers. These experiments use egocentric cameras to study how young children

and adults interact with one another and how children coordinate their hands, head

turns, and gaze in order to manipulate objects [10,41,42,106]. In these experiments,

a parent and child play with toys on a table and frequently point to, reach for, and

exchange toys with their hands. The child’s view is extremely dynamic: the hands of

both the child and parent frequently disappear and reappear or are partly occluded.

Manually labeling hand positions in these large-scale datasets is slow and tedious, so

a main motivation of our work is to develop a technique that can perform the labeling

automatically. In the line of work presented in this chapter, we develop methods for

tracking hands in egocentric video to enable automatic hand annotation for both

laboratory and unconstrained egocentric videos.
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General hand detection in egocentric video also has applications outside of study-

ing behavior. Hands are perhaps the most frequent objects in egocentric video and

are arguably also the most important, since they are the primary way that humans

physically interact with the world. In fact, much work in egocentric activity recog-

nition assumes that activities can be characterized by the in-hand manipulation of

certain objects [37,103]. Other work on egocentric hand detection is motivated by the

idea that hands are important for understanding complex object manipulations, ges-

tures, and motor skills [82,83,115,142]. Much of the existing hand detection literature

assumes that only the camera wearer’s hands are visible in the scene, even though

real-world egocentric video includes frequent interactions with other people [36]. Rec-

ognizing gestures, handled objects, and activities in practice will thus require distin-

guishing the camera owner’s hands from others that occur in the scene.

In this chapter, we present two pieces of related work. In the first, we use strong

spatiotemporal priors and probabilistic inference to track hands in carefully collected

laboratory data [75]. In the second, we learn to disambiguate hands in less constrained

data using powerful appearance models guided by spatial biases [12].

4.2 A PROBABILISTIC APPROACH FOR EGOCENTRIC VIDEOS

IN CONSTRAINED SETTINGS

Given an egocentric video of the interaction between two people, we would like to

estimate the locations of the observer’s hands and the other person’s hands. This

task is difficult because these parts frequently enter and leave the frame and there is

erratic camera motion caused by head motion of the camera wearer.

More formally, given a video sequence of n frames, each with r × c pixels, our
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goal is to estimate the position of each of a set of parts P in each frame. In this

section, we consider five parts in particular, P = {yh, yl, yr,ml,mr}, corresponding

to the other person’s head, hands (‘your left/right’) and the camera wearer’s hands

(‘my left/right’), respectively. Although our framework is general enough to handle

any set of parts (e.g. in the case of more than two interacting people), for clarity we

discuss these five specific parts in particular.

We denote the latent 2-D projected position of part p ∈ P in frame i as Li
p

and define Li to be the full configuration of parts within the frame, Li = {Li
p}p∈P .

Because of the dynamic nature of egocentric video, hands often enter and exit the

frame, due both to motion of the hands and motion of the head-mounted camera.

To address the possible absence of any given part, we augment the domain of Li
p

with an additional state ∅ indicating that the part is not visible in the frame, i.e.

Li
p ∈ {∅} ∪ ([1, r]× [1, c]).

In addition to part position, we also explicitly model global motion caused by

head movements by introducing random variables G = (G1, . . . , Gn−1), where Gi is

an estimate of the two dimensional global coordinate shift between frame i and frame

i + 1. In this way, we assume the world has uniform depth such that a change of

viewing angle would have the same effect on all points in the 2-D projection of the

environment. This assumption is reasonable given that the distances involved in a

paired interaction are relatively constrained.

4.2.1 MODELING HANDS IN EGOCENTRIC VIDEO.

We use a graphical model framework to model and estimate the locations of parts

across all video frames jointly. We design our model to include known biases in
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Figure 4.1: Graphical depiction of our model for two frames, where the bottom five
nodes represent the locations of the head and hands in one frame, and the top five
nodes represent the locations in the next frame. Between-frame links enforce
temporal smoothness, shift links model global shifts in the field of view, and in-
frame links constrain the spatial configuration of the body parts.

egocentric video and hand positions. Our model is visualized in Figure 4.1 for a two-

frame video. The connections within a frame (in black) form a complete graph over

the five part nodes and capture the pairwise correlations between spatial locations

of the parts. The green edges between each part and its corresponding variable in

the next frame enforce temporal smoothness. Finally, the global shift variable is

influenced by all pairs of corresponding parts such that a similar motion in all part

pairs is likely to indicate a global shift. More completely our model consists of four

components:

1. In-Frame Constraints – In a given frame, the positions of hands show a strong

correlation (e.g. my left hand is typically to the left of my right hand). We model

these correlations as P (Li
p|Li

q), defined as Gaussian distributions over relative part

positions.

2. Between-Frame Constraints – Between adjacent frames, hands are unlikely to
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change positions drastically except due to sudden camera motion. We encode this

assumption as between-frame constraints P (I i, I i+1|Gi) that encourage smooth

tracking trajectories. These distributions are defined as Gaussian distributions

over relative part locations between frames with mean Gi. Gi itself is estimated

with respect to sequential frames as P (I i, I i+1|Gi) defined as a Gaussian centered

around the average pixel displacement between frames I i and I i+1 derived from

optical flow [40].

3. Appearance Models – Weak appearance models P (I i|Li
p) are incorporated to

identify image regions likely to represent each part. For head priors we use de-

tections of the simple Viola-Jones face detector [133]. For hands, we consider

two factors. First we compute the likelihood of a pixel being skin from a learned

data-driven model. Specifically, we estimate the color distribution of skin in the

HSV color space using ground truth segmentations and use this non-parametric

distribution to estimate skin likelihood for a given pixel. Additionally, as arms

are typically visible for the activity partner, we use simple edge cues to estimate

whether each skin blob is attached to an arm and adjust the probability of that

blob belonging to the activity partner with probabilities estimated from the train-

ing data.

4. Absolute Spatial Priors – Finally, hands have a tendency to occur in certain

locations within an egocentric video frame due largely to anatomy and grasping

behaviors. We model these biases as absolute spatial priors P (Li
p), defined as

Gaussian distributions on absolute spatial location.

Placing these (soft) constraints into an undirected graphical model yields a joint

distribution over all the latent variables L = (L1, ..., Ln) and G, conditioned on the
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image sequence I = (I1, ..., In). The complete model can be written as

P (L,G|I) ∝
n∏

i=1

⎡
⎣P (Ii, Ii+1|Gi)

∏
(p,q)∈E

P (Li
p|Li

q)
∏
p∈P

P (Ii|Li
p)P (Li+1

p |Li
p, G

i)P (Li
p)

⎤
⎦ ,

(4.1)

where I=(I1, ..., In) is the image sequence and E ⊂ P2 is the set of undirected edges

in the complete graph over P .

As all of our distributions are Gaussian, producing the probability of any given in-

frame configuration of parts is trivial; however, a major complication in this problem

is the need to model the possibility of a body part being out of the field of view. As

an example, we can start by considering a 2-D isotropic Gaussian function (such as

those defined over relative part positions),

fµ,Σ(x, y) = N (x;μ1,Σ11)N (y;μ2,Σ22),

parameterized by μ = [μ1 μ2]
T and Σ = diag(Σ11,Σ22). If this function represents a

probability distribution over the location of a given part, then calculating the proba-

bility that the part is ‘out’ of a frame is equal to one minus the probability of being

within the frame, 1− Fµ,Σ([1, c], [1, r]), with

Fµ,Σ ([x1, x2], [y1, y2]) =

x2∫
x1

y2∫
y1

fµ,Σ(x, y) dy dx (4.2)

= [Φ(x2;µ1,Σ11)− Φ(x1;µ1,Σ11)] ∗ [Φ(y2;µ2,Σ22)− Φ(y1;µ2,Σ22)] ,
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Figure 4.2: Components of the full conditional in our five-part case, for (left) part
node Li

yl, and (right) shift node Gi.

where Φ(·) is the normal cumulative density function. We employ this technique to

compute the probability of the out state ∅ using our models.

Inference

We can solve the part-tracking problem for an entire video I by maximizing Equa-

tion 4.1. Unfortunately, finding the global maximum is intractable. We thus settle for

approximate inference using Gibbs sampling (see Section 2.1). As all of our model fac-

torizes well and is made of relatively easily manipulated distributions, we can derive

the full conditionals for each variable. Figure 4.2 shows an example of the depen-

dencies for full conditionals for a part node and a shift node under our independence

assumptions.

4.2.2 EVALUATION ON LABORATORY DATA

We evaluate our approach on video recorded in the Computational Cognition and

Learning Laboratory [17] at Indiana University as part of a multi-sensory approach

to study embodied attention and statistical learning in toddlers. In these experiments,

a child and parent sit at a table and face one another with each wearing head-mounted
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cameras. Parents are told to engage their child with the three toys on the table and

interact as naturally as possible. To try to limit distractions, the walls of the lab

are colored white, and participants wear white coats. We use the video from the

child’s camera such that the other person in view is always the adult. The video is

captured at 30Hz with 480×720 pixel resolution. We use video data from five parent-

child dyads over four play sessions. The trials had an average length of 1.5 minutes,

leading to a total of 20 videos containing 56,535 frames (about 31 minutes) of social

interaction from the children’s perspective.

To evaluate our approach, we manually annotate part bounding boxes for 2,400

random frames from the laboratory dataset or about one frame for every second. For

each frame, our system estimates the location of each of the five body parts, by either

providing a coordinate or indicating that it is outside the frame. We evaluate the

accuracy of our method as the fraction of true positives (i.e. cases where we correctly

estimate a position inside the ground-truth bounding box) and true negatives (i.e.

where we correctly predict the part to be outside the frame). We also evaluate the

percentage of “perfect” frames, those in which all five parts are predicted correctly.

We are particularly interested in errors made when disambiguating the observer’s

hands from the partner’s hands. We consider a ground-truth hand to be a disambigua-

tion error if it is either unlabeled, labeled as the wrong person’s hand, or is marked

with multiple labels of different people (falsely estimating that hands overlap). The

disambiguation error rate is the fraction of incorrectly disambiguated hands over all

frames.

