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5.1 COMPRESSIONMEMBERS IN STRUCTURES
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Compression members are structural elements_subjected to axial forces that tend to push
the ends0f the members toward each other. The most common compression member in a
building structure is a column. Columns, are vertical members that support the horizontal
elements of a roof or floor system. Several columns can be seen in Figure 5.1 as part of a
building structure. They.are.the primary elements that provide the vertical space to form
an occupiable volume: Other compression members are found in trusses as chord and
web members and as bracing members in floors and walls. Other names often used to
identify compression members are Struts and posts. Throughout this chapter the terms
compression member‘and column will be used interchangeably.

The compression members discussed in this chapter experience only axial forces.
In real structures, additional load effects are often exerted on a compression member that
would tend to combine bending with the axial force. These combined force members are
called beam-columns and are discussed in Chapter 8. The majority of the provisions that
apply to compression members are located in Chapter E of the Specification.

Table 5.1 lists the sections of the Specification and parts of the Manual discussed
in this chapter.
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5.2 CROSS-

Compression Members
SECTIONAL SHAPES FOR COMPRESSION MEMBERS

Compression members carry axial forces, so the primary cross-sectional property of
interest is the area. Thus, the simple relationship between force and stress,

f=r (5.1)

Ea— 5
Figure 5.1 Columns in a Multistory Building
Photo courtesy of Greg Grieco

is applicable. As long as_this relationship dictates compression member strength, all cross
sections with the same area will'perform in the same way. In real structures, however,
other factors influence the strength of the compression member, and the distribution of
the area becomes important.

In building structures, the typical \compression member is a column and the
typical’ column is a rolled wide-flange member. Later discussions of compression
member strength will show that the. W+<shape does not have the most efficient distribution
of material for compression members. It does, however, provide a compression member
that can easily be connected.to other members of the system such as beams and other
columns: This feature significantly influences its selection as an appropriate column cross
section.

Figure 5.2 shows examples of rolled and built-up shapes that are used as
compression members. Many of these are the same shapes used for the tension members
discussed in Chapter 4. This is reasonable because the forces being considered in these
two cases are both axial, although they act in the opposite direction. However, other
factors that influence the strength of compression members will dictate additional criteria
for the selection of the most efficient shapes for these members.

The tee and angle shown in Figure 5.2¢ and d are commonly used as chords and webs of
trusses.. In these applications, the geometry of the shapes helps simplify the connections
between members. Angles are also used in pairs as built-up compression members, with
the connecting element between the two angles as shown in Figure 5.2h. The channel can
befound in trusses as a single element or combined with another channel as shown in
Figure 5.2b, i, 1, and m. Built-up columns can also be found using channels. The hollow
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structural sections (HSS) shown in Figure 5.2¢, f, and g are commonly found as columns
in buildings, particularly one-story structures where the connections to the shape can be
simplified by carrying beams over the columns. The distribution of the material in these
shapes is the most efficient for columns.

Table 5.1 Sections of Specification and Parts of Manual Covered in this Chapter

Specification

B3 Design Basis
B4 Classification of Sections for Local Buckling
El General Provisions
E2 Effective Length
E3 Flexural Buckling of Members without Slender Elements
E4 Torsional and Flexural-Torsional Buckling. of  Single Angles and
Members without Slender Elements
E5 Single-Angle Compression Members
E6 Built-up Members
E7 Members with Slender Elements
Manual
Part 1 Dimensions and Propetties
Part 4 Design of Compression Members

Part 6 Design of Members Subject to Combined Loading
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Figure 5.2 Rolled Shapes and Built-up Shapes for Compression Members
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5.3 COMPRESSION MEMBER STRENGTH

If no other factors were to impact the strength of a compression member, the simple axial
stress relationship given in Equation 5.1 could be used to describe member strength.
Thus, the maximum force that a compression member could resist at yield would be

P =FKA (5.2)

where Py is the yield load, sometimes called the squash load; Fy is the.yield stress; and Aq
is the gross area. This is the response that would be expected if-anvery short specimen,
one whose length approximates its other two dimensions, were«to be tested in
compression. This type of column test specimen, shown in¢Figure 5.3a, is called a stub
column. Because most compression members will have a length that greatly exceeds its
other dimensions, length effects cannot be ignored. A more realistic column is shown in a
test frame in Figure 5.3b.

5.3.1 Euler Column

To address the impact of length on compression member behavior, a simple model, as
shown in Figure 5.4, is used. The Swiss mathematician Leonard Euler first presented this
analysis in 1759. A number of assumptions are made in this column model: (1) the
column ends are frictionless pins,. (2) the column is perfectly straight, (3) the load is
applied along the centroidal.axisyand.(4) the material behaves elastically. Based on these
assumptions, this column model is usually called the perfect column or the pure column.

Figure 5.4a shows the perfect column with/an appliedload that will not cause any
lateral displacement or yielding. In this arrangement, the load can be increased with no
lateral displacement of the column. However, at a particular load, defined as the critical
load or the buckling load, P, the column willdisplace laterally as shown in Figure 5.4b.
In thisconfiguration, the dashed line represents;the original position of the member, and
the solid line represents the displaced position. Note that an axis system is presented in
the figure, with the z-axis along the member length and the y-axis transverse to the
member length. This places.the x-axis perpendicular to the plane of the figure. The x- and
y-axes correspond to the centroidal axes of the cross section.

A free body diagram of the lower portion of the column in its displaced position
is shown in Figure 5.4¢. If moments are taken about point C, equilibrium requires

M 7= Pcr y

From the principles of mechanics and using small displacement theory, the differential
equation relating moment to curvature of the deflected member is given as

dy__M,
dz? El,
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(a) (b)

Figure 5.3 Column Testing. (a)Stub column. (b) Long column
(a) Photo courtesy Prof. Dr. Mario.Fontana, (b) Photo courtesy Mohammed Ali Morovat and
Michael Engelhardt, University of Texas at Austin

Combining these two equations‘and rearranging the terms yields the differential equation
of equilibriumg
d 22/ R
dz El,

If thie coefficient of the second term isfakenras k* = P, /Ely , the differential equation for

y=0

the column becomes
2

d
dey'i'kzy:O

which is a standard.second-order linear ordinary differential equation. The solution to this
equation is given by
y = Asinkz + Bcoskz (5.3)

where A and B are constants of integration. To further evaluate this equation, the
boundary conditions must be applied. Because atz=0,y=0and atz=1L, y = 0, we find
that
B=0
and
AsinkL =0
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(a) (b)
Figure 5.4 Stability Conditions for Elastic Columns

For Equation 5.3 to have a nontrivial solution, (sin KL) must equal zero. This requires that
kL = nm, where n is any integer. Substituting for k and rearranging yields
n’m’El,
PCI' = L2 (5'4)

Because n can be taken as any integer, Equation 5.4 has a minimum when n = 1. This is

called the Eulerbuckling load or the critical buckling load and is given as
2

n Ely

Pcr 2 Lz

(5.5)

If values for B and kL are substituted into Equation 5.3, the shape of the buckled column
can be determined from

y— Asin(nna (5.6)

Because any valuefor. A will satisfy Equation 5.6, a unique magnitude for the
displacement cannot be determined; however, it is clear that the shape of the buckled
column is a half sine curve when n = 1. This is shown in Figure 5.5a. For other values of
n, different buckled shapes will result along with the higher critical buckling load. When
n > 1, these shapes are referred to as higher mode shapes. Several cases are shown in
Figure 5:5b, c, and d. In all cases, the basic shape is the sine curve. In order for these
higher modes to occur, some type of physical restraint against buckling is required at the
point where the buckled shape crosses the original, undeflected shape. This can be
accomplished with the addition of braces, which is discussed later.
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Columns

We now have two equations 0 predict the column strength: Equation 5.2, which
does not address length; and Equation 5.5y which does. These two equations are plotted in
Figure 5.6. Because the derivation of the Euler equation was based on elastic behavior
and the column cannot carry mor¢ load than the yield load, there is an upper limit to the
column strength.

If the length at which this limit occurs is taken as Lyuit‘can be determined by
setting Equation 5.2 equal to Equation 5.5 and solving.for length, giving

Ely
F,A,

y

Ly=n

To simplify this equation, the radius of gyrationsr; will be used, where

|
r=,—
A

Because the moment of inertia:depends on the axis being considered, and A is the gross
area of the section, which is independent of axis, r will depend on the buckling axis. In
the derivation just developed, the axis of buckling for the column of Figure 5.4 was taken
as the x-axis; thus,

L, =, E
Fy

For this theoretical development, a column whose length is less than Ly would fail by
yielding and could be called a short column, whereas a column with a length greater than
Ly would fail by buckling and be called a long column.
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Figure 5.6 Column Strength Based
on Length

Column length

It is also helpful to write Equation 5.5 in terms_of stress. Dividing both sides by
the area and substituting again for the radius of gyration yields

2
9\ W (5.7)

In this equation, the radius/of gyration is left unsubscripted sorthat it can be applied to
whichever axis is determined to be the critical axis.-A-plot.of stress versus L/r would be
of the same shape as the plot of force versus L in Figure 5.6.

5.3.2 Other Boundary Conditions

Derivation of the buckling equations presented as Equations 5.5 and 5.7 included the
boundary condition of frictionless. pins at both ends. For perfect columns with other
boundary conditions, the moment will not be zero at the ends, and this will result in a
nonhomogeneous differentials equation. Solving the resulting differential equation and
applying the appropriate boundary conditions will lead to a buckling equation of a form
similar to the previous‘equations.” To generalize the buckling equation for other end
conditions, the column length, L, is replaced by the column effective length, KL, where K
is'the effective length factor..Thus, the general buckling equations become

2
P, = "—E'2 (5.8)
(KL)
and
2
Fo= T E (5.9)

()
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Figure 5.7 depicts the original pin-ended column with several examples of columns
showing the influence of different end conditions. All columns are shown with the lower
support fixed against lateral translation. Three of the columns have upper ends that are
also restrained from lateral translation, and three others have upper ends that are free to
translate. The effective length can be visualized as the length between inflection points,
where the curvature reverses. This result is similar to the original derivation when n was
taken as some integer other than 1. It is most easily seen in Figure 5.7b and ¢ but can also
be seen in Figure 5.7d by visualizing the extended buckled shape above the column as
shown in Figure 5.8. In all cases, the buckled curve is a segment of the sine curve. The
most important thing to observe is that the column with fixed ends in*Figure 5.7b has an
effective length of 0.5L, whereas the column in Figure 5.7a has an effective length of L.
Thus, the fixed-end column will have four times the strength of the pin-ended column,
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Figure 5.7 Column Buckled Shape for Different End Conditions

s

Figure 5.8 Extended Shape of
Buckled Column from Figure 5.7d
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Figure 5.9 Buckled Shape for Columns with-Intermediate Braces

5.3.3 Combination of Bracing and End Conditions

The influence of intermediate.bracing on the effective length was touched upon in the
discussion of the higher modes of buckling. In those cases, the buckling resulted in equal-
length segments that reflected the mode number. Thus, a column with n = 2 had two
equal segments, whereasra column with n = 3<buckled with three equal segments. If
physical braces are used to provide buckling resistance.toe the column, the effective length
will depend on the location of the braces. Figure 5.9 shows three columns with pinned
ends andrintermediate supports. The column in Figure 5.9a is the same as the column in
Figure 5.5b. The effective length'is 0.5L, so K'=0.5. The column in Figure 5.9b shows
lateral braces in an unsymmetrical arrangement with one segment equal to L/3 and the
other to 2L/3. Although the exact location of the inflection point would be slightly into
therlonger segment, normal practice is to take the longest unbraced length as the effective
length; thus KL = 2L/3, so K =2/3 . The column in Figure 5.9¢ is braced at two locations.
The longest unbraced dength for this case gives an effective length KL = 0.5L and a
corresponding K'= 0.5. A general rule can be stated that, when the column ends are
pinned, the longest unbraced length is the effective length for buckling in that direction.
When otherrend conditions are present, these two influences must be combined.
The columns of Figure 5.10 illustrate the influence of combinations of end supports and
bracing on the column effective length. The end conditions would influence only the
effective length of the end segment of the column. For the column in Figure 5.10a, the
lower segment has L = a, and that segment would buckle with an effective length KL = a.
The uppersegment has L = b but also has a fixed end. Thus, it would buckle with an
effective length KL = 0.7b, obtained by combining the end conditions of Figure 5.7¢ with
the length, b. Thus, the relationship between lengths a and b determine which end of the
column dictates the overall column effective length. As an example, the column in Figure
5.10b shows that the lowest segment would set the column effective length at 0.35L.
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EXAMPLE 5.1
Theoretical
Column Strength

SOLUTION

Goal:

Given:

Step 1:

Step 2:

Step 3:

Determine the theoretical strength for a pinfended column and
whether it will first buckle or yield.

A W10x33, A992, column with a length of 20 ft.
Determine the load that would cause buckling.

With no other information, it must.be-assumed that this column will
buckle about its weak axis, if‘it buckles at all, because the effective
length, KL = 20 ftfor both axes.

From Manual Tablé 1-1, Iy= 36.6 in." and Aq = 9.71 in.%. The load
that would cause it to buckle is
“El ?(29,000)(36.6
p, - TEly ™ (29.000)(36.6) g, 4o
(KL) (20(12))

Determine the load that would cause yielding.
P, = F,A; =50(9.71) =486 kips

Conclusion: Because P¢r < Py, the theoretical column strength is
P =182 kips

and the column would buckle before it could reach its yield stress.
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EXAMPLE 5.2
Critical Buckling
Load

SOLUTION

Goal:

Given:

Step 1:

Part a
Step 2:

Step 3:

Step 4:

Part b
Step 5:

Determine the overall column length that, if exceeded, would
theoretically cause the column to buckle elastically before yielding.

A W8x31 column with fixed supports. Use steels with (a) Fy= 40 ksi
and (b) Fy = 100 ksi.

From Manual Table 1-1, ly = 37.1 in.* and Ag=9.13 in.%.

Determine the force that would cause the column to yield when Fy =
40 ksi.

P, = Fy A, =40(9.13)=365 kips

To determine the length that would cause this same load to be the
buckling load for the pinned-pinned case, set this force equal to the
buckling load equation’and determine the effective length from

w’El,  7*(29,000)(3%:1)

(KLY (KL)

365 kips=

which gives

n*(29,000)(37.1) )

KL = =171 1n.
365

So the effective length is

KL =E=14.3 ft
12

From Figure 5.7b, a fixed-end column has an effective length equal
to one-half the actual-length, buckling will not occur if the actual
length is less than or equal to:

L =KL/0.5=2(14.3)=28.6 ft for a column with F, =40 ksi

Determine the force that would cause the column to yield when Fy =
100 ksi.

P, = F, A, =100(9.13) =913 kips
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Part 6:  To determine the effective length that would cause this same load to
be the buckling load for the pinned-pinned case, set this force equal
to the buckling force and determine the length from

m’El,  7*(29,000)(37.1)

(KLY (KLY

913 kips =

which gives

n (29,000)(37.1) .

KL = =108 1n:
913

So the effective length is

KL =@=9.0 ft
12

Step 7:  From Figure 5.7b, a fixed-end<Column has an effective length equal
to one-half the actual length; buckling will not occur if the actual
length is less than or.equal to:

L =KL/0.5=2(9.0)=18.0 ft for a column with F, =100 ksi

5.3.4 Real Column

Physical testing of specimens that effectively model columns found in real building
structures, like that seen i Figure 5.3b, has shown that column strength was not as great
as either thebuckling load predicted by the<Euler buckling equation or the squash load
predicted by material yielding. This inability of the theory to predict actual behavior was
recognized early, and numerous factors were found to be the cause. Three main factors
influénce column strength: material inelasticity, column initial out-of-straightness, and
end conditions. The influence of column end conditions has already been discussed with
respect to effective length determination. Material inelasticity and initial out-of-
straightness, which also significantly impact real column strength, are discussed here.

Inelastic behavior-of a column directly results from built-in or residual stresses in
the cross section. These residual stresses are, in turn, the direct result of the
manufacturing process. Steel is produced with heat, and heat is also necessary to form the
steel into the.shapes used in construction. Once the shape is fully formed, it is cooled.
During this cooling process residual stresses are developed. Figure 5.11 shows a wide-
flange cross section in various stages of cooling. Initially, as shown in Figure 5.11a, the
tips of the flanges with the most surface area to give off heat begin to cool. This material
contracts asit cools, eventually reaching the ambient temperature. At this point, the fibers
in this part of the section reach what is expected to be their final length.
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Figure 5.11 Distribution of Residual Stresses

As adjacent fibers cool, they too contract. In the.process of contracting, these
subsequently cooling fibers pull on the previously cooled fibers, placing the latter under
some amount of compressive stress. Figure:S.11b.shows a cross section withadditional
flange elements cooled. When the previously cooled:portion of the cross section provides
enough stiffness to restrain the contraction of the'subsequently cooling material, a tensile
stress is developed in the now-cooling material because it cannot contract as it would
without this restraint. When completely cooled, as shown in Figure 5.11¢, the tips of the
flanges and the middle of the web are put into compression, and the flange-web juncture
is put into tension. Thus, thefirst fibers to cool are in compression, whereas the last to
cool are in tension.

Several different representations of the residual stress distribution have been
suggested. One_distribution is shown in Figure 5.11c. The magnitude of the maximum
residual stress'does not depend on the material'yield strength but is a function of material
thickness. </In “addition, the compressive residual:stress is of critical interest in the
consideration of compression members. The magnitude of this residual stress varies from
10 ksi to about 30 ksi, depending on_the shape. The higher values are found in wide
flanges with the thickest flange elements.

To understand the overall impact of these residual stresses on column behavior, a
stubrcolumn will again be investigated. Figure 5.12 shows the stress-strain relation for a
short column, one that will not buckle but exhibits the influence of residual stresses. As
the column is loaded with an axial load, the member shortens and the corresponding
strain and stress are developed, as if this were a perfectly elastic specimen. The response
of a perfectly elastic, perfectly plastic column is shown by the dashed line in Figure 5.12.
When the applied stress is added to a member with residual compressive stress, the stub
column begins to shorten at a greater rate as the tips of the flange become stressed
beyond the yield stress. This point is identified in Figure 5.12 as Fp, the proportional limit
Thus, the stress-strain curve moves off the straight dashed line and follows the curved
solid line. Continuing to add load to the column results in greater strain for a given stress,
and the column eventually reaches the yield stress of the perfectly elastic material. Thus,
the only difference between the behavior of the actual column and the usual test specimen
used to determine the stress-strain relationship is that the real column behaves
inelastically as those portions of its cross section with compressive residual stresses reach
the material yield stress.
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Figure 5.12 Stub Column Stress-
Strain Diagrams with and without
Residual Stress

Average strain
If a new term, the tangent modulus, Er, is defined as the slope of atangent to the
actual stress-strain curve at any point shownrin Figure 5.12,anvimproved prediction of
column buckling strength can be obtained by modifying the Euler buckling equation so
that

Thus, as the column is loaded beyond its elastic dimit; Er decreases, and the buckling
strength‘does also. This partially accounts for the inability of the Euler buckling equation
to accurately predict column strength.

Another factor to significantly impact column strength is the column initial out-
of-straightness. Once again, the manufacturing process for steel shapes impacts the
ability of the column to carry the predicted load. In this case, the problem is related to the
fact’ that no structural steel member comes out of the production process perfectly
straight. In the past, the AISC Code of Standard Practice had limited the initial out-of-
straightness to 1/1000"of the'length between points with lateral support. Although this
appears to be a small variation from straightness, it still impacts column strength.

Figure 5.13arshows a perfectly elastic, pin-ended column with an initial out-of-
straightness, d."A comparison of this column diagram with that used to derive the Euler
column, Figure 5.4; shows that the moment along the column length will be greater for
this initially crooked column in its buckled position than it would have been for an
initially straight column. Thus, the solution to the differential equation would be
different..In addition, because the applied load works at an eccentricity from the column
along its length, even before buckling, a moment is applied to the column that has not yet
been accounted for. Figure 5.13b shows the load versus lateral displacement diagram for
this initially crooked column compared to that of the initially straight column. This
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column not only exhibits greater lateral displacement, it also has a lower maximum
strength.

When these two factors are combined, the Euler equation cannot properly
describe column behavior on its own. Thus, the development of curves to predict column
behavior has historically been a matter of curve-fitting the test data in an attempt to
present a simple representation of column behavior.

Perfect column (initially straight)

Initially croeked column

o—=

or A

(b)

A

(a)

Figure 5.13¢ Influence of Initial Out-of-Straightness.on Column Strength

5.3.5 AISC Provisions

The compression members discussed thus far have either yielding or overall column
buckling as the controlling limit state. Figure 5.14 plots sample column test data
compared to the Euler equation and the squash load. The Structural Stability Research
Council proposed three equations to predict column behavior. To simplify column
design, AISC selected a single curve described using two segments as their representation
of'column strength.

The_design basis for ASD and LRFD were presented in Sections 1.9 and 1.10,
respectively. Thestrength equations are repeated here in order to reinforce the
relationship between the nominal strength, resistance factor, and safety factor presented
throughout the Specification.

The requirement for ASD is

Ra < o (AISC B3.2)

The requirement for LRFD is

Ry < R, (AISC B3.1)
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As indicated earlier, the Specification provides the relationship to determine
nominal strength and the corresponding resistance factor and safety factor for each limit
state to be considered. The provisions for compression members with nonslender
elements, i.e., no local buckling, are given in Specification Section E3. The nominal
column strength for the limit state of flexural buckling of members with nonslender
elements is

P, = F,A, (AISC E3-1)
and
¢. =0.9(LRFD) Q. =1.67(ASD)

where Ag is the gross area of the section and F, is the nominal flexural buckling stress:
(The Euler column derivation in Section 5.3.1 addressed the limit state of-flexural
buckling.)

1.20

1.00 T

0.80 |

0.60

F,IF,

0.40 4+

0.20
0 0.5 1 18 2
Slenderness Parameter, A

Figure 5.14 Sample Column Test Data Compared to Theoretical Column Strength

The Specification defines L. as the effective length and shows it equal to KL.
This is the same effective length factor, K, discussed earlier. To capture column behavior
when inelastic buckling dominates column strength, that is, where residual stresses
become important, the Specification provides that when

L. /r<471JE/F, or %S2.25

Fy
F, = |:0.658 Fe :l F (AISC E3-2)
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To capture behavior when inelastic buckling is not a factor and initial
crookedness is dominant, that is when

F
L. /r>471,/E/F, or Fy>2'25
F, =0.877F, (AISC E3-3)

where Fe is the elastic buckling stress; the Euler buckling stress previously presented as
Equation 5.9 and restated here is

F = (AISC E3-4)
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Figure 515 Lc/r versus Critical Strength

The nominal flexural buckling stresses for three different steels, A36, A992, and
A514, versus the slenderness ratio, L¢/r, are shown in Figure 5.15. For very slender
columns, the buckling/stress is independent of the material yield. The division between
elastic and inelastic. behavior, Equations E3-2 and E3-3, corresponds to L¢/r values of
134, 113, and.80.2 for steels with a yield of 36, 50, and 100 ksi, respectively.

Early editions of the LRFD Specification defined the exponent of Equation E3-2
in a slightly different form that makes the presentation a bit simpler. If a new term is

defined such that
v b _(LYE
" FE \ar) E

then'the dividing point between elastic and inelastic behavior, where
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becomes

Ac 1.5

By substituting A; = F, /Fe , the nominal flexural buckling stress for &, <1.5 becomes

F, :(0.658xg ) F, (5.10)
and for A, >1.5,
0.877
F= 2 F (.11

A plot of the ratio of nominal flexural buckling stress to yield stress as.a function of the
slenderness parameter, Ac, is given in Figure 5.16. Using this formulation, it is evident
that regardless of the steel yield stress, the ratio of nominal flexural buckling stress to
yield stress is the same when plotted against the slenderness parameter, Ac. Table 5.2
provides these numerical values in a convenient, usable form.
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Figure 5.16 ) versus Stress Ratio
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Earlier editions of the ASD and LRFD Specifications indicated that there should be an
upper limit on the magnitude of the slenderness ratio at L¢/r = 200. The intent for this
limit was to have the engineer recognize that for very slender columns, the nominal
flexural buckling stress was so low as to make the column very inefficient. This limit has
been removed in recent editions of the Specification because there are many factors
influencing column strength that indicate that a very slender column might actually be
acceptable. Section E2 simply informs the designer, through a User Note, that column
slenderness should preferably be kept to something less than 200. It also'points to the
same recommendation that had been given for tension members, that'the slenderness of
the member, as fabricated, preferably should not exceed 300. Manual Table 4-14 gives
the nominal flexural buckling stress for values of slenderness ratio; Lc/r, from 0 to 200 in
increments of 1.0 for steels with six different yield stresses:

Table 5.2 Ratio of Nominal Stress.to Yield Stress

Ac Fn/Fy Ac FilEy A Fn/Fy Ac Fn/Fy
0.00 1.000 0.95 0.685 1.90 0.243 2.85 0.108
0.05 0.999 1.00 0.658 1.95 0.231 2.90 0.104
0.10 0.996 1.05 0.630 2.00 0.219 2.95 0.101

0.15 0.991 La10 0:603 2.05 0.209 3.00 0.0974
0.20 0.983 1.15 0.575 2.10 0.199 3.05 0.0943
0.25 0.974 1.20 0.547 2.15 0.190 3.10 0.0913
0.30 0.963 1.25 0.520 2.20 0.181 3.15 0.0884
0.35 0.950 1.30 0.493 2.25 0.173 3.20 0.0856
0.40 0:935 1.35 0:466 2.30 0.166 3.25 0.0830
0:45 0.919 1.40 0.440 2:35 0.159 3.30 0.0805
0.50 0.901 1.45 0.415 2.40 0.152 3.35 0.0781
0.55 0.881 1.50 0.390 245 0.146 3.40 0.0759
0.60 0.860 1.55 0.365 2.50 0.140 3.45 0.0737
0:65 0.838 1260 0.343 2.55 0.135 3.50 0.0716
0.70 0.815 1.65 0.322 2.60 0.130 3.55 0.0696
0.75 0790 1.70 0.303 2.65 0.125 3.60 0.0677
0.80 0.765 1.75 0.286 2.70 0.120 3.65 0.0658
0.85 0.739 1.80 0.271 2.75 0.116 3.70 0.0641
0.90 0.712 1.85 0.256 2.80 0.112 3.75 0.0624
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Figure 5.17 Columns for Examples 5.3, 5.4, and 5.5.
EXAMPLE 5.3 Goal: Determine the available column strength.
Column Strength
by AISC Given: . A WI12x79 pin-ended column with ajlength of 10.0 ft. as shown in
Provisions Figure 5.17a. Use A992 steel.
SOLUTION Step 1:  From Manual Table 1-1, ry=5.34in., r,=3.05 in., and A=23.2 in.%.
Step2:  Determine the controlling effective slenderness ratio.