We first present qualitative results on the lab dataset. Figure 4.3 shows some

sample frames, where rectangles depict the ground-truth bounding boxes and dots

38



C
or
re
ct

In
co
rr
ec
t

Figure 4.3: Sample frames from our results, with rectangles showing ground truth
bounding boxes and dots showing predicted part positions. (red = your head, blue =
your left hand, green = your right hand, magenta = my left hand, cyan = my right
hand). The first two rows show our robustness with respect to partial occlusions and
changes in hand configurations, while the bottom row shows failure cases.

mark our predicted position. Part identities are represented by color, so that dots

inside boxes of the same color indicate correct estimates. The first two rows show

perfect frames, while the last row shows errors. Common failures include incorrectly

estimating a hand to be out of frame (e.g. leftmost image) or falsely estimating

overlapping hands. This can be caused by hands that are closer to the observer than

expected and thus too big (e.g. in the middle two images), or because one hand is

farther away from the other than usual (e.g. wrong prediction for ‘my left hand’ in

the right image).

We present detailed quantitative results in Table 4.1. Our overall detection ac-

curacy across the five subjects of the lab data set is 68.4%. The technique general-

izes well between different subjects, as evidenced by a low standard deviation across

videos (σ = 3.0). Accuracies between different hands are also fairly stable, ranging
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Overall Observer Partner % Perfect Disambiguation

Accuracy right left right left head headVJ Frames Error Rate

Subject 1 64.1 50.3 60.2 68.0 54.2 87.7 86.2 14.8 37.8

Subject 2 72.6 78.5 63.3 63.8 79.7 77.5 55.5 22.8 27.4

Subject 3 70.1 64.2 66.7 60.5 68.8 90.0 85.5 24.7 34.5

Subject 4 67.3 88.0 54.7 59.5 59.3 75.2 66.0 15.5 33.1

Subject 5 68.1 72.5 61.0 66.2 60.5 80.2 69.0 17.7 30.5

Average 68.4 70.7 61.2 63.6 64.5 82.1 72.4 19.1 32.7

Table 4.1: Detection accuracies of our approach as well as a breakdown into different
hands. We also compare our head-detection accuracy with the accuracy of the raw
Viola-Jones detector (headVJ). The second to last column shows the percentage of
frames in which all five predictions were correct and the last column shows the error
we made when differentiating the observer’s hands and the partner’s hands.

from 61.2% for “my left hand” to 70.7% for “my right hand.” Overall, our approach

perfectly predicts 19.1% of frames, and for Subject 3 achieves a 24.7% perfect detec-

tion rate. Although our main purpose is to detect hands, the temporal and spatial

constraints in our model also improves face detection by 10 percentage points over

the raw Viola-Jones detector (column headVJ)used as a prior.

Comparing to Baselines

We compared our model to three baselines of increasing complexity. First, we tried a

random predictor which places each part marker randomly by first sampling a binary

variable to decide whether the part is in the frame, and if so, assigning it to a random

position. Second, we added the skin likelihood by repeating the same process but

limiting the space of possible positions to be in skin patches. Finally, we build a more

sensible baseline, clustering the detected skin pixels into hand-sized patches using

Mean Shift [25]. Then, we greedily assign each part the position of the closest cluster

centroid based on distance between centroid and part-wise absolute spatial priors.
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Table 4.2 shows the results of these experiments. Naturally the two random

baselines perform poorly. The mean-shift based method performs better than these;

however, it is still over 10 percentage-points less accurate than our approach. We

also tested a simplified version of our model composed of only the spatial priors. This

achieved 59.1% accuracy, comparable to the mean-shift based baseline which similarly

does not impose temporal or relative spatial constraints.

Method
Overall % Perfect Disambiguation

Accuracy Frames Error Rate

random 17.0 0.1 95.1

random (skin) 27.3 4.3 72.0

skin clusters 58.1 14.4 36.0

ours (likelihood + spatial prior) 59.1 9.2 44.5

our method (full) 68.4 19.1 32.7

Table 4.2: Comparison of our model’s results to baselines, in terms of overall accuracy,
percentage of perfect frames, and hand disambiguation error rate.

4.2.3 GENERALIZING TO NATURALISTIC VIDEOS

Our method relies on relatively weak part appearance models which work well in our

constrained laboratory settings. To evaluate how well the model performs on more

naturalistic video lacking tight constraints on background and participant attire, we

recorded an additional small dataset. We used Google Glass to record a small set of

egocentric videos containing two adults engaged in three kinds of social interactions:

playing cards, playing tic-tac-toe, and solving a 3-D puzzle. Each video is 90 seconds

long, for a total of 4.5 minutes (8,100 frames), and was captured at 30Hz with a

resolution of 1280×720. We again manually annotated hand bound boxes for sample
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(a) Example naturalistic frames (b) Skin detection performs poorly.

Figure 4.4: (a) Sample results for naturalistic video, in which two people played cards
(top), tic-tac-toe, and puzzles (bottom), while one wore Google Glass. (See Fig. 4.3
caption for color legend.) (b) Skin detection in naturalistic environment performs
poorly.

frames.

As expected, accuracy was lower for the naturalistic videos at 50.7% overall. Some

example frames are shown in Figure 4.4a. We attribute this drop in accuracy largely

to the weakness of our appearance models. As shown in Figure 4.4b, our skin color

model fails in more natural environments, firing on near-skin tone colors (e.g. the

wooden door). In the lab videos, 97% of detected skin pixels are located inside

ground-truth bounding boxes; however, this figure drops to only 70% for the natural

videos. Interestingly, we can still retain a relatively low disambiguation error rate in

the naturalistic videos (35.6% versus 32.7%), showing that our model can compensate

for noisy likelihoods.

4.3 DEEP LEARNING FOR GENERAL HAND DETECTION

While laboratory settings are useful for studying human behavior under tightly con-

trolled conditions, observation in natural settings provide additional, more ecologi-

cally valid insights. Hand tracking in unconstrained environments is more challenging
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than in laboratory data due to increased background clutter, a wider range of illumi-

nations, and more diverse interactions. We combine the spatial biases of egocentric

video discussed in the previous section with powerful learned appearance models to

accurately detect hands in natural videos. To assess the performance of our method,

we collected a large dataset of paired participants engaging in tabletop activities

within naturalistic environments, while wearing egocentric cameras.

4.3.1 DESIGNING A STATE-OF-THE-ART HAND DETECTOR

In principle, finding hands in first-person video frames is simply an instantiation of

one particular object detection task, for which we could apply any general object

detection algorithm. But in practice, detecting hands requires some special consid-

erations. Hands are highly flexible objects whose appearance and position can vary

dramatically, but nonetheless we need models that are strong enough to discriminate

between hand types (i.e., left vs. right hands and the camera wearer’s own hands vs.

their social partner’s).

Convolutional Neural Networks (CNNs), discussed in Section 2.2, offer very good

performance for classification tasks [70]. For object detection, the now-standard

approach is to divide an image into candidate windows, rescale each window to a

fixed size, fine-tune a CNN for window classification [47,124], and then perform non-

maximum suppression to combine the output of the region-level classifier into object

detection results. Of course, the space of possible proposal windows is enormous, so

it is important to propose regions that capture as many objects as possible in the

fewest number of proposals.

In the context of detecting hands in egocentric views, there are strong spatial
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biases to hand location and size [11, 76], because of the way people coordinate head

and hand movements. For example, people are likely to center their active hand in

or near their visual field as they perform a task. We thus propose a simple approach

to candidate window sampling that combines spatial biases and appearance models.

Generating Proposals Efficiently

Our primary motivation is to model the probability that an object O appears in a

region R of image I. More concretely, we wish to estimate

P (O|R, I) ∝ P (I|R,O)P (R|O)P (O),

where P (O) is the prior object occurrence probability, P (R|O) is the prior distribu-

tion over the size, shape, and position of regions containing O, and P (I|R,O) is an

appearance model evaluated at R for O. Given a parameterization that allows for

easy sampling, high quality regions can then be drawn from this distribution directly.

Here we assume regions are rectangular, so they are parameterized by an image

coordinate and width and height. For each of the four types of hands, we can then

estimate P (O) directly from the training data. We fit P (R|O) as a four-dimensional

Gaussian kernel density estimator [58] (KDE) again using the ground truth annota-

tions from the training set. For the appearance model P (I|R,O) we define a simple

model that estimates the probability that the central pixel of R is skin, based on

the non-parametric skin color model described in the previous section. While simple,

this model lets us sample very efficiently, by drawing a hand type O, and then sam-

pling a bounding box from the KDE of P (R|O), with the kernel weights adjusted by
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(a) Coverage vs. Number of Proposals (b) Example frame with top 20 IoU boxes

Figure 4.5: (a) Hand coverage versus number of proposals per frame, for various
proposal methods. The mean and standard deviation (shaded) across five trials are
shown. (b) An example frame with the twenty highest quality proposal boxes shown.
Notice how hands are well covered by our method.

P (I|R,O).

To evaluate this candidate generation technique, we measured its coverage — the

percentage of ground truth objects that have a high enough overlap (intersection over

union) with a proposed window to be counted as positive during detection. This is

an important measure because it is an upper-bound on recall. Figure 4.5a shows

coverage as a function of the number of proposed windows per frame for our method

and two other popular window proposal methods: selective search [129] (which is the

basis of the popular R-CNN detector [47]) and objectness [2]. The baselines were

run using those authors’ code, with parameters tuned for best results on our data

(for selective search, we used the “fast” settings given by the authors but with k

set to 50; for objectness, we used the standard hyper-parameters provided by the

authors and retrained the object-specific weights on our dataset). As shown in the

figure, our direct sampling technique (red solid line) significantly outperforms either

baseline (dashed green and blue lines) at the same number of candidates per frame.

Surprisingly, even our direct sampling without the appearance model (red dotted line)
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performed significantly better than objectness and about the same as selective search.