Because the length is 10.0 ft and the column has pinned ends, L. =
KL =.10.0.ft for both the x-axis and y-axis. Thus,

Ly, _10.0(12) s
r, 5.34
and
ﬂ - M =393

r, 3.05
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Since
L, L
Iy I
the y-axis controls.
Step 3:  Determine which column strength equation to use. Since

L 393<471 | B 2471 22990 _143
r F, 50

use Equation E3-2

Step 4:  Determine the Euler buckling stress.

7 (29,000 .
R =22/ 185 ksi
(39.3)

Step 5:  Determine the nominal stress from Equation E3-2:
Fy 50

F= 0.658[€J1r:y _o.658%) (50).= 44.7 ksi

Step 6:  Determine'the nominal strength.
P, = 44.7(23.2) =1040 kips
For
LRFD
Step'7:.  Determine the design strength for LRFD.
P, =0.9(1040) =936 kips
For.
ASD
Step 7:  Determine the allowable strength for ASD.

&:w: 623 klps
Q 1.67

EXAMPLE 5.4 Goal: Determine the available column strength.

Column Strength
by AISC Given: A WI10x49 column with a length of 20.0 ft, one end pinned and the

Provisions other end fixed for the y-axis, and both ends pinned for the x-axis, as
shown in Figure 5.17b. Use A992 steel.
SOLUTION Step 1: From Manual Table 1-1, rk=4.35in., ry=2.54 in., and A = 14.4 in.2.

Step 2:  Determine the effective length factors from Figure 5.7.



Step 3:

Step 4:

Step 5:

Step 6:

Step. 7:

For
LRFD

Step 8:

For
ASD

Step 8:
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Comparing the columns shown in Figure 5.17b with those shown in
Figure 5.7, the effective length factors are Ky = 0.7 and Ky = 1.0.

Determine the x- and y-axis slenderness ratios.

Ly KL 1.0(20.0)(12)

=552
I, I, 435
Ly KL _ 0.7(20.0)(12) T,
r, r, 2.54

Using the larger slenderness ratio, determine which column strength
equation to use. Since

5=66.1<4.71 L, =4.71 /lew,
r F 50

use Equation E3-2

Determine the Euler buckling stress.
- 71:2(29,000)

- =65.5 ksi
(66.1)

Determine the nominal stress from Equation E3-2.
Fy 50

F. = 0.658(FTJ F,= 065855 (50)=36.3 ksi

Determine the nominal strength.
P, =36.3(14.4) =523 kips

Determine the design strength for LRFD.
OP, =0.9(523) =471 kips

Determine the allowable strength for ASD.

P,/Q =523/1.67 =313 kips



184 Chapter 5 Compression Members

EXAMPLE 5.5
Column Strength
by AISC
Provisions

SOLUTION

Goal:

Given:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

For
LRFD

Step 8:

Determine the available column strength.

A W14x53 column with a length of 40.0 ft, both ends fixed for the y-
axis, and one end pinned and one end fixed for the x-axis, as shown
in Figure 5.17c. Use A992 steel.

From Manual Table 1-1, ry,=15.89 in., ry=1.92 in., and A= 15.6 in2.

Determine the effective length factors from Figure 5:7.

Comparing the columns shown in Figure 5.17¢ with those shown in
Figure 5.7, the effective length factors are Ky = 0:5'and K= 0.7.

Determine the x- and y-axis slenderness. ratios.
L. K. 0.7(40.0)(12)

=57.0
r, I, 5.89
K Kok 0.5(40.0)(12) 1
r, I, 1.92

Using the larger slenderness ratio, determine which column strength
equation touse. Since

Y1055 471 [ Ermg gy 200 g5
r F, 50

use Equation E3-3

Determine the Euler buckling stress.
- T’ (29,000)

=183 ksi
(125)

Determine the nominal stress from Equation E3-3.
F.=0.877F, =0.877(18.3)=16.0 ksi

Determine the nominal strength.
P, =16.0(15.6) = 250 kips

Determine the design strength for LRFD.
oP, =0.9(250) = 225 kips
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For

ASD

Step 8 Determine the allowable strength for ASD.
P./Q =250/1.67 =150 kips

5.4 ADDITIONAL LIMIT STATES FOR COMPRESSION

Two limit states for compression members were discussed in Section 5.3, yielding and
flexural buckling. The strength equations provided in Specification Section E3 clearly
show that the upper limit for column strength, FyAg, is reached only for the zero-length
column. Thus, the provisions are presented in the Specification as applying to the limit
state of flexural buckling only, even though they do consider yielding.

Singly symmetric, unsymmetric, and certain._doubly symmetric members may
also be limited by torsional buckling or flexural-torsional buckling. The" strength
provisions for these limit states are given in Section.E4 of the Specification and are
discussed here in Section 5.8.

For some column profiles, another limit state may actually. control overall
column strength. The individual elements of a column cross section may buckle locally at
a stress below the stress that would cause the overall column t0 bucklexIf this is the case,
the column is said to be a column with slender elements. The impact of these slender
elements on column strength'is determined through the.use of an-effective area which is
smaller than the actual area of the member. The additional provisions for these types of
members are presented in Section'5.6.

5.5 LENGTH EFFECTS

The effective lengths that have been discussed 'were all related to fairly simple columns
with' easily‘defined end conditions and‘bracing-locations. Once a column is recognized as
being apart of a real structure, determining the effective length becomes more involved.
Moreover, for more complex. structures, it might be simpler to determine the buckling
strength.of the structure through analysis than through the use of the effective length
factor, K. Using that analysis, theselastic buckling stress of the individual columns, Fe,
can be determined. This can then be used directly in the column strength equations.
However, for this book, column elastic buckling is determined through a calculation of
effective length: This approach may incorporate some simplifications that would not be
made in an actual buckling analysis and, depending on the approach used to determine K,
may include assumptions of behavior that the actual structure may not satisfy.

A first attempt at incorporating some realistic aspects of structures is shown in
Table C-A-7.1 of the Commentary and here in Figure 5.18. The columns shown in this
figure are the same as those shown in Figure 5.7, and the same K-factors are shown and
identified here as the theoretical K-values. What is new here is the presentation of
recommended design values when ideal conditions are approximated. Most of these
recommended values are based on the fact that perfectly rigid connections are difficult to
obtain. Thus, for example, a fixed-end column (case a of Figure 5.18) would have a
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theoretical K = 0.5, but if the end connections were to actually rotate, even just a small
amount, the effective length would increase. As the end rotation increases toward what
would occur for a pin-ended column, K would approach 1.0. Thus, the recommended
value of K is 0.65. A similar assessment of the other cases with a fixed end should lead to
an understanding of the idea behind these recommended values, each being a bit higher
than the theoretical value because actual column end conditions are unlikely to match the
theoretical assumptions. In addition to the recommended values for K, this Commentary
table shows the column end conditions differently than they have been shown historically
and in this book. For instance, the upper support for Figure 5.18 columny(c) .is shown here
with rollers so that it is clear that the support can transfer the load directly to the column.
In Figure 5.7 column (a) this is shown with the same symbol as the lower support, with
no attempt to show graphically that the load is transferred to.the column. Although the
distinction is critical in structural analysis, it has always been assumed for individual
columns that the graphical distinction was not necessary

Table C-A-7.1
Approximate Values®©f Effective
Length Factor, K

(a) (b) (c) (d) (e) (f)
1 1
| | t
R ' ' oot !
et |7 o AT Y
' A\ v / |
\ ! 4 I
\ \ i
b ‘\ \ J‘r n“ f
\
Buckled shape of \.‘ | | ," ,’ !
lumn is shown b 1 - ! / / I
column is shown Dy | 1 I 4 7 I
dashed line I / | / / !
! ! I ! ! /
/ lr|’ | y) i !J’
)
;’ ) ] 'I' ! f
f ! !
4
am R
A | I I I '
Theoretical ¥ value 0.5 0.7 10 1.0 2.0 2.0
Recommended design
val hen ideg)
hen I099 0.65 s 10 12 21 2.0
conditions are
approximated
> Rotation fixed and translation fixed
J-. Rotation free and translation fixed
#1  Rotation fixed and translation free
End condition code i Rotation free and translation free
‘FIE Rotation fixed, horizontal translation
1"k fixed, and vertical translation free
- 14 Rotation free, horizontal translation
| fixed, and vertical translation free

Figure 5.18 Values of Effective Length Factor, K
Copyright © American Institute of Steel Construction, Reprinted with Permission. All rights
reserved.
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B 7@ 14 ft

B W S L T

Figure 5.19
Typical Moment Frame

4 @ 24 ft

When a column is part of a frame, as shown in Figure 5.19, the stiffness of the
members framing into the column impact the rotation that could occur at the column
ends.

As with the rigid supports discussed for the-columns in Figure 5.18, these end
conditions permit the<column:end to rotate. The 'amount of this rotation is something
between the zero rotation of a fixed support and the free rotation of a pin support. When
the column.under consideration is part of aframe where the ends of the column are not
permitted to displace laterally relative'to.each-other, the frame is called a braced frame, a
sidesway prevented frame, or a sidesway inhibited frame—shown as cases a, b, and ¢ in
Figure 5.18. For a column in a braced frame; the possible K-factors range from 0.5 to 1.0.
In frames of this type, K is often taken as 1.0, a conservative approximation that
simplifies design. In fact, Specification Appendix 7, Section 7.2.3(a) says that in braced
frames K shall be taken as 1°0 unless analysis shows that a lower value is appropriate.

When the column under<consideration is in a frame in which the ends are
permitted to move laterally, the frame is called a moment frame, an unbraced frame, a
sidesway permitted frame, or'a sidesway uninhibited frame— shown as cases d, e, and f
in Figure 5(18:For the three cases shown there, the lowest value of K is 1.0. The other
extreme case, not shown in Figure 5.18, is a pin-ended column in an unbraced frame. The
effective length of this column would theoretically be infinite. Thus, K-values for
columns:in moment frames range from 1.0 to infinity.

The determination of reliable effective length factors and thus reliable effective
lengths. is a critical aspect of column design. Several approaches are presented in the
literature, but the most commonly used approach is through the alignment charts
presented in the Commentary to Appendix 7. The development of these charts is based on
a set of assumptions that are often violated in real structures; nevertheless, the alignment
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charts are used extensively and often modified in an attempt to account for variations
from these assumptions.
These assumptions, as given in the Commentary to Appendix 7, are:

Behavior is purely elastic.

All members have a constant cross section.

All joints are rigid.

For columns in frames with sidesway inhibited, rotations.at opposite
ends of the restraining beams are equal in magnitude. and opposite in
direction, producing single curvature bending.

5. For columns in frames with sidesway uninhibited, rotations at opposite
ends of the restraining beams are equal in»magnitude and direction,
producing reverse curvature bending.

Pl

6. The stiffness parameter LvP/El of all columns is equal.

7. Joint restraint is distributed to the column above and below the. joint in
proportion to EI/L for the twe columns.

8. All columns buckle simultaneously.

9. No significant axial compression force exists in the girders.

10. Shear deformations are neglected

Using these assumptions; the following equation can be obtained for columns in
sidesway inhibited frames.