To further investigate the strength of the spatial consistencies of egocentric in-

teraction, we also subsampled the baseline proposals biased by our learned model

P (O|R, I). For both baselines, incorporating our learned distribution improved re-

sults significantly (solid blue and green lines), to the extent that biased sampling

from selective search performs as well as our direct sampling for lower numbers of

proposals. However, our full technique offers a dramatic speedup, producing 1500

windows per frame in just 0.078 seconds versus 4.38 and 7.22 seconds for selective

search and objectness. All coverage experiments were performed on a machine with

a 2.50GHz Intel Xeon processor.

Window Classification using CNNs

Given our accurate, efficient window proposal technique, we can now use a standard

CNN classification framework to classify each proposal (after resizing to the fixed-

sized input of the CNN). We used CaffeNet from the Caffe software package [62]

which is a slightly modified form of AlexNet [70]. We also experimented with other

network designs such as GoogLeNet [124], but found that when combined with our

window proposal method, detection results were practically identical.

We found that certain adjustments to the default Caffe training procedure were

important both to convergence and the performance of our networks. Only 3% of our

proposed windows are positive so to avoid converging to the trivial majority classifier,

we construct each training batch to contain an equal number of samples from each

class. We also note that the typical data augmentation routine of mirroring examples

is not used as it leads to classifiers that confuse left and right hands.
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The full detection pipeline consists of generating spatially sampled window propos-

als, classifying the window crops with the fine-tuned CNN, and performing per-class

non-maximum suppression for each test frame. Each of these components has a num-

ber of free parameters that must be learned. For our window proposal method, we

estimate the spatial and appearance distributions from ground truth annotations in

the training set and sample 2,500 windows per frame to provide a high coverage.

The CNN weights are initialized from CaffeNet excluding the final fully-connected

layer which is set by sampling weights independently from a zero-mean Gaussian.

We then fine-tune the network using stochastic gradient descent with a learning rate

of 0.001 and momentum of 0.999. The network was trained until the validation set

error converged. The overlap thresholds for non-max suppression were optimized for

each class based on average precision on the validation set. To keep our technique as

general as possible, we do not take advantage of the constraint that each hand type

should appear at most once in a given frame, although this is an interesting direction

for future work.

4.3.2 PERFORMANCE IN NATURAL PAIRED INTERACTIONS

We collected and annotated a large dataset of paired interaction between two par-

ticipants each wearing an egocentric camera. The dataset consists of four actors

performing four tabletop activities at three different locations. In total, the dataset

contains over 1.2 hours of video with over 15,000 pixel-wise hand annotations. We

randomly split the videos into train, validation, and test sets ensuring as even a dis-

tribution of actor, activity, and location as possible. We refer to this division as the

“main split.”
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We evaluate the effectiveness of our detection pipeline in two contexts: detecting

hands of any type, and then detecting hands of specific types (“own left,” “own right,”

etc.). In both cases, we use the PASCAL VOC criteria for scoring detections (that

the intersection over union between the ground truth bounding box and detected

bounding box is greater than 0.5). Figure 4.7 shows precision-recall curves for both

tasks, applied to the “main split.” For the general hand detection task (top-left),

we obtain an average precision (AP) of 0.807 using our candidate window sampling

approach, which is significantly higher than the 0.763 for selective search and 0.568

for objectness. The bottom-left pane of Figure 4.7 shows Precision-Recall curves for

distinguishing between the four hand types.

There is a curious asymmetry in our hand type detections, with our approach

achieving significantly better results for the social partner’s hands versus the camera

owner’s. Figure 4.6 gives insight on why this may be, presenting detection results

from randomly-chosen frames of the test set. Hands of the camera wearer tend to

have many more duplicate detections on subparts of the hands (e.g. in row 2, column

2 of the figure). We attribute this tendency to how frequently “own” hands are

truncated by the frame boundaries and thus appear as single or only a few fingers

in the dataset. Including these partial detections alongside fully visible hands during

training encourages the network to model both appearances to minimize error. While

this does result in a loss of precision, the system gains the ability to robustly detect

hands that are occluded or only partially in the frame (e.g. row 3, column 3) which

is often the case for egocentric video.
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Figure 4.6: Randomly-chosen frames with hand detection results, for own left, own
right, other left, and other right hands, at a detection threshold where recall was
0.7. Thick and thin rectangles denote true and false positives, respectively.

Error Analysis

A related question is whether the errors are primarily caused by failure to detect

hands of different types or confusion between hand types once a hand is detected.

An analysis of the per-window classifications showed that only 2% of hand windows

are mislabelled as other hands. Similarly for detection, 99% of undetected hands

at a recall of 70% are due to confusion with the background class. Generally, our

predictions tend to be nearly uniform for windows with ambiguous hand types, which

are then removed by reasonable decision thresholds and non-max suppression. The

qualitative results in Figure 4.6 also suggest that there is little confusion between

different hand types.

Generalizing Across Actors, Activities, and Locations

We next tested how well our classifiers generalize across different activities, different

people, and different locations. To do this, we generated three different types of

partitionings of our dataset across each dimension, where each split leaves out all

videos containing a specific (first-person) actor, activity, or location during training,
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and tests only on the held-out videos. We also split on actor pairs and activities

jointly, creating 18 divisions (as not all pairs did all activities). This stricter task

requires the method to detect hands of people it has never seen doing activities it has

never seen.

Table 4.7c summarizes our results, again in terms of average precision (AP), with

averages across splits weighted by the number of hand instances. The table shows

that the detector generalizes robustly across actors, with APs in a tight range from

0.790 to 0.826 no matter which actor was held out. This suggests that our classifier

may have learned general characteristics of human hands instead of specific properties

of our particular participants, although our sample size of four people is small and

includes limited diversity (representing three different ethnicities but all were male).

For locations, the courtyard and office environments were robust, but AP dropped to

0.648 when testing on the home data. A possible explanation is that the viewpoint of

participants in this location is significantly different, because they were seated on the

floor around a low table instead of sitting in chairs. For activities, three of the four

(cards, puzzle, and chess) show about the same precision when held out, but Jenga had

significantly lower AP (0.665). The Jenga videos contain frequent partial occlusions,

and the tower itself is prone to be mistaken for hands that it occludes (e.g. row 3,

column 3 of Figure 4.6). Finally, splitting across actor pairs and activities results

in a sharper decrease in AP, although they are still quite reasonable given the much

smaller (about 6x) training sets caused by this strict partitioning of the data.
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Own hands Other hands

All hands Left Right Left Right

Main split 0.807 0.640 0.727 0.813 0.781

All activities but:

cards 0.768 0.606 0.776 0.708 0.732

chess 0.851 0.712 0.788 0.821 0.808

Jenga 0.665 0.644 0.693 0.583 0.502

puzzle 0.803 0.747 0.813 0.675 0.681

weighted average 0.772 0.675 0.768 0.699 0.686

All actors but:

B 0.799 0.669 0.773 0.779 0.796

H 0.816 0.718 0.772 0.756 0.740

S 0.790 0.709 0.798 0.799 0.696

T 0.826 0.689 0.783 0.770 0.789

weighted average 0.807 0.700 0.782 0.776 0.756

All locations but:

courtyard 0.790 0.702 0.785 0.755 0.755

office 0.772 0.659 0.757 0.794 0.687

home 0.648 0.558 0.703 0.538 0.591

weighted average 0.737 0.639 0.748 0.698 0.678

Split across actor pairs and activities

weighted average 0.627 0.492 0.598 0.513 0.542

(c)

Figure 4.7: (a) General hand detection results with other window-proposal methods
as baselines. (b) Results for detecting four different hand types compared with Lee
et al. [76]. (c) Hand detection accuracy when holding out individual activities, par-
ticipants, and locations, in terms of average precision. For example, the training set
for all activities but cards included all videos not containing card playing, while the
test set consisted only of card playing videos.
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4.3.3 HAND SEGMENTATION AND ACTIVITY RECOGNITION

While detecting hands may be sufficient for some applications, pixel-wise segmenta-

tion is often more useful, especially for applications related to hand pose recognition

and in-hand object detection [87]. Once we have accurately localized hands using

the above approach, segmentation is relatively straightforward, as we show in this

section. We use our detector both to focus segmentation on local image regions, and

to provide semantic labels for the segments. Additionally, the location and pose of

hands also have a natural correlation with the activity they are performing. In this

section we explore hand segmentation and the influence of hand location and pose on

object-independent activity recognition.

Semantic Segmentation

Our goal in this section is to label each pixel as belonging either to the background

or to a specific hand class. We assume most pixels inside a box produced by our

detector correspond with a hand, albeit with a significant number of background

pixels caused both by detector error and the general difference in shape between

hands and rectangular bounding boxes. We can presume that within a bounding box

there are two generative distributions from which each pixel is drawn, skin color and

background. A similar model has been developed previously for segmentation as the

well-known semi-supervised segmentation algorithm, GrabCut [109] which we adapt

for use in our unsupervised context.

Given an approximate foreground mask, GrabCut improves the segmentation in

an iterative manner similar to expectation maximization methods. Starting from

the color distributions modeled from the initial foreground and background masks,
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a binary label (either foreground or background) is estimated for each pixel. This

is done by modeling the region as a grid graph Markov Random Field with factors

that encourage neighboring pixels to share the same label. After inference on this

graph is complete, the color models are recomputed using the new label assignment.

This process alternates between fitting the color models and updating the labels until

convergence or a fixed number of iterations.

In more detail, for each detected hand bounding box, we use the simple color

skin model described in Section 4.3.1 to estimate an initial foreground mask. We

use an aggressive threshold so that all pixels within the box are marked foreground

except those having very low probability of being skin. Note that we avoid running

GrabCut on the entire image because arms, faces, and other hands would confuse the

background color model. Instead, we use a padded region around the bounding box,

ensuring that only local background content is modeled. We take the union of the

output masks for all detected boxes as the final segmentation.

Using the skin color model learned for the training set, we detected hands and

produced segmentations for each frame in our test set. To put our results in context,

we ran the publicly-available pixel-wise hand detector of Li et al. [83], which was

designed for first-person data. Their model learns a pixel-wise skin classifier based

on local color features for each individual frame of the training data. At test time,

each input frame is compared to the training frames and the output of the learned

classifiers for the nearest k training frames based on global features are averaged. The

scores are thresholded and connected components are extracted in a post-processing

step. We trained their technique with 900 randomly-sampled frames from our training

set. As previously mentioned, that paper defines “hand” to include any skin regions
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connected to a hand, including the entire arm if it is exposed. To enable a direct

comparison to our more literal definition of hand detection, we took the intersection

between its output and our padded bounding boxes (i.e. we compared only on regions

where both methods could produce output).

Table 4.3 presents segmentation accuracy, in terms of pixel-wise intersection over

union between the estimated segmentation mask and the ground truth annotations.

Our technique achieves significantly better accuracy than the baseline of [83] (0.556

versus 0.478). A similar trend is present across the stricter actor pair and activity

data splits. Figure 4.8 shows our segmentations on some randomly-sampled test

frames. Examining the differences between our approach and the baseline lends some

insight. Our GrabCut-based approach looks only at local image color distributions

and leans heavily on the quality of our detections. The baseline method, however,

learns classifiers that must perform well across an entire frame which is complicated

by the close visual similarity between hands and other visible skin.

Our method has two main possible failure modes: failure to properly detect hand

bounding boxes, and inaccuracy in distinguishing hand pixels from background within

the boxes. To analyze the influence of each, we perform an ablation study based on

the ground truth annotations. Applying our segmentation approach to the ground

truth detection boxes instead of the output of the hand classifier, our results rose from

0.556 to 0.73. On the other hand, taking the output of our hand detector but using

the ground truth segmentation masks (by taking the intersection with the detected

boxes) achieved 0.76. Each of the studies improve over our fully automatic approach

by roughly 30-35%, indicating that neither detection nor segmentation is individually

to blame for the decrease in accuracy, and that there is room for future work to
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improve upon both.

Own hands Other hands

Left Right Left Right Average

Main split

Ours 0.515 0.579 0.560 0.569 0.556

Li et al. [83] 0.395 0.478 0.534 0.505 0.478

Split across actor pairs and activities

Ours 0.357 0.477 0.367 0.398 0.400

Li et al. 0.243 0.420 0.361 0.387 0.353

Table 4.3: Hand segmentation results in intersection over union with annotations.

Figure 4.8: Segmentation results on random hand regions.

Hand-based Activity Recognition

We now investigate one particular application of hand detection and segmentation

in first-person video: activity recognition. Interacting with different objects affords

different types of hand grasps, the taxonomies of which have been thoroughly studied
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[94]. Moreover, when multiple actors are interacting, it seems likely that the absolute

and relative position of hands within in the field of view also reveals evidence about the

activity that the actors are performing. An interesting question is whether activities

can be detected based on hand pose information alone, without using any information

about the appearance or identity of handled objects or the rest of the scene. Aside

from academic interest, focusing on hands independently of scene could be valuable

in recognition systems: while it may be impossible to model or anticipate every

single handled object or visual environment, we have shown that it is very possible

to accurately detect and segment hands. To what extent could hand pose alone solve

activity recognition in first-person views?

To address this question, we fine-tuned another CNN to classify whole frames as

one of our four different activities. To prevent the classifier from seeing any infor-

mation other than hands, we used the ground truth segmentation to mask out all

non-hand background. The network saw 900 frames per activity across 36 videos

during training and 100 per activity across four videos for validation. The classifier

achieved 66.4% per-frame classification accuracy, or roughly 2.7 times random chance,

on our test dataset with non-hand regions blacked out. While these results are not

perfect, they do confirm a strong connection between activities and hand location

and pose.

To evaluate how well the technique would work in an automated system, we reran

the above experiment using the output of our segmentation instead of the ground

truth for the test set. The per-frame activity classification accuracy falls from 66.4%

to 50.9%, but this is still roughly twice random chance.

This decline is caused by two types of errors, of course: incorrect information
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about the spatial configuration of the hands due to imperfect detection, and incorrect

hand pose information due to imperfect segmentation. We once again investigated

the relative effect of these errors, similar to the ablation study as before, and found

that replacing either detection or segmentation with ground truth increased the fully

automatic performance by about nine percentage points. This suggests that captur-

ing the spatial arrangement of hands and correctly predicting their pose are equally

important to per-frame activity recognition using only hand information.

So far we have considered each frame independently, but of course much informa-

tion about activity lies in the temporal dynamics of the hands over time. We tried

a simple voting-based approach to incorporate some of this temporal structure: we

classify each individual frame in the context of a fixed-size temporal window centered

on the frame. Scores across the window are summed, and the frame is labeled as

the highest scoring class. To again compare with the ground truth informed upper

bound, we only consider labeled frames, so a window of k frames spans approximately

k seconds.

Table 4.4 presents the results. Temporal information increases activity recognition

accuracy significantly, with even a window of five frames improving results from 0.664

to 0.764 when using ground truth segmentations, and from 0.509 to 0.618 using the

fully automatic system. Accuracy continues to improve with increasing window size,

with 50 frames achieving 0.929 with the ground truth and 0.734 for the automatic

segmentations. This improvement is likely due to two factors: certain hand poses

may be more distinctive than others, and segmentation errors in any given frame can

be disregarded as outliers.

We also show results averaged over stricter splits, such that any actor seen in
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Window size (k)

1 5 15 30 50

Main split

Segmentation mask 0.509 0.618 0.680 0.724 0.734

Ground truth mask 0.664 0.764 0.851 0.900 0.929

Split across actor pairs (average)

Segmentation mask 0.570 0.639 0.679 0.687 0.671

Ground truth mask 0.661 0.742 0.790 0.814 0.847

Table 4.4: Activity recognition accuracy from hand masks, using a temporal window
of k frames. See text for details.

testing is not seen in training. This partitioning reduces the number of splits with

enough test data to two, since not all pairs performed all activities. Though limited

in scope, the results of this strict task are similar to the “main split.”

Our results suggest that hand segmentation could deliver high activity recogni-

tion accuracy without the need to recognize objects or backgrounds; however, our

experiments also show that automated approaches would benefit from increased seg-

mentation accuracy.

4.4 CONCLUSION AND FUTURE WORK

In this chapter, we developed powerful hand detection methods which can accurately

locate and disambiguate hands in egocentric videos, both in constrained and uncon-

strained settings. Our models make use of probabilistic graphical models as well as

powerful Convolutional Neural Networks to provide high quality annotations to de-

velopmental and social psychologists studying how we as humans interact with the

world and each other in paired interactions. We further showed that these detections
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could also be used to yield state-of-the-art hand pose segmentation and we explored

the potential of these segmentations by showing that activities can be successfully

recognized in our first-person dataset based on the configuration and pose of hands

alone. In future work, we would like to generalize our dataset to more complex social

interactions and improve our models to directly produce semantic segmentations of

hands rather then rely on a pipeline approach like we have presented here.

In this and the previous chapter, we have demonstrated the effectiveness of com-

puter vision techniques for annotating both simple and complex structures in images

and videos. While we have presented our results on specific tasks, the models we

present can be generalized to other tasks. For instance, similar models could be lever-

aged to improve interaction detection for automated animal behavior studies [29] or

to identify animals in trail cameras [141] to track biodiversity metrics for ecological

studies.

The following two chapters address discovery tasks which seek to produce new

information from visual data rather than to simply locate specific visual elements

within images. In contrast to the annotation tasks presented thus far, manual so-

lutions to this class of problem are either intractable at the necessary scale, require

considerable time from human experts, or both. In these tasks, the amount of data

is too large and the signals are often too weak to be found by human effort without

years of study.

59



CHAPTER 5

AUTOMATICALLY EXTRACTING ARCHITECTURAL TRENDS

For many academic pursuits, the analysis of imagery is less concerned with locating

specific image structures for which the characteristics and appearance are known in

advance as in the previous chapters, but rather to discover visual elements which

correlate to higher level semantic concepts. Examples of this sort of analysis can be

readily found in the study of art or architecture, wherein a researcher might seek

to identify the characteristic aesthetics of painters or architects that produce work

at a certain time and within certain cultures. In this chapter, we develop a general

method of identifying image substructures that correlate with image-level labels. We

ground our data-mining approach and its motivations within the context of the highly

visual subject of architectural history, identifying architectural elements that typify

different time periods of construction.

5.1 DISCOVERING ARCHITECTURAL TRENDS

As a matter of course, architectural styles change over time, reflecting the evolving

artistic design, social and cultural attitudes, and technological and socioeconomic

conditions of the peoples that built them. Studying features of buildings gives a

window into the past, letting us observe properties of style and design at the time
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they were built. To study such phenomena manually would require tremendous ef-

forts in data collection, annotation, and analysis. In this chapter, we present a fully

automatic method that harnesses tens of thousands of images to discover architec-

tural elements that are temporally distinctive [77], i.e. they are indicative of certain

periods of construction. We also track the evolution of these elements over time to

identify how style has changed over the last two centuries. We use the city of Paris

as a proof-of-concept and apply our method to produce novel observations.

While there is existing work in computer vision that has considered architectural

applications such as classifying between different architectural styles or parsing build-

ing facades into predefined components [14,116,117,119,135,139], these methods are

constrained to small datasets and do not attempt to identify how architecture changes

over time. Perhaps most related to our work in both method and scale is work in

mid-level visual mining that tries to find discriminative image patches. Doersch et

al. [31, 32] discover patches that discriminate between different cities using similar

data as used here. Like us, Lee et al. [80] considers the temporal domain, finding

style-independent classifiers of style-discriminative elements present throughout mul-

tiple time periods (e.g. automotive headlights, which have been on cars for fifty years

but whose style has changed dramatically over time). Our work also finds elements

with similar semantics through time, but we handle the additional challenge that ele-

ments in architecture are much more dynamic, with certain elements such as window

shutters rising to prominence for decades only to fall out of favor later.