GAGB(R/K)Z{GHGBJ L wK ) 2tan(nR2K) (AISC C-AT-)
4 2 tan (/K ) (n/K)

For sidesway uninhibited frames, the followingequation is obtained.
GuGs (/KY) —36 (wiK)
6(Ga +Gy) tan (n/K )

=0 (AISC C-A-7-2)

In Equations C-A-7-1 and C=A-7-2, the terms Ga and Gg relate to the relative stiffness of
the.columns and beams framing into the column at ends A and B, respectively, as given

by
2(EI/L
G =w (AISC C-A-7-3)
S(EIL),
If the beams and columns behave elastically, as noted in assumption 1, this reduces to
(1L
G= @ (5.12)
(1),

Equations C-A-7-1 and C-A-7-2 are transcendental equations that do not have a closed-
form solution. With the computer methods readily available today, iterative solutions are
easily obtained. However, that was not always the case, and a graphical solution was



Chapter 5 Compression Members 189

developed in the early 1960s that has become a standard approach for obtaining solutions.
Such graphical solutions are called nomographs or alignment charts. Figure 5.20 shows
the nomograph for sidesway inhibited frames, and Figure 5.21 gives the chart for
sidesway uninhibited frames.

Since these alignment charts are based on the assumptions given previously,
Section 7.2 Commentary provides several adjustments that may be madesto model the
actual structure more accurately. One of those adjustments is to account for column end
conditions. A column end simply supported on a footing would have Gutheoretically
equal to infinity. But, unless the connection is designed and constructed,as a true pin, it is
more reasonable to take G = 10 for practical design. Similarly,for a column end rigidly
attached to a properly designed footing, G would theoretically be zero, but it is
reasonable to take G = 1.0 which would account for a small amount.of potential rotation.

Approximate solutions to Equations C-A-7-1 and C-A-7-2 have also been
presented in design rules and the literature. The French have used the following equations
in their design rules since 1966'. For sidesway inhibited,

K- 3GAGs + 14(Ga +Gg ) +0.64

(5.13)
3GuGs +2(Gn +Gp)+1.28
G, K Gg Gy K Gg
?S;gﬁ T™ 158;8 100.0] 708 —100.0
5 T E e 50.0 - —50.0
383 o | = 30.0 Tso 300
3.0 ‘ 3.0 20.0— 4% —20.0
2.0 ol —20 . o} -
. e - 10.0 —1-30 —10.0
1.0 ' 1.0 82 T 90
08 T 038 60— T —60
0.7 —0.7 5.0—_ - —5.0
o, v D& I e
04 i 0.4 Lo T B
0.3 —0.3 2.0 T —2.0
i N R - —115
02 0.6 | 5 ] T B
. 1.0— 41 —1.0
0.1 T —0.1 ] 1 C
0.0 —0:5 —0.0 o_o—— —t1.0 _—0.0
Figure 5.20 Alignment Chart for Figure 5.21 Alignment Chart for
a Braced Frame (Sidesway an Unbraced Frame (Sidesway
Inhibited) Copyright © American Uninhibited)
Institute of Steel Construction, Copyright © American Institute of Steel
Reprinted with Permission. All rights Construction, Reprinted with
reserved. Permission. All rights reserved.

! Dumonteil, P. (1992), “Simple Equations for Effective Length Factors,” Engineering Journal, American Institute
of Streel Construction, Vol. 29, No. 3, pp. 111-115.
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For sidesway uninhibited,
K _ 1.6GxGg +4(Ga +Gg ) +7.5
- Ga+Gg +7.5

(5.14)

These approximate equations are said to be accurate within 2 percent. For design this
should easily yield results as accurate as those obtained by reading.a value from the
alignment charts.

For the special case where Ga = Gg, even simpler equations.can be expressed. For
sidesway inhibited,

K:G+0.4
G+0.8

K =+0.8G +1.0 (5.16)

Equations 5.15 and 5.16 might be particularly useful for preliminary design.

(5.15)

For sidesway uninhibited,

A W16 x 36
]
L=241t
A
W10 x 88 B 7@ 14 M
L= 14 fi
—Y
f//l g i 7 7 s
B W16 x93 ) )
-~ 4 @ 24 ft
L=24ft

—

Figure 5.22  Multi-story Frame for Examples 5.6 and 5.7

EXAMPLE 5.6 Goal: Determine the column effective length using (a) the alignment chart
Column Effective and (b) Equation 5.14.
Length

Given:  The column AB in a moment frame is shown in Figure 5.22. Assume
that the column has its web in the plane of the frame. The beams also
have their webs in the plane of the frame and thus beams and
columns are bending about their major, x-axis. It would be very
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unusual for a beam in a moment frame to have the primary bending
moments about other than the x-axis. However, columns may be
oriented for bending about either principal axis.

SOLUTION Part a
Step 1:  Determine member properties from Manual Table 1-1.
end A:
W16x36; lg= 448 in.*
W10x88;  lox = 534 int*
end B:

W16x77; lg=4110.in.*
W10x88; Il =534 int

Step 2:  Determine the stiffness ratio at'eachrend using Equation 5.12
(534)
IE-"
14
o[+
24
4

(%)
Gg =——"7-%=0.825

2(1110]

24

Step3:  Use the alignment chart shown in Figure 5.21 for a sidesway
uninhibited frame: Enter Ga and Gg on the appropriate scales and
construct a straight line between them, as shown in Figure 5.23. The

intersection with the scale for K gives the effective length factor, in
this case,

Gy = =2.04

o)

K=1.42
Thus,

L. =KL=1.42(14.0)=19.9 ft

Partb
Step 4:  Determine K using the stiffness ratios, Ga and Gg, determined in part
(a)Step 2 and Equation 5.14.

< _\/1.6(2.04)(0.825)+4(2.04+0.825)+7.5 -
B 2.04+0.825+7.5 B

1.45

Thus,
L.=KL= 1.45(14.0) =20.3 ft

Note that K determined graphically from the alignment chart and K
calculated with Equation 5.14 are very close, as might be expected.




192 Chapter 5

Compression Members

G, K _ Gg
B ===20.0 —oo
100.0— ==10.0 —100.0
50.0— O —50.0
30.0— —+50 —30.0
20.0— —+40 —20.0
10.0 ——3.0 —10.0
8.0 T —8.0
7.0— —7.0
6.0 -+ —6.0
5.0— -+ —5.0
4.0— 1 920 —4.0
3.0 1 —3.0
50| On =204 1 20
_\_1 5 i
W Figure 5.23 Alignment Chart
1.0 e _\—1.0 for Example 5.6
: A Gg =0.825 Copyright © American Institute of
- | - Steel Construction, Inc. Reprinted with
B Permission. All rights reserved.
0.0— ——1.0 —0.0
EXAMPLE 5.7 Goal: Determine:the' column effective length for the column of Example
Column Effective 5.6 using the alignment chart if'the column is bending about its weak
Length axis.
Given:  The column AB¢in a momentframe is shown in Figure 5.22.
However, for'this example.assume that the column has its web
perpendicular to the plane of the frame, thus it is bending about its
minor or weak axis.
SOLUTION Step 1:  Find member properties from Manual Table 1-1.
end A:
W16x36; lg= 448 in.*
W10x88; ley=179 in.*
end B:
W16x77; lg=1110 in.*
W10x88; loy=179 in.*
Step 2:  Determine the stiffness ratio at each end using Equation 5.12.

(%)

14

2(448j
24

Ga = =0.685
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zm
=0.276

2[1 110

24

Step3:  Use the alignment chart shown in Figure 5.21 for ‘a sidesway
uninhibited frame. Enter the values for Ga and Gg on the appropriate
scales and draw a straight line between them. The'line’s intersection

with the scale for K gives the effective length factor—in this case,
K=1.16

GB=

Thus,
L. =KL=1.16(14:0) =16.2 ft

Step 4:  Note that the reductiondn:moment of inertia of the columns results in
the beams providing‘more end restraint, reducing the effective length
factor for the column.and thus reducing the column effective length.

5.5.1 Effective Length for Inelastic Columns

The assumption of elastic behavior for all members of a frame is regularly violated. We
have already seen the fole that residual stresses play in determining column strength
through inelastic behavior. Thus, it is useful to accommodate this inelastic behavior in the
determination’ of K-factors. The assumption”of. elastic behavior is important in the
calculation” of G as the simplification is made to move from Equation C-A-7-3 to
Equation'5.12. Returning to Equation C-A-7-3 and assuming that all columns framing
into_a joint have the same modulus of elasticity—which is equal to the tangent modulus,
Er shown in Figure 5.12—and that the beams behave elastically, the definition of G for
inelastic behavior becomes

s EEUL))
Gmelastlc E(Z(l /L)g) (5 17)

If G for elastic behavior isitaken as Gelastic, then Ginelastic can be formulated as

E
Ginelastic = (ETJ Gelastic (5 1 8)

Thusy including inelastic column behavior simply results in a modification of G. The ratio
of tangent modulus to elastic modulus is always less than 1, so the assumption of elastic
behavior for this application leads to a conservative estimate, as can be seen by entering
the nomograph with lower G-values and determining the corresponding K-factor. Before
a straightforward approach to including inelastic effects in the determination of effective
length can be proposed, the relationship between the tangent modulus and the elastic
modulus must be established.
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The Commentary to Appendix 7 of the Specification indicates that 1, = E7/E, as
given in Chapter C for the direct analysis method, should be used to account for column
inelasticity in the effective length method. Thus, if aP;/Pns<0.5

% =1.0 (AISC C2-2a)
and lf (X,Pr /Pns > 05
ab. ab
w =4 T 1| 5 (AISC C2-2b)

where o = 1.0 for LRFD and o = 1.6 for ASD. Py is the cross section compression
strength. For members without slender elements Pns = Py. For compression members with
slender elements, Pns = FyAe which is addressed in Section 5:6. Manual Table 4-13
provides values for 1, based on the required strength,"P,/Aq. The use of Table 4-13
assumes that the column is loaded to its full available strength. If it is not, the table
provides a conservative assessment of therinelastic stiffness reduction factor and the
effective length.

EXAMPLE 5.8 Goal: Determine the inelastic column effective length using the alignment
Inelastic Column chart.
Effective Length

SOLUTION

Given:  Determine-the inelastic effective length for the column in Example
5.6. The column has an LRFD required strength of P, = 950 kips and
an ASD required strength of Py =633 kips. Use Equation 5.14 in
place of the alignment chart. The column is A992 steel.

Step 1: . From Manual Table 1-1, for & W10x88 A = 26.0 in.%, and from
Example 5.6, the clastic stiffness ratios are Ga = 2.04 and Gg =

0.825.
For
LRFD
Step 2:  Determine the required stress based on the required strength.
Ezizﬁz%j ksi
A A 260

Step'3:.. Determine the stiffness reduction factor from Manual Table 4-13,
interpolating between 36 and 37 ksi.
1, =0.788

Step4:  Determine the inelastic stiffness ratios by multiplying the elastic
stiffness ratios by the stiffness reduction factor.

Gy =0.788(2.04)=1.61
Gis =0.788(0.825) = 0.650



For
ASD

Step 5:

Step 2:

Step 3:

Step 4:

Step 5:
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Determine K from Equation 5.14.
K _\/1.6(1.61)(0.650)+4(1.61+0.650)+7.5
- 1.61+0.650 +7.5

=1.37

Thus,
L. =KL=1.37(14.0)=19.2 ft

Note that the effective length factor and thus the effective length is
less than that determined in Example 5.6, as expected.

Determine the required stress based on the required strength.

BB S0 Boul i
A A/ 260

Determine the stiffness reduction factor from Meanuai, Table 4-13,
interpolating between 24 and 25 ksi.
T, =0.691

Determine the inelastic stiffness ratios by multiplying the elastic
stiffness ratios by the stiffness reduction factor.

Gia = 0.691(2:04) =141
Gis =0.691(0.825) = 0.570

Determine K from-Equation .14,
‘ \/1.6(1.41)(O.S70)+ 4(1.41+0.570) +7.5
- 141+0.570+7.5

=1.33

Thus,
L. =KL= 1.33(14.0) =18.6 ft

Note that the effective length factor and thus the effective length is
less than that determined in Example 5.6, as expected.