Other recent work has used Google Street View, but for other applications than

ours. Arietta et al. [7] use regressors based on mid-level patches to predict geospa-

tially distributed statistics such as crime rate and wealth. Ordonez and Berg [98]
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taken at known positions. We use a digital cadastre of Paris to retrieve detailed

building geometry and construction dates. The cadastre (shown in Figure 5.1) was

provided by the Paris Urban Planning Agency (Atelier Parisien d’Urbanisme) [6] and

includes over 120,000 buildings. Almost all of the buildings have a label indicating

their coarse construction period, either pre-1800, 1801-1850, 1851-1914, 1915-1939,

1940-1967, 1968-1975, 1976-1981, 1982-1989, 1990-1999, or post-2000. To provide

geotagged image data, we collected every current GSV image and associated location

metadata taken within the Paris city limits, yielding about 145,000 panoramas. Each

image is captured using arrays of 9 to 15 cameras on Google’s custom Street View

vehicles [4].

Our dataset generation process is outlined in Figure 5.2. To connect Street View

images with specific building information, we need to align the images with the cadas-

tre map and identify which building facades have been imaged. Each GSV image has

a GPS coordinate such that placement in the cadastre map is a simple task, but we

must still decide which buildings an image has captured and how to crop the panora-

mas to extract individual facades. To do this, for each panorama we look up the

Street View vehicle’s heading from the metadata and cast rays in 160◦ cones from

each side of the vehicle. The rays are cast at 1◦ intervals and are 30 meters long,

which is sufficient to reach the buildings on even the larger Parisian thoroughfares

(see Figure 5.2a). We compute the first facade encountered by each ray, and select

the pair of rays from each facade with the greatest angular difference (see Figure

5.2b). We then crop and warp the panoramas to produce multiple facade images per

Street View panorama. After discarding facade images that are overly-skewed or very

narrow images, our method results in 70,000 nearly-planar facade images. We sample
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Fine-Grained Analysis

Given the facade level patches, we also took a finer-grained perspective, looking for

the most discriminative substructures within each patch. For this analysis, we repeat

our classification and ranking procedure while masking out regions of the candidate

patch. By observing relative changes in the AUC, we can note which spatial cells are

most discriminative, which we visualize as heatmaps in Figure 5.5. The 1915-1939

period is characterized by raw brick facades, highlighted in Figure 5.5a. Figures 5.5b

and 5.5c suggest details not identified by our expert. In Figure 5.5b, the spac-

ing between adjacent window shutters appears to be influential. In Figure 5.5c the

additional horizontal line is missing in many similar pre-1990 facades. The cap in Fig-

ure 5.5d is highlighted as well. Interestingly the highlight extends off the right-hand

side indicating that the continued horizontal may also be important. The railing in

Figure 5.5e sets itself apart from other similar elements by the plainness of its columns

as compared to close negative patches. Figure 5.5f is unique among the examples be-

cause the map highlights an area because of what is not present: in the close negative

examples, the white trim extends down the side of the window.

Facade-Level Analysis

Another way to evaluate the usefulness of our discovered patches it to use them to

evaluate the ‘periodness’ of whole facades. For each facade, we found the top 100 de-

tected patches. We sum the AUC of the detected patches for each period in a facade

to produce an unnormalized distribution over how well each period’s patches fit the

given facade. In Figure 5.6 we show the highest likelihood facade for each period.

Each image is accompanied by an over-painting of patch detections with colors cor-

67





P
re
-1
80

0
18
01
-1
85
0

18
51
-1
91
4

19
15
-1
93
9

19
40
-1
96
7

19
68
-1
97
5

19
76
-1
98
1

19
82
-1
98
9

19
90
-1
99
9

A
ft
er

20
00

Figure 5.6: In each row we show the original facade (left), the original overpainted
with the periods of the top 100 patches (middle), and a facade reconstruction where
the period patches are replaced by their average images (right).
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5.4 LINKING ELEMENTS THROUGH TIME

Functionally-identical elements of buildings can change substantially over time; for

example, the styles of windows, doors, balconies, etc. vary dramatically across differ-

ent architectural periods. We automatically identify these evolutions by looking for

“chains” of elements that are discriminative to their particular time period, but are

still coarsely similar in appearance to elements in sequential periods. We cannot fix

the length of the chain or the beginning or ending periods in advance, as elements

may appear or disappear over time. This problem is reminiscent of multiple-target

tracking [13], in which detections of an object from sequential frames of video are

stitched together to form trajectories, except that we are “tracking” patches over sets

of images from different time periods.

Given a set of candidates C, we define a directed acyclic graph G = {V , E} such

that V = {s, t}∪C where s and t are special source and sink nodes. The graph forms

a trellis, such that each patch in any given time period has an outgoing edge to every

patch in the next period, while the source and sink connect to all nodes of the graph.

Figure 5.7 presents a sample graph with four periods and three patches per period.

Intuitively, the inter-period connections provide possible evolutions of corresponding

elements. The source and sink nodes are added to determine the start and end of a

chain, with weights such that if many matches for a patch are from the future, it is

likely to be a starting point; otherwise, it tends to be an ending point.

For the edge weights, we need a measure of similarity that will connect patches

likely to correspond to the same functional elements (e.g. windows, balconies, etc).

We could use distance in WHO space; however, misalignments in the initial patches
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5.5 CONCLUSION AND FUTURE WORK

In this chapter, we presented simple but effective methods to automatically discover

and track visually important architectural elements using an automatically annotated

collection of thousands of street-level images of Paris. The images are mapped to

buildings in a fine-grain urban planning model that annotates each with a rough

construction date. Using these combined data sources, we mine for period specific

stylistic elements, analyze facade-level architectural influences, and find evolutions

of elements across times. Moreover, our methodology provides a general framework

for identifying substructures in images that correlate with image-level labels and is

a step towards developing automatic techniques to mine large-scale image collections

to discover meaningful visual patterns.

In the next chapter, we will show how characteristics of whole images (including

their substructures) can be used to predict high level semantic concepts by implicitly

discovering features and objects in images that are predictive of the higher level

concepts. Unlike in this task, in the next chapter the primary goal is not to identify

the elements themselves, but rather to use them to provide an automated way of

predicting other attributes of the image content.
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CHAPTER 6

PREDICTING DEMOGRAPHIC AND GEOGRAPHIC ATTRIBUTES

FROM IMAGES

To a human observer, details and objects in an image can easily point to higher level

concepts about the place the image was taken. These concepts can range from simple

features like mountains or cliffs indicating the rough elevation of a place, to subtler

clues like bars on windows suggesting how much crime to expect in a region. Many

of these high-level visually inferable attributes are of interest to scientists studying

geography, ecology, and demography. In automatically identifying these high-level

attributes, a system must discover related visual elements it can use to make high

quality predictions. For modern pixel-to-prediction models like deep networks, this

process of discovering salient objects, patterns, and image statistics is an implicit part

of training to perform well at the task. In this chapter, we use powerful deep models

to predict a wide range of over a dozen geographic and demographic properties from

the content of single images alone.
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6.1 PREDICTING ATTRIBUTES DIRECTLY FROM CONSUMER

PHOTOGRAPHY

Demography is the study of statistics concerning births, deaths, immigration, and

other socioeconomic factors that measure the changing structure of human popu-

lations. Many subfields exist within demography which study social and economic

effects through the lens of population dynamics. Geographers study the Earth and

how people interact with it. In this chapter, we develop automated methods of

estimating coarse demographic and geographic properties from single photos. Our

technique can be viewed as a indirect observational methodology which could provide

demographers with automated tools to track shifting properties without the need of

formal survey. We develop methods to automatically construct large labeled datasets

to train and evaluate modern machine learning approaches to predict these attributes.

We demonstrate the capabilities of our approach on a wide range of demographic and

geographic properties [79].

Work in scene classification has considered demographic categories, like urban

versus rural [137]. Similarly, recent work by Zhou et al. [146] learns a suite of hand-

selected scene classifiers as composites of many categories from the SUN attribute

dataset [100]. The attributes capture different facets of a city including architecture,

greenery, and transportation. They apply these classifiers on a dense corpus of social

geo-tagged images to analyze the role of different attributes in city recognition and

similarity tasks. These approaches and others like them use hand-selected categories

and carefully-labeled training data, whereas we take a data-driven approach, learning

over a dozen attribute classifiers using social images annotated with noisy training
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labels. Newsam et al. [81, 138] try to reconstruct maps of land use type and “scenic-

ness” by pooling visual features from images taken in a particular location. While

similar to our approach, our scope is broader: we test over a dozen attributes at

a worldwide scale, whereas they study one type of attribute for part of the United

Kingdom.

We also note that geographic and demographic properties tend to be spatially

distributed across the globe, such that these attributes are informative of image lo-

cation. Other recent work has studied localization of individual images, typically

using geo-tagged photos from photo-sharing sites like Flickr as (noisy) reference im-

ages [?, 51, 54, 84, 85, 102,104,120,145]. Among those most related to ours, Hays and

Efros [54] use their geo-locations to infer population and elevation by looking up the

estimated geo-tag on a geographic information system GIS map. We also estimate

population and elevation (in addition to many other attributes), but by classifying

attributes directly instead of geo-locating and then looking up the corresponding

attribute values.

6.2 AUTOMATING ATTRIBUTE-ANNOTATED DATASET

CREATION

We assembled a large collection of about 40 million geo-tagged images from the photo-

sharing website Flickr. From this set, we filtered out photos having imprecise geo-tags

(those less accurate than about a city block). Unfortunately, a large fraction of these

images come from a relatively small number of places due to biases inherent in con-

sumer photography. If we simply use the whole collection (or sample uniformly from

it), we risk producing classifiers that memorize the appearance of a few key landmarks
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without abstracting general visual properties of places that exhibit various attributes.

We thus attempt to bias the sampling as if we were drawing uniformly at ran-

dom over the surface of the globe, instead of sampling directly from the geo-spatial

distribution of Flickr photos. To do this, we discretized the world into 0.01◦ × 0.01◦

latitude-longitude bins (roughly 1 km × 1 km at the middle latitudes). We randomly

sample photos one-by-one, but ignore samples from bins from which we already have

100 photos. To prevent individual highly-active users from introducing bias, we avoid

sampling more than five photos from any single user. Finally, we partition the data

into training and testing sets; to help prevent (nearly) identical photos from leaking

across the partitions, we divide on a per-user basis (so that all photos from a single

photographer are placed in one set or the other).