5.5.2 Effective Length when Supporting Gravity Only Columns

Another condition that influences column buckling and thus the effective length factor is
the existence of columns that carry only gravity load and contribute nothing to the lateral
load resistance or stability of the structure. Figure 5.24a illustrates a simple structure of
this type where the stability or lateral load resisting column is the flagpole column on the
left; column A, and the gravity only column is the pin ended column on the right, column
B. The load P is applied to column A and the load Q is applied to column B.
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(a) (b) (c)
Flagpole Column Providing Lateral Restraint for a Gravity Only Column

If Q =0, column A behaves as if column B _did not exist since it just goes along
for the ride. However, when. Q'1s not zero, buckling. of column A leads to lateral
displacement, Aj at the top of columns A and B. Thus, equilibrium requires a lateral force
be exerted at'the top of column B. This force must be resisted by column A as shown in
Figure 5.24b. In the displaced positionsillustrated in Figure 5.24b, equilibrium of column
A requires a resisting moment at the supportz-of M =PA+ QA . Figure 5.24c¢ shows

column Adwith an applied load, (P+4@), Which in the displaced position produces a
moment at the support of M =PA+QA . Thus, the column in Figure 5.24c can be

thought of as a representation of column A in Figure 5.24b with only slight error.
Since these two_columns are considered equal, if column A can support the load
(P+Q), it should be adequate for column A to support its load, P, and the effect of the

load Q on column B: Considering elastic buckling this can be stated as
n’El
P+Q)= (5.19)
( ) ( KO L)2

Where Ko, 18 the K-factor for column A. For this example, the theoretical K-factor for the
flagpole column is Ko = 2.

Another way to approach this problem would be to continue to consider that
column A supports only the load P but use a K-factor that accounts for the influence of
the load on the gravity only column, Ky. This can be stated as
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(5.20)

Since these two equations represent the same structure, they can be solved for n*El/L’ .
Thus, from Equation 5.19 7r2EI/L2 =K; (P + Q) and from Equation 5.20
n’El / L* = K7P . Setting these equal and solving for K, yields

Kn:Ko\/P+Q:KO\/I+9 (5.21)
P P

Thus, a column that supports a load P and also must provide stability for load Q on
gravity only columns may be designed using this modified effective length factor K.

P

{

Column A

Ve

rigid element

Q

|

15 ft

Column B

— VY Figure 5.25 Single Story
ﬁ Frame for Example 5.9

EXAMPLE 5.9 Goal:

Gravity Only
Columns and

Effective Length

SOLUTION

Given:

Step.1:

Part a

Step 2:

Determine the . in-plane.nominal strength of the column that is
required to carry a concentrated load and provide lateral stability for
gravity only columns. Also, determine the strength of the column if
there is no load on the gravity only column.

A W14%x90 column shown in Figure 5.25 is to a) carry an applied
load, P, and provide lateral restraint to a gravity only column carrying
the load 2P and b) carry an applied load, P, with no load on the
gravity only column. The W14%90 is oriented so the web is in the
plane of the frame. Use A992 steel.

Determine the effective length factor for the W14x90 column without
considering the gravity only column. Since this is a flagpole column,
from Figure 5.7f, the theoretical K-factor is 2.0

Using Equation 5.21, determine the modified effective length factor
to account for the gravity only column load, Q = 2P. Thus
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K, = KO\/1+9 =2.0\/1+£ =3.46
P P

Step 3:  From Manual Table 1-1
A=26.5in’and r,=6.14
Step 4:  Determine which column strength equation to use.
Since
3.46(15(12
Kol 3460502) oy 79 22000 Sy
Iy 6.14 50
use Equation E3-2
Step 5:  Determine the Euler buckling stress
n (29, 000) )
F.=———5="=28.1ksi
(101)
Step 6:  Determine the nominal stress from Equation.E3-2
A |
F, = [0.658[ F ]] F, = (0.658(2&1]]50 =23.7 ksi
Step 7: ~ Determine the nominal strength
P, =23.7(26.5)= 628 kips
Partb
Step 8:  With no load en the gravity only column, K, = K, = 2.0. Determine
which column strength equation to use.
Since
2.0(15(12
Kol 200302)) gy gy [PR000 5
I 6.14 50
use Equation E3-2
Step-9: __ Determine the Euler buckling stress
2
7 (29,000 ,
F =(—2) =83.3 ksi
(58.6)
Step 10: Determine the nominal stress from Equation E3-2

) &
F.= [0.658 R JFy = [0.658 833 ]50 =38.9 ksi



Chapter 5 Compression Members 199

Step 11:  Determine the nominal strength
P, =38.9(26.5)=1030 kips

5.6 SLENDER ELEMENTS IN COMPRESSION

As mentioned in Section 5.4, the columns discussed thus far are controlled by overall
column buckling. For some shapes, another form of buckling”may actually control
column strength: local buckling of the elements that makeup the column shape. Whether
the shape is rolled or built up, it can be thought of as being composed of a group-of
interconnected plates. Depending on how these plates are supported by each other, they
could buckle at a stress below the critical buckling stress of the overall column: This is
local buckling, also called plate buckling, and is shown in Figure 5.26. Local buckling is
described through a plate critical buckling equation similar to the Euler buckling equation
for columns. The critical buckling stressfor an axially loaded plate is

kn’E
b 2
12(1—v2)(tj

where K is a plate buckling coefficient that depends on the plate.loading, edge conditions,
and length-to-width (ratio; v is Poisson’s ratio; and b/t is the ratio of the width
perpendicular to the compression force to the.thickness of the plate. The width-to-
thickness ratio<is called the plate slenderness and is similar in function to the column
slenderness.<This critical stress plotted as a function of width-to-thickness ratio is shown
as the dashed curve in Figure 5.27.

As with overall column buckling, an inelastic transition exists between elastic
buckling and element yielding. This transition.is due to the existence of residual stresses
and imperfections in the element, just as in the case of overall column buckling, and
results in the inelastic portion of the curve shown in Figure 5.27. The point identified in
the figure as Fp-A, indicates where the elastic curve and the inelastic curve become
tangent. In addition, for.plates with-low b/t ratios, strain hardening plays a critical role in
their behavior, indicated by Ao, and plates with large b/t ratios have significant post-
buckling strength as'shown in the figure.

F, = (5.22)
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Figure 5.26
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v Strain hardening
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F,
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Inelastic
buckling

i Post-bucklifig
“~. strength

0.665,/kE 0.

F,

5/ %E b/t
F,

Column Tested to Figure'5.27 . Plate Strength in Compression

Failure through Local Buckling
Photo courtesy Perry Green

To ensure that local buckling will not control column strength, the critical plate
buckling stress for local buckling is limited to the critical buckling stress for overall
column buckling. This approach results in a different maximum plate slenderness value
for each corresponding €column slenderness value./However, to alert the designer to the
need for consideration of plate buckling, an initial check on element slenderness is made
assuming that'the stress in the plate has reached:the yield stress. The development of the
Specification provisions starts by finding a platé slenderness that sets the plate buckling
stress equal to the column yield stress. Equation 5.22 then becomes

2
b = _ krE (5.23)
to12(1-v?)F,

Taking v= 0.3, the standard value for steel, this plate slenderness becomes

595 [XE (5.24)
t F,

which is shown as point O in Figure 5.27. This point is well above the inelastic buckling
curve. In order to obtain a b/t that would bring the inelastic buckling stress closer to the
yield stress, a somewhat arbitrary slenderness limit is taken as 0.7 times the limit that
corresponds to the column yield stress, which gives

b =0.665 ke
t F,

This is indicated as point D in Figure 5.27.
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The remaining factor to be determined is the plate buckling coefficient, k. This
factor is a function of the stress distribution, the edge support conditions and the aspect
ratio of the plate. For a plate with uniform compression on opposite ends and simply
supported on all four sides, the minimum value of k can be shown to be 4.0. For actual
columns, with the variety of potential cross section shapes available, the determination of
the value of k becomes much more complicated as the actual edge supports, stress
distribution and aspect ratio vary.

The limiting width-to-thickness ratios are given in Specification:Table B4.1a.

These limits may be given as
E
Ae =C3 [— 5.25
3| 3 (5.25)

where C; is given in Table 5.4 for several elements innuniform compression taken from
Table B4.1a of the Specification. The apparent plate buckling coefficient, K, used{to
obtain these values is also given in Table 5.4. For shapes with element slenderness
exceeding these Ar values plate buckling must be considered. As_ already shown, these
limits are based on the assumption that the column is stressed to Fy. Since columns are
rarely stressed to that level, it is very possible that what appears to be a slender element
compression member based on Table B4.1a.may not actually see its strength limited by
the limit state of local buckling.

Table 5.4 Parameters for Consideration of Compression Member Local Buckling

*
Case A C3 k Cs Cs

1 Flanges of rolled I-shaped sections, b/t 0.56 0.71 0.834 0.184
plates projecting from rolled I-
shaped sections; outstanding legs of
pairs of angles connected with
continuous contact, flanges of
channels, and flanges of tees
3 Legs of single angles, legs of double b/t 0.45 0.46 0.671 0.148
angles with separators, and all other
unstiffened elements

4 Stems of tees drt 0.75 1.27 1.12 0.246
5 Webs, of doubly symmetric rolled and h/tw 1.49 5.0 1.95 0.351
built-up [-shaped.sections and
channels
6 Walls of rectangular HSS b/t 1.40 4.43 1.93 0.386

* From Table B4.ladin the Specification.

For W-shapes, Case 1 in Table B4.1a, with Fy = 50 ksi, the flange slenderness
limit is Ay =O.56,/E/ F, =13.5 , and all W-shapes have a flange slenderness less than

this limit. For webs of these W-shapes, Case 5 in Table B4.1a, A, =1.49 E/ F, =359,
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and many available W-shapes have a web slenderness that exceeds this limit and are
classified as slender.

Design of slender element compression members according to the Specification
follows the same requirements as those for compression members without slender
elements, with one modification. To account for slender element behavior, the full area of
the slender element cannot be used. Thus, a reduced effective area, Ae, is used in place of
the gross area, Ay, to determine column strength. For columns with slender elements,
Section E7 indicates that column strength is given by

R =FRA (AISC E7-1)

which is to be used in place of Equation E3-1 but with the same nominal stress, Fn.

Once the designer is directed to the slender element provisions of Section E7 it is
apparent that the nominal stress based on the controlling limit state must first be
determined. Then, using that stress, the actual plate element slenderness at the transition
from elastic to inelastic buckling can be determined. For the web of a rolled 'W-shape,
Case 5 in Table B4.1a, the limiting width-to-thickness ratio becomes

Mr =—h—=c3 E =1.49 E
tW Fﬂ Fﬂ
If the width-to-thickness ratio of the web does not exceed this‘value, theusable width of

the web is the actual width and no change in area is required. If the width-to-thickness
ratio of the web does exceed this value, a reduced widthimust be-determined through

F,

n

atbf1-o B | (AISC E7)

where the‘elastic plate buckling stress-from Equation 5.22'is presented as
A Y
Fa = (Cz 7) F, (AISC E7-5)

The constants C; and C; are,given in Specification Table E7.1. If Equations 5.25 and E7-5
are substituted into Equation E7-3, the effective width becomes

E ccc |E
b, = C,Ct Fﬂ(l— o) Fnj (5.26)

Equation 5.26 may be simplified by substituting C4 = C>C3 and Cs = C;C2C3 which yields

E Cs E
be_c4t\/F:n(l_(b/t) EJ (5.27)

Values for'cs and Cs are given in Table 5.4.
Continuing the consideration of W-shape webs by making the appropriate
substitutions into Equation 5.27 yields




Once the effective width of a slender element is obtained, the corresponding effective
area of the member can be determined. Since hot-rolled shapes have fillets at the junction
of the plate elements, the best approach for determining the effective area'is to use the
gross area and deduct the appropriate ineffective element area. This will beuillustrated in

the example.
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b, =195t | = |1-221 [E (5.28)
F (b/t) VF,

EXAMPLE 5.10  Goal:

Strength of
Column with

Slender Elements  Given:

SOLUTION

Note:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Determine the available strength of a'compression member with a

slender web.

Use an A992 W16x%26 as a column with L¢, = 5.0 ft.

In Manual Table 1-1, this ‘shape «s identified with ‘footnote c,
indicating that it must'be considered.as a slender.element member for
compression. It is the most slender-web W-shape available and is not

normally used as a column.

From Manual Table 1-1,
A=7.68in? h/t,=56.8, t,=0.250in.,ry=1.12in.

Determine the web slenderness limit from Specification Table B4.1a,

Case 5.
o =149 2= 110922000 _35
F, 50

Check the slenderness of the web.

t£= 56.8> A\, =359

W

Thus, the shape must be treated as one with a slender web. It has
already been established that all W-shapes, with Fy = 50 ksi, have
nonslender flanges, so that check will not be made here.

Determine the Euler buckling stress, Fe, for L = 5.0 ft.
F m*(29,000)

5(12)Y
1.12
Determine Fj

F.=99.7 ksi >F,/2.25=50/2.25=22.2 ksi

=99.7 ksi
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Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

For
LRFD

Step 11:

Therefore, use Equation E3-2
50

F = 0.658(EJ (50) = 40.5 ksi

Check the slenderness of the web against the new limit using Fy in

place of Fy.
oy =149, | = =149, 22090 _39 g
F 40.5

il =56.8>An =399

W

the web i1s slender and the effective web width must be determined.

since

Determine the effective width/of the web using Equation 5.28

b, =195t |41 2STHE,
R (b/t). \ F,
—1.950.250) 2220001, 0351 /29’000 210.9in.
40.5 568\ 40.5

Determine the actual web width.