We collected public gridded GIS data for 15 attributes including geographic fea-

tures (e.g. elevation, elevation gradient and land-use) and demographic features (e.g.

population density, wealth, ethnic composition). The data came from a variety of

public sources including NASA and USGS, and the granularity of the gridded data

ranged from about 30 arc-seconds to up to about 15 arc-minutes (see Table 6.1a for

details). We used global data when available, although some of the attributes were

available only for the U.S. We avoided time-varying attributes (e.g. temporal cli-

matic attributes like daily temperature or rainfall); these attributes could be useful

if accurate timestamps are known but we do not assume that here. Many of these

attributes are correlated to some degree, as visualized in Figure 6.1b, and thus we

can expect some structure in the recognition accuracies across different attributes.

We automatically produce labeled datasets for each attribute, by simply examining

each photo’s geo-tag, looking up the value of the attribute at that location in the
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gridded GIS map, and then assigning that label to the photo. Of course, this process

is noisy: many geo-tags on Flickr are incorrect [53], and our worldwide attribute maps

are coarse enough (about 1–10km square) that attribute values may vary dramatically

even within a single bin. Attribute values are most informative if they are relatively

extreme — i.e. quite high or quite low. Thus we consider a restricted classification

problem in which the goal is to label an image as having a high or low value for an

attribute (e.g. high population or low population). We label images as high or low

by thresholding at the highest and lowest quartile (25% and 75%) of the worldwide

value of each attribute.

We partitioned the data into training, validation, and test sets (about 60%, 10%,

30% respectively) on a per-user basis to prevent leakage between the sets. We also

ensured the class distribution in the test sets remained equal such that the random

baselines are 50% for ease of interpretation.

6.3 ATTRIBUTE PREDICTION AS A CLASSIFICATION TASK

Inspired by the impressive results of convolutional deep learning on a variety of recog-

nition problems (e.g. [70, 97, 126, 127] among others), we apply them to our problem

of attribute recognition. We start from the neural network architecture proposed by

Krizhevsky et al. [70], with five convolutional layers (C1 to C5) followed by three

fully connected layers (FC6 to FC8), and the same mechanisms for contrast normal-

ization and max pooling. In total, this model has about 60 million parameters. Our

training dataset is not sufficiently large to train such a large number of parameters

from scratch, so we follow Oquab et al. [97] and others and initialize from a model

pretrained on ImageNet. We modify the final fully connected layer (FC8) for each
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Attribute Source Year(s) Grid size Description

% African American House-
holds

[114] 2000 30 arcsec Percentage of households
identifying as African Amer-
ican.

% Asian Households [114] 2000 30 arcsec Percentage of households
identifying as Asian.

% Hispanic Households [114] 2000 30 arcsec Percentage of households
identifying as Hispanic.

% Pasture [105] 2000 0.5 arcmin Proportion of land areas
used as pasture land.

% Underweight Children [23] 1990-
2002

2.5 arcmin Estimates of the percentage
of underweight children.

Elevation [130] 1996 30 arcsec Elevation according to
USGS’s global digital
elevation model.

Elevation Gradient [130] 1996 30 arcsec Elevation gradient according
to USGS’s global digital ele-
vation model.

GDP 1990 [140] 1990 15 arcmin GDP in millions of USD.

Infant Mortality Rate [23] 2000 2.5 arcmin Estimates of infant mortal-
ity rates for the year 2000.

Nighttime Light Intensity [95] 2009 30 arcsec Composites of nighttime
lights as seen from space for
calendar year.

Population Density (2000) [24] 2000 2.5 arcmin Population densities ad-
justed to match UN totals,
persons per sq. km.

Population Density (2010) [24] 2010 2.5 arcmin Population densities (pro-
jected based on 2000 data),
persons per sq. km.

Predicted GDP in 2025 [140] 2025 15 arcmin GDP in millions of USD.

US Household Income [140] 2000 30 arcsec Aggregated household in-
come in 2000, according to
U.S. census.

US Population [140] 2000 30 arcsec U.S. population according to
2000 census.

(a) Details of the 15 attributes, showing data
sources, year(s) of data collected, and grid size
(GIS data resolution), followed by brief descrip-
tions of the attributes.
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(b) Correlations between attributes
estimated from 100,000 image lo-
cations. Color intensity is propor-
tional to the correlation magnitude,
with positive values in blue and neg-
ative in pink.

Figure 6.1: Details of the data sources used and the correlation between attributes.

of our attribute classification problems such that it has two outputs (rather than the

1,000 of the original model) to account for our binary classification problem (estimat-

ing whether the attribute value is high or low). Additionally, the initial weights for

FC8 are randomly sampled from a zero-mean normal distribution.

We used Caffe [61] for training and testing our networks, using the pretrained Im-

ageNet network packaged with Caffe as initialization. The network for each classifier

was trained independently using stochastic gradient descent with a batch size of 128

images. The learning rate was set at 0.001 and decreased by an order of magnitude

every 2500 batches. The training process was allowed to continue for a maximum

of 25,000 batches, but generally converged much earlier for our problems. To avoid
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overfitting, the validation set was evaluated every 500 batches and the weights with

the lowest validation error were used for testing.

To put the CNN results in context, we also tested classifiers using several other

recognition approaches. We constructed a bag-of-words vocabulary using Histogram

of Oriented Gradients (HOG) [27]; our hypothesis was that local evidence such as

particular types of objects might be helpful to predict geospatial attributes. Given

an image, we sample 5 × 5 blocks of HOG cells to produce local feature vectors in

overlapping square sub-images. We use the 31-dimensional variant of HOG [39], so

that the feature dimensionality of each patch is 5 × 5 × 31 = 775. We represent the

image in the standard bag-of-words fashion as a histogram over these features quan-

tized to a vocabulary. In this case, we constructed a 100,000 codeword vocabulary by

clustering (with k-means) over 10 million HOG features sampled from random Flickr

images. We then learned a linear SVM [63] for each of our 15 attributes, to estimate

a binary label indicating whether a given photo has a high or low value.

We also built simpler global scene-level features, under the hypothesis that some

attributes could be inferred based on the overall appearance of a scene. We specifi-

cally used GIST [96] and spatially-pooled color histograms. For the histograms, we

computed 8-bin histograms over each RGB plane within spatial regions of different

sizes (specifically in a spatial pyramid with three levels of 1× 1, 2× 2, and 4× 4 bins,

yielding (1 + 4+ 16)× (3× 8) = 502 dimensional feature vectors). As with the HOG

features, we then learned linear SVMs.

The results of applying our classifiers on the 15 demographic and geographic

attributes are shown in Table 6.1, where again the task is to determine whether each

image was taken in a place with a high or low value of the attribute — e.g. for the

80



# images CNN HOG Color GIST

Global attributes

Elevation 14,230 61.11 56.50 53.34 52.92

Elevation Gradient 13,266 60.63 55.86 53.76 52.44

GDP, 1990 Actual 14,940 71.33 64.83 60.45 58.02

GDP, 2025 Predicted 14,906 73.58 66.05 61.79 59.26

Infant Mortality 14,634 55.88 52.88 52.63 50.92

Night Light Intensity 15,004 73.61 68.03 62.58 59.98

Population Density, 2010 14,840 74.43 67.48 62.05 60.11

Population Density, 2000 14,892 72.38 65.75 61.62 58.71

Underweight Children 1,896 62.88 51.72 51.72 51.55

% Pasture Land 14,972 58.50 54.62 54.54 52.99

U.S.-only attributes

% African American 7,190 65.42 62.17 57.79 57.79

% Asian American 7,006 63.02 58.99 57.48 56.54

% Hispanic American 6,898 65.65 60.88 58.56 56.92

Household Income 6,900 67.60 64.55 58.12 57.61

Population 6,866 68.10 64.76 61.17 59.22

Average 66.27 61.00 57.84 56.33

Table 6.1: Classification accuracies as percentage correct for 15 geo-spatial attributes.
Random baseline for all attributes is 50%; see text for human baselines.

first row of the table, whether a given photo was taken at a low or high elevation.

We find that the correct classification rates vary significantly, from close to random

guessing for infant mortality to nearly 75% for population density. This range reflects

the difficulty of the attribute tasks we have proposed: a photo full of buildings and

people is obviously probably taken in a high-population area, whereas inferring infant

mortality (which is a good correlate for poverty rate) requires more subtle analysis

(e.g. looking for bars on windows, or the clothes people are wearing). Some of these

attributes are correlated and thus show similar performance, although we do see

interesting differences amongst them: we can predict estimated GDP for 2025 more

accurately than in 1990, presumably because Flickr images were mostly taken in the

last 5 years, whereas the worldwide wealth distribution has changed dramatically

since 1990 (e.g. China’s GDP has increased by an order of magnitude). Figure 6.2

shows randomly-sampled correctly and incorrectly classified images for each attribute.
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For all of the attributes, we found that the deep learning CNNs beat the other

techniques by a decisive margin. The GIST and color features had an average accu-

racy of 56.33% and 57.84%, respectively, compared to a 50% random baseline. This

confirms the hypothesis that some attributes can be (weakly) estimated based only on

the overall properties of the scene. Using HOG features improved results significantly

to 61.0%, suggesting that local object-level features help, but the CNNs yielded a

dramatic further improvement to 66.3%. Our results thus add to the rapidly-growing

evidence that deep learning can yield large improvements over traditional techniques

on many vision problems.

We are not aware of other work that has studied demographic and geographic

attribute classification directly, so we cannot compare against published results. Per-

haps the closest work is that of Leung et al [81], who try to reconstruct land use maps

by analyzing pools of geo-tagged photos from Flickr — a very different task than our

goal of labeling images. Though not directly comparable, as a weak comparison we

note that we achieve greater accuracy relative to our baseline: they report 64% accu-

racy versus a 61.1% random baseline for urban development classification, while we

achieve 73.6% accuracy on our similar “brightness of lights at night” attribute versus

50%. Again, our tasks are very different so a direct comparison is not meaningful,

but this at least suggests that our improvement over baseline is state-of-the-art.