The width of the web plate is given by h. However, a value of h is
not specifically available in the Manual, so with h/ty = 56.8 and t, =
0.250, h can be determined as

h=(h/t, )te=>56.8(0.250) =14.2 in.

Determine the effective area.

Because'be < h, use be to determine Ae. To properly account for the
fillets at the web-flange junction, the area of the ineffective web is
deducted from the gross area of the shape; thus,

Au=A, —(h—b.)t, =7.68—(14.2-10.9)(0.250) = 6.86 in.

Determine the nominal strength of the column.
P=RA= 40.5(6.86) =278 kips

Determine the design strength for this slender web column with L; =
5.0 ft.

0P, =0.9(278)=250 kips
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For
ASD
Step 11: Determine the design strength for this slender web column with Lc =
5.0 ft.
P./Q =278/1.67=166 kips

EXAMPLE 5.11  Goal: Determine the available strength of a compression ‘member with a

Strength of slender web.
Column with :
Slender Elements Given:  Use the W16x26 column from Example 5.10 but with Ley = 15.0 ft;
Note: This shape has already been shown te have a slender web based on
Table B4.1a
SOLUTION Step 1:  From Manual Table 4-1,

A=7.681in3,. h/tg=56.8, t,=0.250in,.ryp= 1,12 in.

Step 2:  Determine the web slenderness limit from Specification Table B4.1a,

Case 5.
Are=1.49 E =1.49 ’29'000 =359
F, 50

Step 3:° Check the slenderness of the web:

4 =56.8>A,,=359

W

Thus, the shape has a slender web. It has already been established
that all W-shapes with Fy = 50 ksi have nonslender flanges.

Step 4: Determine the Euler buckling stress, Fe, for Lc = 15.0 ft.
F_ 7*(29,000)

15(12) Y
1.12
Step 5: . Determine Fn.

F =11.1ksi<F,/2.25=50/2.25=22.2 ksi

=11.1ksi

Therefore, use Equation E3-3
Fo =0.877(11.1)=9.73 ksi
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Step 6:  Check the slenderness of the web against the new limit using Fy in

place of Fy.
Ao =149 [ £ =149 | 2200 _g,
F 9.73

t£=56.8<XrW =81.3

W

since

the column will not be limited by local buckling of the web

Step 7:  Determine the nominal strength of the column.
P.=RA = 9.73(7.68) =74.7 kips

For

LRFD

Step 8:  Determine the design strength for this slender webcolumn with L =
15.0 ft.

OP, = 0.9(74.7)267.2 kips

For

ASD

Step 8: . Determine the design strength‘for this slender web column with L =
15.0 ft.

P,/ =74.7/1.67=44.7 kips

Examples 5.10 and 5.11 illustrate that a W-shape that appears to be a slender element
shape based on Table B4.la may not actually be limited in strength because of that
slender. element, the limit .state of local buckling. It can be shown that the W16x26
considered in these examples will have its strength limited by local buckling for columns
with effective length, [Lc, up to about 10.8 ft. Above that effective length, the slender
elements will not impact.overall column strength.

5.7 COLUMN DESIGN TABLES

A review. of the AISC column equations, E3-2 and E3-3, shows that the only factor other
than shape geometry and material strength that influences the determination of column
strength is the slenderness ratio. Therefore, it is convenient to tabulate column strength as
a function of slenderness. Part 4 of the Manual contains tables for W-shapes, HP-shapes,
and HSS and several singly symmetric shapes. Figure 5.28 shows a sample of Manual
Table 4-1a for several W14 sections with Fy = 50 ksi. As with all of the available strength
tables in the Manual, both allowable strength (ASD) and design strength (LRFD) values



Chapter 5 Compression Members 207

are given. Tables 4-1b and 4-1c are provided for selected W-shapes that are commonly
available with Fy = 65 and 70 ksi respectively.

The values in these column tables are based on the assumption that the column
will buckle about its weak axis. For all W-shapes this is the y-axis, so the values in the
tables are given in terms of the effective length with respect to the least radius of
gyration, ry. Their use is quite straightforward when the critical buckling length is about
this axis. An approach that permits the use of these tables when the strong axis controls
will be addressed following the example.

Table 4-1a (continued) r
Available Strength in
Axial Compression, kips

W-Shapes w14

Fy =50 ksi

Shape W1dx

Ib/ft 82 74 68 61 53 48 43lel

Pr /2] cPr [P /2 0cPn [Pr /2 GcPn Gefs [Py BePo [PafSrd 0cPa |Pa/C2d GcPa
ASD |LRFD| ASD |LRFD | ASD |LRFD LRFD LRFD LRFD | ASD LFIFI_)__'J

719 | 1080 1653 | 981 |599 |G06 ﬁ?l’l? 422|634 (374 | 562
676 | 1020 [614 | 922 |562 | 845 756 w33 (380 572 (339 |50

0
6
T |661 903 (600 | 902 |550 | 826 730 406 |610 |366 [551 |327 |48
8
9

Design

=
2|

644 | oves [585 | 879|636 | sos 700|388 [ses 361 [s27 (312|400
626 | 940 |568 | 854 (52 | 782
10 606 | 9ro|ss0 | 827 756
11 |84 | e7s[as1 | rof 729
12 |562 | 844|510 | 767 701
13 |638 | 809 [489lemas 71
14 |614 do 772 70t 640
15 136 667 6o
16 g7 633 577
17 438 4 6o 598 544
18 |43 | CRORSTS [TESTTaM | D12
582" 529 (320 | 480
362 | 545 195 |209 | 419
314 | 472|285 | 428 |258 | 288

Boo [a71 [s57 [334 |50z 417
676 381 |see |316 | 475, 4z
651 |31 |4u7 |208 |4af |264 | 300
626 |30 [465 270 gt 194247 | 371
590 |28 |433 | 2508 o0 fE2Y | 346
571 | 267 [401 360 ki
543 |246 360 |22WQa [194 |29
514 |225 |48 o, 177|267
485 |205 #%08 278061 | 242
456 (1888278 |1 249|145 |18
428 [166°250 (14088 224 |130 | 196
396 226 202 |17 |77
315 186G (167 | 9F1] 145
267 | 407|243 | 365 219 | 330 03 A sy 140 | 816123
228 | 343|207 | 311 |187 JeE8i w40 | saal 19 | 69.5] 104
% 295 |79 | 268 |1 247 216 1 7681115 | 68.5)103 | 59.9| 901
59.7

S &2

e
=

BEESEREERER

257|156 | 234 Fah| 168F S| 100 | 897} 23] 785
226 |37 | 205 168 165 | 586] 85.1
133 | 200 (121 | 182 164 Oy 146
19 | 179|108 | 162 147 | 865| 130
107 160 | 96.9] 146 | 8F5YW81 | 77.7) 117
96.3| 145 |gE7.5] 131 | 79.0) 18 70.1| 105

Strength P for G Forcesl]

B, wps 123 |185 [104 Tags, [ e0s|136 | 725|116 | 7ra]116 | ezafio1 |68 854
P, KIpVIN. 17.0| 258 7% 208) 128] 188) 128 ] 185118 17.0f102] 153
ut, KIS 201|402 13807 163 | 804f120 [76.2115 | 89.5| 695|430 64.7
Fa, kips 137 f205 |16 Yys | 970|146 | 728|117 [ 815|123 | 66.2| 996|526 | 9.0

Properties

Ly it 876 8.76 869 865 678 675 .G
L, T -33.2 3o 3 275 223 HA 200
Ay, in® _?:ﬂ-‘,ll 218 200 179 15.6 14.1 126
Jo it a81 795 Te2 G40 54 484 428

1% int 148 134 1 107 57.7 514 452
Ty in. 248 248 246 245 192 1.9 1.89
f;[r, 244 244 2.44 244 .07 3.06 3.08
?1 2;‘1 I'J“, kip-in.z 25200 22800 20700 18300 15500 13900 12300

e
A

&

Effective length, Lz {it), with respect to least radius of gyration, ry
2

SBEER SREERE

10° kip-in? | 4240 3840 3460 J060 1650 1470 1290

LRFD | Itlshape s slender for ¢ with £, = 50 kst tabulated values have been adjusted accordingly.
I Flange kel buckling, web local buckling, and web pression bucking are idered. Web local
3 crippling, web sidesway buckling, and web panel zone shear are not addressed in this table.
Q=167 | $:= 080 | Note: Heavy line indicates L“f'ry el to o greater than 200,

Figure 5:28 Available Strength in Axial Compression Copyright © American Institute of Steel
Construction, Reprinted with Permission. All rights reserved.
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;‘Z; Zé;’ Figure 5229 * Columns for Examples

b i 5.12 and 5.13
(a) I H
(b)

EXAMPLE Goal: Determine the least-weight section.to carry the loads‘given using the
5.12a limited selection available insFigure 5.28.
Column Design _ 8 ‘ _
by LRFD Given:  The column is shown in Figure 5.29a. It must resist the following

loads in the appropriate combinations: Pp'= 56 kips, PL = 172 kips,

and Pw =_176 kips. Use A992 steel. Assume the live load comes

from a distributed load less than 100 psf, so that the LRFD load

factor‘on live load may be taken as 0.5 forload combination 4.
SOLUTION Step 1: Determine the maximum _required. strength using the LRFD load

combinations from Section 2.4.
1. 1.4Pp = 1:4(56) = 78.4 Kips
2. 1.2Pp+ 1.6PL = 1.2(56) + 1.6(172) = 342 kips
4. 1.2Pp+0.5P. + 1.0Pw

=1.2(56) + 0.5(172) + 1.0(176) = 329 kips
6. 0:9Pp + 1.0Pw = 0.9 (56) + 1.0(176) = 226 kips

So the column must carry P, = 342 kips.

Step 2:  The column has the same effective length about the x- and y-axes,
so-enter the table in Figure 5.28 with L = 18 ft. Scanning across the
table at L = 18 ft and checking the LRFD values, select the least-
weight shape in this portion of the table that can support this load.

Select a W14x61 with a design compression strength

oP, =456 kips
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EXAMPLE
5.12b

Goal: Determine the least-weight section to carry the loads given using the
limited selection available in Figure 5.28.

Column Design

by ASD

SOLUTION

Given:  The column is shown in Figure 5.29a. It must resist the following
loads in the appropriate combinations: Pp = 56 kips, Px= 172 kips,
and Pw = 176 kips. Use A992 steel.

Step 1:  Determine the maximum required strength using.the ASD load
combinations from Section 2.4.
1. Pp=56 kips
2. Pp+PL=56+172 =228 kips
5. Pp+0.60Pw =56+ 0.6(176) = 162 kips
6. Pp+0.75 PL+ 0.75(0.6Py )
=56 +0.75(172) +0.75(0:6(176)) = 264 kips
7. 0.6 Pp+0.6 Pw = 0.6(56) # 0:6(176) = 139 kips

So the column must carry Pa=264 kips.

Step 2:  The column has the same effective length about the x- and y-axes, so
enter the table'in Figure 5.28 with L. =/18 {{. Scanning across the
table at L..= I8.ft and checking the/ASD values, select the least-
weight shape in this portion of the table that ean support this load

Selecta W14%61 with an allowable compression strength
Bi/Q =304 kips

If the largest slenderness ratio for a particular column happens to be for X-axis
buckling, the tables may not be entered directly with the X-axis effective length because
the table effective length is intended to be used in conjunction with the least radius of
gyration. However, it is possible to determine a modified effective length that, when used
in the table, will result in the correct column strength.

When the x-axis controls column strength, the slenderness ratio used in the
column equations is Le/rx. To use the column tables, an effective length, (Lc)err, must be
determined that, when combined with ry, gives the same slenderness ratio. So

( LC )eff — i
ry Iy
Solving:this equation for (Lc)err yields
L
(Lc)eﬁ - (rx / I"y)

With this modified effective length, the tables can be entered and a suitable column
selected. There is one difficulty with this process, however. Until a column section is
known, the value for ry/ry cannot be determined. To account for this, a quick scan of the
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column tables should be made to estimate ry/ry. Then, when a section is selected, the
assumption can be verified and an adjustment made if necessary.

EXAMPLE 5.13 Goal: Determine the least-weight section to carry the force given using the

Column Design limited selection available through Figure 5.28. Design by LRFD and
ASD.
Given:  The column is shown in Figure 5.29b. Use the loading from Example
5.12.
SOLUTION Step 1:  Determine the effective length for each axis.

Bracing of the y-axis, shown in Figure 5.29b, yields Lcy, = 10.0'ft
The unbraced x-axis has Lex = 30.0°ft.