Human Baselines

Although the automatic classifiers beat the random baseline by substantial margins,

our accuracies are not near the 100% performance we might aspire to. However it

is important to note that our test dataset is extremely difficult, consisting of a raw
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set of Flickr photos; we have deliberately made no attempt to filter out difficult or

noisy images (because doing so could inevitably inject biases into the dataset). Thus

many of our test set photos, including indoor images and close-ups of objects, lack

enough visual evidence to infer many attributes. Moreover, the ground truth labels

themselves are noisy, as a significant fraction of Flickr geo-tags are wrong [53].

The sample of correctly and incorrectly classified images for each attribute shown

in Figure 6.2 gives a sense for the difficulty of our dataset, and the limited amount

of evidence that some images contain. For instance, in column one, row two of the

figure, the classifier correctly estimates that the photo of a concert probably occurs

in a city and the photo of a mountain is in a rural area. But it incorrectly decides

that the fencers are in the country and the art is in the city, despite the fact that

these are very reasonable decisions based on the visual evidence at hand.

To try to quantify the fraction of these difficult images, we collected annotations

for three attributes (population, income, and elevation gradient) to measure human

performance on these classification tasks.For each attribute, we sampled 1,000 images

from our dataset such that half had a high value of the attributes and the other half

had a low value according to the automatic labeling. We presented each image to two

users on Mechanical Turk (restricting to “Masters” who have a long track record of

quality work), asking them to classify the image into the low or high category and to

provide some additional feedback.

We found that human performance ranged from 52.9% for poverty, to 60.0% for

elevation gradient, to nearly 81% for population density. Our automatic classifiers

actually beat human performance on poverty (taken as a proxy for infant mortality —

55.9% versus 52.9%), while achieving about the same performance on elevation gra-
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dient (60.6% versus 60.0%). However the human users performed significantly better

on population density (80.8% versus 73.61%). Thus while our automatic classifiers

do not get near 100% accuracy, neither do humans. One reason for this is that about

28% of our dataset is indoor images, which typically have very little evidence about

many of these attributes.

6.4 CONCLUSION AND FUTURE WORK

We have proposed the problem of estimating geographic and demographic attributes

of the place where a photo was taken, based only on the photo’s visual content. We

learned Convolutional Neural Network classifiers for a wide variety of these attributes

by training on large, automatically collected datasets created by combining geo-tagged

Flickr photos with attribute values from GIS maps. We evaluated the performance

of our models against more traditional scene-level and local features. While the

CNNs give the best performance, we find that the local features outperform the

simpler scene-level features by a significant degree, suggesting that the classifiers

have discovered local features (like objects) that are predictive of attribute values.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we have argued that computer vision techniques will be vital for many

observational sciences to face the challenges of an increasingly visual data landscape

and that computer vision techniques are already useful enough to be valuable in some

academic domains. We have presented multiple lines of work developing automated

image analysis techniques in both traditionally quantitative and qualitative academic

contexts including glaciology, developmental psychology, architectural history, and

demography. Our developed methodologies for these problems often perform better

than human annotators, resulting in solutions that perform analysis at super-human

accuracy, speed, and/or scale. Further, we develop on themes of diversity and confi-

dence estimation through multiple lines of work. These successes provide additional

evidence for the efficacy of computer vision techniques in the context of observational

science and the humanities.

In Chapter 2, we described the models used in this thesis. In Chapter 3, we

developed a holistic model for ice-layer identification which uses statistical sampling

to consider thousands of potential high-probability configurations from the solution

space to provide confidence intervals for layer estimates. In addition to being the first

work on layer finding to introduce these notions of solution confidence, our method-
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ology also achieves state-of-the-art performance. In Chapter 4, we presented two

methods for hand detection and disambiguation for egocentric videos. We show that

powerful spatial biases in egocentric videos can improve results in multiple settings

and under multiple models. We employ a Markov Chain Monte Carlo method as

well as Convolutional Neural Networks to provide high-quality hand detections in

laboratory and natural environments. In Chapter 5, we harnessed tens of thousands

of publicly available Google Street View images to automatically create a dataset of

building facades correlated with construction period. We mined this dataset to pro-

duce hundreds of facade elements that are indicative of specific periods in Parisian

architecture. The huge number of individual element instances in our dataset re-

quires our mining approach to enforce diversity in candidate rankings. In Chapter 6,

we demonstrated how large-scale analysis of consumer photography can be used to

coarsely track changing demographic and geographic attributes.

Our work is part of a growing inter-disciplinary trend combining sophisticated

machine learning with large-scale datasets to enable novel science. We believe that as

time goes on, computer vision for large-scale analysis is likely to become an essential

tool for the next generation of observational science. For tasks like ice-layer identi-

fication which have been traditionally posed as image processing tasks, introducing

machine learning can have a broad impact for automated analysis, in response to

growing volumes of visual data. There are also many opportunities to use machine

learning to study human populations through large image collections such as studying

dietary habits through shared images [90] or analyzing how our social systems affect

health or educational outcomes by mining photo-sharing platforms.

Finally, as discussed in Section 2.2, no techniques have been established to produce

87



diverse solutions from Convolutional Neural Networks for structured prediction prob-

lems. This task is a rich line of work that warrants further investigation in order to

bring greater application to these powerful learners to pipelined and user-in-the-loop

systems. In the following section, we overview our recent ongoing work to address

this gap and show some qualitative results.

7.1 FUTURE WORK

As discussed in Section 2.1, the most likely solution under a model may not be the

lowest error solution for a test example. For large, difficult-to-optimize models like

Convolutional Neural Networks (and other deep architectures), this can be especially

true. Furthermore, ensembles of deep networks often converge to very similar solu-

tions for structured problems, differing only by a few pixels for a segmentation task

or a few words for image captioning. In recent work, we address the issue of learning

ensembles of deep networks such that their outputs are likely to be diverse in the

face of ambiguity, i.e. the loss with respect to an oracle mechanism (either a reranker

or a human operator) is minimized [78]. We reproduce the methodology and some

examples here as an additional contribution, though these techniques are not applied

in this thesis elsewhere.

More formally, we consider the task of training an ensemble of differentiable learn-

ers that together produce a set of solutions with minimal loss with respect the an

oracle that selects only the lowest-error prediction. We use [n] to denote the set of

1, 2, . . . , n. Given a training set of input-output pairs D = {(xi, yi) | xi ∈ X , yi ∈ Y},

our goal is to learn a function g : X → YM which maps each input to M out-

puts. We fix the form of g to be an ensemble of M learners f such that g(x) =
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(f1(x), . . . , fM(x)). For some task-dependent loss �(y, ŷ), which measures the error

between true and predicted outputs y and ŷ, we define the oracle loss of g over the

dataset D as

LO(D) =
n∑

i=1

min
m∈[M ]

� (yi, fm(xi)) .

In order to directly minimize the oracle loss for an ensemble of learners, Guzman-

Rivera et al. [50] present an objective which forms a (potentially tight) upper-bound

on the oracle loss. This objective replaces the minimum in the oracle loss with

indicator variables (pi,m)
M
m=1, where pi,m is 1 if predictor m has the lowest error on

example i. The resulting minimization,

argmin
fm,pm,i

n∑
i=1

M∑
m=1

pi,m � (yi, fm(xi)) (7.1)

s.t.
M∑

pi,m = 1, pi,m ∈ {0, 1},

is a constrained joint optimization over ensemble parameters and data-point assign-

ments. The authors propose an alternating block algorithm to approximately min-

imize this objective. In a manner similar to K-Means or ‘hard-EM’, this approach

alternates between assigning examples to their min-loss predictors and training mod-

els to convergence on the partition of examples assigned to them. Note that this ap-

proach is incompatible with training deep networks, since modern architectures [55]

can sometimes take weeks or months to train a single model once, repeatedly retrain-

ing all ensemble members may be simply infeasible.

To overcome this shortcoming, we propose a stochastic algorithm for differentiable

learners which interleaves the assignment step with batch updates in stochastic gra-
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dient descent (SGD). Consider the partial derivative of the objective in Eq. 7.1 with

respect to the mth individual learner on example xi,

∂LO

∂fm(xi)
= pi,m

∂�(yi, fm(xi))

∂fm(xi)
. (7.2)

Notice that if fm is the minimum error predictor for example xi, then pi,m = 1 and

the gradient term is the same as if training a single model; otherwise, the gradient is

zero. This behavior lends itself to a straightforward optimization strategy for learners

trained by SGD-based solvers. For each batch, we pass the examples through the

learners, calculating losses from each ensemble member for each example. During the

backward pass, the gradient of the loss for each example is backpropagated only to

the lowest error predictor on that example (with ties broken arbitrarily).

We call this approach Stochastic Multiple Choice Learning (sMCL). sMCL is gen-

eralizable to any learner trained by stochastic gradient descent and is thus applicable

to an extensive range of modern deep networks. Unlike the iterative training schedule

of MCL, sMCL ensembles need only be trained to convergence once in parallel. sMCL

is also agnostic to the exact form of loss function � such that it can be applied without

additional effort on a variety of problems. Concretely, this can be implemented via

a simple sMCL loss layer which can be dropped into any ensemble of any type of

architecture after the final prediction layer in each member.

We find that ensembles trained with sMCL greatly reduce error with respect to

an oracle for many tasks and network architectures. Figures 7.1 and 7.2 show ex-

ample outputs for sMCL ensembles compared to independently trained ensembles for

semantic segmentation and image captioning tasks. As the figure shows, sMCL en-
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Independent
Ensemble Oracle

sMCL Ensemble Predictions

IoU 82.64 IoU 77.11 IoU 88.12 IoU 58.70 IoU 52.78

IoU 54.26 IoU 56.45 IoU 62.03 IoU 47.68 IoU 37.73

IoU 20.31 IoU 21.34 IoU 14.17 IoU 94.55 IoU 19.18

Input Net 1 Net 2 Net 3 Net 4

Figure 7.1: Test image and corresponding predictions obtained by each member of
the sMCL ensemble as well as the top output of a classical ensemble. The outputs
with minimum loss on each example are outlined in red and intersection over union
is listed below each example. Notice that sMCL ensembles vary in the shape, class,
and frequency of predicted segments.

sembles provide multiple reasonable hypotheses in the face of ambiguity. For example

in the first row of Figure 7.1, we see the majority of the ensemble members produce

dining tables of various completeness in response to the visual uncertainty caused by

the clutter. Networks 2 and 3 capture this ambiguity well, producing segmentations

with the dining table completely present or absent. For image captioning, we see

independently trained networks producing nearly identical outputs due to the strong

biases of the language model while the sMCL ensembles show diversity both in choice

of language and in what parts of the image they describe.

We feel this and related work will allow deep networks to provide higher quality

solution sets to both reranking systems and human operators. Our methodology is

general, loss agnostic, and parameter free - allowing easy application to most modern

deep architectures.
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Input Independently Trained Networks sMCL Ensemble

A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.
A man riding a wave on top of a surfboard.

A man riding a wave on top of a surfboard.
A person on a surfboard in the water.
A surfer is riding a wave in the ocean.
A surfer riding a wave in the ocean.

A kitchen with a stove and a microwave.
A white refrigerator freezer sitting inside of a kitchen.
A white refrigerator sitting next to a window.
A white refrigerator freezer sitting in a kitchen

A cat sitting on a chair in a living room.
A kitchen with a stove and a sink.
A cat is sitting on top of a refrigerator.
A cat sitting on top of a wooden table

A living room filled with furniture and a flat screen tv.
A living room filled with furniture and a flat screen tv.
A living room filled with furniture and a window.
A living room filled with furniture and a flat screen tv

A man sitting on a couch with a laptop.
A living room with a couch and a table.
The living room is clean and empty of people.
A living room with a table and chairs

A bird is sitting on a tree branch.
A bird is perched on a branch in a tree.
A bird is perched on a branch in a tree.
A bird is sitting on a tree branch

A small bird perched on top of a tree branch.
A couple of birds that are standing in the grass.
A bird perched on top of a branch.
A bird perched on a tree branch in the sky

Figure 7.2: Comparison of sentences generated by members of a standard indepen-
dently trained ensemble, and an sMCL-based ensemble of size four.

7.2 SOME FINAL OVERLY-PHILOSOPHIC THOUGHTS

It seems that the information age is sparing fewer and fewer subjects, long held to be

solely the domains of the human spirit, from the advance of autonomous agents. The

techniques presented here are far from supplanting the expertise and intuition of those

of us who dedicate our lives to singular studies, but should artificial intelligence ever

complete this coup and permeate every aspect of our cultural and scientific systems,

it will only be through the cooperation and curiosity of those who it would displace

- a victory of obsolescence.
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[64] Charles Kervrann, Carlos Óscar Sánchez Sorzano, Scott T Acton, Jean-

Christophe Olivo-Marin, and Michael Unser. A guided tour of selected image

processing and analysis methods for fluorescence and electron microscopy. IEEE

Journal of Selected Topics in Signal Processing, 10(1):6–30, 2016.

[65] Daniel Kim, Seung Son, and Hawoong Jeong. Large-scale quantitative analysis

of painting arts. Scientific Reports, 4(7370), 2014.

101



[66] Ross Kindermann, James Laurie Snell, et al. Markov random fields and their

applications, volume 1. American Mathematical Society Providence, RI, 1980.

[67] Sara Klingenstein, Tim Hitchcock, and Simon DeDeo. The civilizing process in

London’s Old Bailey. Proceedings of the National Academy of Science, 111(26),

2014.

[68] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

techniques. MIT press, 2009.

[69] David Koller, Bernard Frischer, and Greg Humphreys. Research challenges

for digital archives of 3d cultural heritage models. Journal on Computing and

Cultural Heritage (JOCCH), 2(3):7, 2009.

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. In Advances in Neural Information

Processing Systems, pages 1097–1105, 2012.

[71] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. The

Parable of Google Flu: Traps in big data analysis. Science, 343(6176), 2014.

[72] David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-Laszlo Barabasi,

et al. Computational social science. Science, 323(5915):721–723, February 2009.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

102



[74] Sang-Rim Lee, Jerome Mitchell, David J Crandall, and Geoffrey C Fox. Es-

timating bedrock and surface layer boundaries and confidence intervals in ice

sheet radar imagery using mcmc. In IEEE International Conference on Image

Processing, pages 111–115. IEEE, 2014.

[75] Stefan Lee, Sven Bambach, David Crandall, John Franchak, and Chen Yu. This

hand is my hand: A probabilistic approach to hand disambiguation in egocen-

tric video. In IEEE Conference on Computer Vision and Pattern Recognition

Workshop, pages 543–550, 2014.

[76] Stefan Lee, Sven Bambach, David J. Crandall, John M. Franchak, and Chen

Yu. This hand is my hand: A probabilistic approach to hand disambiguation

in egocentric video. In IEEE Conference on Computer Vision and Pattern

Recognition Workshop, June 2014.

[77] Stefan Lee, Nicolas Maisonneuve, David Crandall, Alexei A Efros, and Josef

Sivic. Linking past to present: Discovering style in two centuries of architecture.

In IEEE International Conference on Image Processing.

[78] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan, David

Crandall, and Dhruv Batra. Stochastic multiple choice learning for training

diverse deep ensembles.

[79] Stefan Lee, Haipeng Zhang, and David J Crandall. Predicting geo-informative

attributes in large-scale image collections using convolutional neural networks.

In IEEE Winter Conference on Applications of Computer Vision, pages 550–

557. IEEE, 2015.

103



[80] Yong Jae Lee, Alexei A Efros, and Martial Hebert. Style-aware mid-level rep-

resentation for discovering visual connections in space and time. In IEEE In-

ternational Conference on Computer Vision, 2013.

[81] Daniel Leung and Shawn Newsam. Proximate sensing: Inferring what-is-where

from georeferenced photo collections. In IEEE Conference on Computer Vision

and Pattern Recognition, 2010.

[82] Cheng Li and Kris M. Kitani. Model recommendation with virtual probes for

egocentric hand detection. In IEEE International Conference on Computer

Vision, 2013.

[83] Cheng Li and Kris M. Kitani. Pixel-level hand detection in ego-centric videos.

In IEEE Conference on Computer Vision and Pattern Recognition, 2013.

[84] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and Jan-

Michael Frahm. Modeling and recognition of landmark image collections using

iconic scene graphs. In European Conference on Computer Vision, 2008.

[85] Yunpeng Li, David J Crandall, and Daniel P Huttenlocher. Landmark classi-

fication in large-scale image collections. In IEEE International Conference on

Computer Vision, pages 1957–1964, 2009.

[86] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.

Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,

abs/1405.0312, 2014.

104



[87] Yizhou Lin, Gang Hua, and Philippos Mordohai. Egocentric object recognition

leveraging the 3d shape of the grasping hand. In European Conference on

Computer Vision, pages 746–762. Springer, 2014.

[88] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-

works for semantic segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 3431–3440, 2015.

[89] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[90] Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gor-

ban, Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan

Huang, and Kevin P Murphy. Im2calories: towards an automated mobile vi-

sion food diary. In IEEE International Conference on Computer Vision, pages

1233–1241, 2015.

[91] Jean-Baptiste Michel, Yuan Shen, Aviva Aiden, Adrian Veres, Matthew Gray,

et al. Quantitative analysis of culture using millions of digitized books. Science,

331(6014), 2011.

[92] Jerome E Mitchell, David J Crandall, Geoffrey C Fox, and John D Paden. A

semi-automatic approach for estimating near surface internal layers from snow

radar imagery. In 2013 IEEE International Geoscience and Remote Sensing

Symposium-IGARSS, pages 4110–4113. IEEE, 2013.

105



[93] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On

the number of linear regions of deep neural networks. In Advances in Neural

Information Processing Systems, pages 2924–2932. 2014.

[94] John R Napier. The prehensile movements of the human hand. Journal of Bone

and Joint Surgery, 38(4):902–913, 1956.

[95] NOAA National Geophysical Data Center. Version 4 DMSP-OLS nighttime

lights time series.

[96] Aude Oliva and Antonio Torralba. Building the gist of a scene: the role of

global image features in recognition. In Progress in Brain Research, 2006.

[97] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and trans-

ferring mid-level image representations using convolutional neural networks. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 1717–

1724, 2014.

[98] Vicente Ordonez and Tamara L Berg. Learning high-level judgments of urban

perception. In European Conference on Computer Vision, 2014.

[99] Christian Panton. Automated mapping of local layer slope and tracing of in-

ternal layers in radio echograms. Annals of Glaciology, 55(67):71–77, 2014.

[100] Genevieve Patterson and James Hays. Sun attribute database: Discovering,

annotating, and recognizing scene attributes. In IEEE Conference on Computer

Vision and Pattern Recognition, 2012.

106



[101] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann, 2014.

[102] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisser-

man. Object retrieval with large vocabularies and fast spatial matching. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.

IEEE, 2007.

[103] Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in

first-person camera views. In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2012.

[104] Rahul Raguram, Joseph Tighe, and Jan-Michael Frahm. Improved geomet-

ric verification for large scale landmark image collections. In British Machine

Vision Conference, pages 1–11, 2012.

[105] Navin Ramankutty, Amato T Evan, Chad Monfreda, and Jonathan A Foley.

Farming the planet: 1. geographic distribution of global agricultural lands in

the year 2000. Global Biogeochemical Cycles, 22(1), 2008.

[106] James Rehg, Gregory Abowd, Agata Rozga, Mario Romero, Mark Clements,

Stan Sclaroff, Irfan Essa, O Ousley, Yin Li, Chanho Kim, et al. Decoding

children’s social behavior. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3414–3421, 2013.

[107] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in Neural

Information Processing Systems, pages 91–99, 2015.

107



[108] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386, 1958.

[109] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. ACM Transactions on

Graphics, 23(3):309–314, 2004.

[110] Derek Ruths and Jürgen Pfeffer. Social media for large scale studies of behavior.

Science, 346, 2014.
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