Step 2:  Determine (Lc)err for the x-axis.
Select a representative ry/ryfrom Figure 5.28. There are two general

possibilities. Assume that the larger shapes might be needed to carry
the load, and try.ry/ry = 2.44. Thus,

(Lo)err = Lo =@:12.3ﬂ
(r/ry) 244
Step 3: Determine the controlling effective length.

Because (Lc)ert = 12.3 ft is'greater than Lcy = 10.0 ft, enter the table
with L¢ = 12.3 ft and interpolate between 12 ft and 13 ft.

For

LRFD

Step 4:  From Example 5.12a the column must have a design strength greater
than Py/= 342 kips with L = 12.3 ft. Try a W14x43, which happens
to be the smallest column available with the limited selection
available.in Figure 5.28. This column has ry/ry = 3.08.

Step 5:  Determine (Lc)er with this new ry/ry. Thus,

30.0
o =——=9.741ft
(Lder =370

Step 6:  Determine the new controlling effective length.

Because (Lc)ert = 9.74 ft is now less than L¢y = 10.0 ft, enter the table
with 10.0 ft and note that the W14x43 has a design strength of 422
kips, which is greater than the required strength of 342 kips.

Step 7:  Therefore, use the selected
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W14x43

Note: The W14x43 is identified in the table by a footnote as slender
for Fy = 50 ksi. This is not an issue for our design because the impact
of any slender element has already been taken into account in
generating the table as stated in the same footnote.

Using the full complement of tables available in the'Manual results
in a smaller W12 section having the ability to carry the given load.

For

ASD

Step 4:  From Example 5.12b the column must have ansallowable strength
greater than P, = 264 kips with L.= 12.3 ft. Try a W14x48. This
column has ry/ry = 3.06.

Step 5:  Determine (Lc)err with this new 74/r,. Thus,
30.0
L)y =——=9.80ft
(Le)es; i

Step 6:  Determine the new controlling effective length:

Because (f)e=9.80 ft is now less than Lg.= 10.0 ft, enter the table
with 10.0 ft and see that the W14x43 has an allowable strength of
281 kips, which is greater than the réquired strength of 268 kips and
ry/ry =3.08 which is greater than that for the W14x48 so Ley = 10.0 ft
will still eontrol.

Step 7:  Therefore, use the selected
W14x43

Note: The W14x43is identified in the table by a footnote as slender
for F;, = 50 ksi. This is not an issue for our design because the impact
of any.slender. element has already been taken into account in
gengerating the table as stated in the same footnote.

Using the full complement of tables available in the Manual results
in‘a smaller W12 section having the ability to carry the given load.

Table 4-1a in Part 4 of the Manual includes shapes from a W8x31 up to a
W14x%873. All of the shapes included are considered column shapes and have reasonably
similar strengths about the x- and y-axes. That is, the shapes are close to being square and
ry/ry is not extremely large, ranging from 1.59 to 3.08. Any of the other available W-
shapes may be used for columns if desired, but it must be recognized that the relationship
between the x- and y-axes is such that the y-axis will control unless significant bracing is
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provided. These shapes are generally considered beam shapes. Since beams are intended
to be used to carry flexure, the relationship between the X- and y-axes is not as critical.
For example, for a W16x26 with a length of 24 ft braced at the ends only for the x-axis
and ry/ry = 5.59, the y-axis will control unless it is braced at least every 4.29 ft.

The W-shape column tables in Part 4 of the Manual for Fy = 50 ksi also exclude
the smallest W-shapes in an attempt to direct the design engineer towardsusing shapes
that are more appropriate when considering connections. That does not mean that these
smaller shapes are not acceptable for use as columns. The tables in Part 6 of the Manual,
which will be discussed in Chapter 8, can be used for the design of'columns and they
include all of the W-shapes.

EXAMPLE 5.14  Goal:
Column Design

SOLUTION

Given:

For
LRFD

Step 1:

Step 2:

For
ASD

Step 1:

Step 2:

Determine the least-weight section to carry.the force given using the
small shapes provided in the W-shape tables in Manual Part 6.
Design by LRFD and ASD.

The A992 column has an effective length for both axes of 10 ft-and
must carry a concentrated dead load‘of 8 kips and.a concentrated live
load of 24 kips.

Determine.the required strength for the load combination 1.2D +
1.6L.

P, =1.2(8.0) + 146(24.0)= 48.0 kips

Using Manual Table 6-2select theslightest column to support this
load.

Select the W4x13.
oP, =60.1 kips

Determine the required strength for the load combination D + L.
P, =8.0+24.0 =32.0 kips

Using AManual Table 6-2, select the lightest column to support this
load.

Select the W4x13.
P
— =40.0 kips
o) p
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5.8 TORSIONAL BUCKLING AND FLEXURAL-TORSIONAL BUCKLING

Up to this point, the discussion has addressed the limit states of flexural buckling and
local buckling. Two additional limit states for column behavior must be addressed:
torsional buckling and flexural-torsional buckling. Doubly symmetric shapes normally
fail through flexural buckling, as discussed earlier in this chapter, or through torsional
buckling. Singly symmetric and unsymmetric shapes can fail through flexural, torsional,
or flexural-torsional buckling. Because the shapes normally used for steel'members are
not well suited to resist torsion, except for closed HSS, it is usually desirable to avoid any
torsional limit states through proper bracing of the column or by avoiding torsional
loading.

If either of the torsional limit states must be evaluated, the applicable
Specification provisions are found in Section E4, except for the special cases associated
with single angles, which are found in Section E5.%For doubly symmetric, singly
symmetric and unsymmetric members braced so/that they buckle torsionally about their
shear center, specific elastic buckling .stress. equations are provided. For doubly
symmetric members with bracing offset from the shear center, separate elastic buckling
stress equations are given depending‘on if thetbracing is offset from the strong or weak
axis. For all these shapes, once the elastic buckling stress, Fe, is' determined, it is then
used in Equations E3-2 and E3-3 to determine the nominal compressive stress, Fn. The
equations given in Section E4 defining the elastic buckling stress for the limit states of
torsional and flexural-torsional buckling are also found in several other books with
varying notation, including Buckling Strength of Metal Structures.’ The equations of
Section E3 are used to“account for such factors<as inelastic buckling, initial out-of-
straightness, and residual stresses.

¥ N
&, NY

10

10

o A
g 1
I i~

(a) (b) (©

Figure 5.30 Column for Example 5.15

2 Bleich, F. Buckling Strength of Metal Structures. New York: McGraw-Hill, 1952.
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Because single-angle compression members are so common, the Specification
provides a simplified approach for those members meeting a specific set of criteria. By
limiting the way that load is applied to the ends of a single-angle compression member,
an effective slenderness is established, which is then used in Equations E3-2 and E3-3 to
determine the nominal compressive stress, Fn .

The limit state of torsional buckling is not normally considered. in the design of
W-shape columns when the y-axis is the controlling axis for flexural buckling. Torsional
buckling generally does not govern, and when it does, the critical load.differs very little
from the strength determined from flexural buckling. For other member types, such as
WT or double-angle compression members often used in trusses, torsional limit states are
quite important.

An additional factor in determining strength based on these limit states is the
torsional effective length. The Commentary recommends that, conservatively, the
torsional effective length be taken as the column length and provides several other
possibilities if greater accuracy is desired.

EXAMPLE 5.15 Goal: Determine the available strength of a W-shape column and<consider

Strength of a W- torsional buckling.

Shape Column o '

with Torsional Given: A W14x48 A992 column as shown in Figure 5.30 is braced laterally

Buckling and torsionally at its ends. At mid<height it is braced to resist
buckling about the y-axis, but it cannot resist torsional buckling
based on the bracing shown in Figure.5.30c.

SOLUTION Step 1¢ From Manual Table 1-1,

Ag=14.1in2 ;=484 in* I, =51.41in* r,=5.85in., ry=1.91 in.,
Cw=2240in° J=1.45in* h/ty=33.6

Step 2:  Determine the web slenderness limit.
Arw =1.49 E =1.49 /M =359
F, 50

Step 3:  Check slenderness of the web and flange.

£=33.6 <Aw =359

W

Therefore, the web is not slender. As previously discussed, all W-
shapes with Fy = 50 ksi have nonslender flanges.

Step 4:  Determine the nominal stress for y-axis buckling.

(Ej _10(12) _
r), 191



Step 5:

Step 6:

Step 7:

Step 8:
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2 . 29,000
F = n’E _T ( )=72.6ksi>2F—2yS=22.2kSi

( L jz (62.8)

r

Therefore, use Equation E3-2:
50

F, = (0.658) 24 (50)=37.5 ksi

Determine the nominal stress for x-axis buckling.

(Ej _20Y7 416
r), 585

2 2 (29,000 F
R _m (2 ):17Oksi>2—2ys=22.2ksi

( L )2 (41.0)°

r

Therefore, use EquationE3-2:

50
Fn= (0.658)(ﬁj (50) =44.2 ksi

Determine-the nominal stress for z-axis buckling, or twisting about
the'shear center; using Section E4(a) Equation E4-2.

[ 1
BT gyt
(L) lhl,
i 2
| #1(29,000) 22240)”1,200(1.45) o
) 484+51.4

F
51.1ksi>—1-=22.2 ksi
2.25

Therefore use Equation E3-2:
50

F = (0.658)(KJ (50)=33.2 ksi
Select the lowest nominal stress determined in Steps 4, 5, and 6.
F, =33.2 ksi

Since the controlling nominal stress comes from Step 6, the strength
of the column is controlled by torsional buckling.

Determine the nominal strength of the column
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P, =33.2(14.1) =468 kips

Note: Determination of Fy in steps 4, 5, and 6 could have been
delayed until after the controlling, smallest, value of Fe had been
determined and then F, determined only once.

For

LRFD

Step 9:  Determine the column design strength.

OP, = 0.9(468) = 421 kips

For

ASD

Step9:  Determine the column allowable strength.
i) = 268 = 280nkips
Q 167

EXAMPLE 5.16 Goal: Determine the available strengthrof a WT-shape compression

Strength of a WT- member with consideration of flexural, torsional, and flexural-
Shape torsional buckling.

Compression . . .

Member Given: A WT7x349A992 column is 10.0 ft long and is braced laterally and

torsionally at its ends only.

SOLUTION Step 1: .. From Manual Table 1-8,
Ag=10.0 in.2, Ix=32:6rin.*nly= 60.7 in.*, r, = 1.81 in.,
ry=2.46in., tr=0.720,C4=3.21'in.%, J=1.50 in.* , d/t, = 16.9,
y=129.in., b; /2t; =6.97

Step 2:  Determine the flange and stem slenderness limits from Table B4.1

cases 1 and 4.
Av =0.56 E :0.56,f29’000 =13.5
F, 50
Ay =0.75 E =0.75 /29’000 =18.1
F, 50

Step 3:  Check slenderness of the flange and stem.

b

L =697<)\; =135
2t,

i=16.9<xrvv =18.1

W

Therefore the WT has nonslender flange and stem.
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Step 4:  Determine the nominal strength for flexural buckling. Since Lex = Ley
and the x-axis has the smallest radius of gyration, flexural buckling
will be controlled by the x-axis.

10 12 f f
(Ej 1(8 =663<4.71 =471 29,000 =113
r X

TE 7 (29,000)

[ L jz (66.3)

r

ex

=222 ksi
25

Therefore, use Equation E3-2:
50

Fy
= (0.658)[€j F, = (0.658)(a] (50)=36.3 ksi
and
P, =36.3(10.0) =363 kips

Step 5:  To determine flexural-torsional buckling, the elastic buckling stress
for y-axis buckling is required.

(Ej _10012) (1o

r 2.46
2 2
R =t T (29’080) =120 ksi
(Lcj (48.8)
f

Step 6:  Determine the flexural-torsional elastic buckling stress for z-axis
buckling using Equation E4-3. The shear center of a WT-shape is at
the stem-flange intersection. Thus, the distance from the centroid to
the shear center is

t
X, =0, Y, = V—?f—l 29—072ﬂ =0.930 in

and from Equation E4-9

2 ox ey 4t 00400302 43284607 65
A 10.0

and Equation E4-8

2 2 2
mo e 0+1%‘9230 0.915

H=1-

From the user note in Section E4, take Cy = 0 in Equation E4-7.
Thus,
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Step 7:

Step 8:

Step 9:

For
LRFD

Step 10:

For
ASD

Step 10:

_GJ 11,200(1.50)
AR 10.0(10.2)

Fe, =165 ksi

Determine the flexural-torsional elastic buckling stress for the singly
symmetric member using Equation E4-3.

FEZ(MJ - 1= 2FFaH
2H (Fy +Fe)
:(12O+165]{1_\/1_4(120)(165)(0'915)J:105 Ksi

2(0.915) (120++165)°

Determine the nominal stress using the flexural-torsional elastic
buckling stress

F. =105ksi. > Py =222 ksi
2.25

Therefore, using Equation E3-2
50
F.= (0.658)@ (50) =41.0 ksi

Determine thenominal strength'of the compression member for the
limit state of flexural-torsional buckling.

P, £41.0(10.0) =410 kips

Determine the compression member design strength. Since the
nominal strength for flexural buckling about the x-axis is less than
the flexural-torsional buckling strength,

0P, =0.9(363) =327 kips

Determine the compession member allowable strength. Since the
nominal strength for flexural buckling about the x-axis is less than
the flexural-torsional buckling strength,

i} = 363 =217 kips

Q 1.67
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EXAMPLE 5.17
Strength of a W-
Shape Column
with Constrained-
Axis Torsional
Buckling

SOLUTION

Goal:

Given:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Determine the available strength of a W-shape column and consider
torsional buckling when the lateral bracing is offset from the shear
center.

A W14x48 A992 column as shown in Figure 5.30 and considered in
Example 5.15 is braced laterally and torsionally at its ends. At mid-
height it is braced to resist buckling about the y-axis. The y-axis
bracing is moved from the shear center, as shown in Figure 5.30c, to
the face of the flange. Thus constrained-axis torsional buckling must
be assessed.

From Manual Table 1-1,

Ag=14.1in2 Iy=484 in* I, =514in." r,=5.85in., r,=1911n.,
d=13.8in., ho = 13.2 in., t; =0.595, Cy = 2240 in.%, J = 1.45 in.%,
hit.= 33.6

Determine the web slenderness. limit.
Ay =1.49 E =1.49 /M =359
F, 50

Check slenderness of the web and flange.

n =33.6<Au=359

\

Therefore, the web_is not slender. As previously discussed, all W-
shapes with Fy =50 ksi have nonslender flanges.

Determine the nominal stress for y-axis buckling.

[EJ _10(12) _
r), 191

2 2(29.000
e "E _( ) 726 ksi >

(Lcjz (62.8)° 2.25

=22.2 ksi

r

Therefore, use Equation E3-2:
50

F, =(0.658)726) (50) =37.5 ksi

Determine the nominal stress for X-axis buckling.

(5] _2002) 0
r). 585
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2 2(29,000 F
F-TE _m (2 ):17Oksi>2—2ys=22.2ksi

( L )2 (41.0)’

r

Therefore, use Equation E3-2:
50
Fn = (0.658){%] (50) =44.2 ksi

Step 6:  Determine the nominal stress for z-axis buckling with the bracing
offset along the minor axis using Section E4(d) Equation E4-10.

The bracing offset is ya = d/2 = 13.8/2 =6.9 insand Xa = 0. Thus, from
Equation E4-11,

=(r 1+ Y, +X )= (585 #1.91"+6.9° +0) =855 in”

0

and

B 2 2
F, = R—EIZ h—°+y§ +GJ 12
(L) 4 AT

_[7(29,000)(51.4) 132* £ 1
= Bo(2) ( : 6.9] 11,200(1.45)]—14‘1(85'5)
F

=32.8 ksi > ——=22.2 ksi
2.25

Therefore use Equation E3-2:
50

F. = (0.658)(@) (50) =26.4 ksi
Step 7:  Select the lowest nominal stress determined in Steps 4, 5, and 6.
F, =26.4 ksi

Since the controlling nominal stress comes from Step 6, the strength
of the column is controlled by torsional buckling.

Step 8:  Determine the nominal strength of the column
P, =26.4(14.1)=372 kips

Note: As was the case for Example 5.15, determination of Fy, in steps
4,5, and 6 could have been delayed until after the controlling,
smallest, value of Fe had been determined and then F, determined
only once.



For
LRFD

Step 9:

For
ASD

Step 9:
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Also note that moving the lateral brace from the shear center, as in
Example 5-15, to the face of the flange has reduced the strength of
the column.

Determine the column design strength.
oP, =0.9(372) =335 kips

Determine the column allowable strengthg
B 37 ) 3ips
Q 1.67

5.9 SINGLE-ANGLE COMPRESSION MEMBERS

Single-angle compression members would be designed for flexural-torsional buckling
according to the provisions in Specification Section E4 except for an exclusion for angles

withb/t <0.71,/E/F, . All hot rolled, A36 angles satisfy this‘exclusion limit so they need

not be checked for flexural-torsional buckling. However; since the preferred material for
angles is A572 Gr. 50, one must check to be sure that the provisions in Specification
Section E4 are applicable.

Studies.show that the compressive strength of single angles can be reasonably
predicted using the compression member equations-of Specification Section E3 if a
modified effective length is used and the member satisfies the following limiting criteria
as found in Specification Section E5.

1.

2.

W

Members are loaded at their ends in compression through the same one
leg.

Members are attached by either welding or a connection containing a
minimum.of two bolts.

There are no intermediate transverse loads.

L./r as determined in this section does not exceed 200.

For unequal leg angles, the ratio of the long leg width to short leg width
is less than 1.7.

Two cases are given for these provisions: (1) angles that are individual members
or web members of planar trusses, and (2) angles that are web members in box or space
trusses. This distinction is intended to reflect the difference in restraint provided by the
elementsto which the compression members are attached.
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The first set of equations is for angles that

1. are individual members or web members of planar trusses.

2. are equal-leg angles or unequal-leg angles connected through the longer
leg.

3. have adjacent web members attached to the same side of a gusset plate or
truss chord.

Buckling is assumed to occur about the geometric axis parallel to the attached leg. Since
this may be either the X- or y-axis, the Specification uses the subscript a and then defines
ra as the radius of gyration about the axis parallel to the attached leg.

L

If — <80,
la
5 =72 + 0.75L (AISC E5-1)
r 8
and if L >80
la
i =32 + 1.25L (AISC E5-2)
I Iy

These effective lengths must be modified if the unequal-leg angles are attached through
the shorter legs. The provisions of Specification Section E5 should be reviewed for these
angles as well as for similar angles in box or space trusses.

EXAMPLE 5.18 Goal: Determine the available strength, of a 10.0 ft single-angle

Strength of compression memberusing A572 Gr. 50 steel and the provisions of
Single-Angle Specification Section ES.

Compression ; ¢ . _

Member Given: A 4x4x1/2 angle is.a web member in a planar truss. It is attached by

two bolts.at each end through the same leg.
SOLUTION Step 1:  Check angle leg slenderness,

b3 _g0<071|E—071, /2207,
t 0.5 Fy 50

Therefore, it is permissible to use the provisions of Specification
Section E5 and, since

b_ 4 _g0<0as|E —ous /M =108
t 05 F, 50

The provisions of Section E7 do not apply.

Step 2:  From Manual Table 1-7,
A=3.75in?and r,=1.21.




Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

For
LRFD
Step 10:

For
ASD
Step 10:
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Determine the slenderness ratio for the axis parallel to the connected
leg, Fa="Ikx.
L L 10.0012)

r, Iy 1.21

=99.2

Determine which equation will give the effective slenderness ratio.

Because

L=99.2 >80

fa

use Equation E5-2.

Determine the effective slenderness ratio from Equation E5.2,

L _3241.28(992) =156 < 200
;

Determine which column strength equation to uses

Because

£=156 >4.71 2900
r

use Equation E3-3.

Determine the Euler buckling stress.
©’E _m(29,000)

(LCT (156)°

aa—

=11.8 ksi

r

Determine the nominal stress from Equation E3-3.
F, =0.877F, =0.877(11.8) =10.3 ksi

Determine the nominal strength.
P =FA= 10.3(3.75) =38.6 kips

Determine the design strength.
OP, =0.9(38.6)=34.7 kips

Determine the allowable strength.
P,/Q =38.6/1.67=23.1 kips



224 Chapter 5

Compression Members

For single angle compression members that do not meet the criteria set forth in Section
E5 for use of the modified slenderness ratio equations, the provisions of Sections E3 or
E7 must be followed. The provisions in Section E4 for torsional or flexural-torsional

buckling do not need to be followed for hot-rolled angles that meet the leg slenderness

exclusion of b/t<0.71,/E/F, .

buckling about the principal axes must be assessed.

Strength of
Single-Angle
Compression
Member
SOLUTION

EXAMPLE 5.19  Goal:

Given:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Determine the available strength of a 10.0 ft single-angle
compression member using A572 Gr. 50 steel.

A 4x4x1/2 angle is a web member in a‘planar truss. It is attached by
single bolts at each end through the.same leg.

From Manual Table 1-7,
A=3.75in2and ry=4y=1.21,r,=0.776 in.%.

and from Example'5.17, the-angle is not a slender element member
and the provisions of Section E7 do not apply. Additionally, since

b 4 _cocom |E—om KM=17.1
t40.5 F 50

the provisions of Section E4 need not be checked.

Determine the'slenderness ratio for the minor (weak) principal axis.
L. 10.0(12)
I, 0.776

=155

Determine which column strength equation to use.

Because
£=155 >4.71 29,000 =113
I, 50
Use Equation E3-3.
Determine the Euler buckling stress.
2 2
_ mE _ 77(29,000) C11.9ksi

¢ _(LCT (155)

r

Determine the nominal stress from Equation E3-3.
For =0.877F, = 0.877(11.9) =10.4 ksi

Thus, for these members, the strength’ for flexural
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Step 6:  Determine the nominal strength.
P, =F,A=10.4(3.75) =39.0 kips
For
LRFD
Step 7:  Determine the design strength.
oP, =0.9(39.0)=35.1 kips
For
ASD
Step 7:  Determine the allowable strength.
P./Q=39.0/1.67=23.4 Kips

5.10 BUILT-UP MEMBERS

Members composed of more than one shapeare called built-up members. Several of these
were illustrated in Figure 5.2h through n. Built-up compression members composed of
two shapes are covered in Specification Section E6:Compressive strength is addressed by
establishing the slenderness ratio and referring to Specification Section E3, E4, or E7 as
appropriate.

If a built-up section buckles so that the fasteners between the shapes are not
stressed in shear but simply-“go along for the ride,” the only requirement is that the
slenderness ratio of the shape between fasteners be no greater than 0.75 times the
controlling slenderness ratio. of the built-up shape. If overall buckling would put the
fasteners into shear, then the controlling slenderness ratio will be somewhat greater than
the slenderness ratio of the built-up shape.. This modified slenderness ratio is used to
account for the effect of shearing deformations' through the connectors. Thus, the
effective 'slenderness ratio for a built-up member with snug-tight connectors will be
greater than the same member with pre-tensioned or welded connectors. In addition, the
spacing of the intermediate connectors will influence the modified slenderness ratio.

For intermediate connectors that are bolted snug-tight, the modified slenderness
ratioris always greater than the slenderness ratio of the built-up member acting as a unit
since there will always be.some shearing deformation in the connectors. It is specified as

(Ej _ (Ej +(3] (AISC E6-1)
r m r [0} ri

If the intermediate connectors are welded or pre-tensioned bolted, the shearing
deformation in the connectors is significantly less than for snug-tight connectors and the
modified slenderness ratio may be equal to the slenderness ratio of the built-up member
acting as a unit. For this case, the modified slenderness ratio is specified as,
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a
when — <40,

T

(%) = (%) (AISC E6-2a)

[EJ _ \/(E) +(ﬁj (AISC E6-2b)
r) r), L
L

(—°] = column slenderness of built-up member acting as a unit
r 0

and when a > 40,

where

K; = 0.5 for angles back-to-back
=0.75 for channels back-to-back
=0.86 for all other shapes

a = distance between connectors

I; = minimum radius of gyration of individual component

The remaining, provisions, in Specification Section E6vaddress dimensions and
detailing requirements.. These provisions are based.onjudgment and experience and are
provided to ensure that the built=up member behaves in a way consistent with the strength
provisions already discussed. The ends of built-up compression members must be either
welded or pre-tensioned bolted in order to enisure that the member can work together as a
unit. Even the smallest amount of slip'inithe end connections could mean that the built-up
member is unable to. carry any more load than the components individually. Along the
length of built-up members, the longitudinal spacing of connectors must be sufficient to
provide for transfer of the required shear force in the buckled member. The Commentary
of the Specification gives guidance on how to determine the magnitude of the forces in
the .connectors. A built-up compression member with connectors spaced so that the
slenderness ratio of thé shape between fasteners is no greater than 0.75 times the
controlling slenderness ratio| of the built-up shape will not automatically satisfy this
strength requirement:

The Manual provides tables of properties for double angles, double channels, and
I-shapes with cap channels in Part 1 and tables of compressive strength for double-angle
compression members in Part 4.
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EXAMPLE 5.20
Strength of a
Built-up Double-
Angle
Compression
Member

SOLUTION

Goal:

Given:

Step 1:

Step 2:

Step'3:

Determine the available strength of a 10.0 ft double-angle
compression member using A572 Gr. 50 steel.

Two 5x3x5/16 angles, long legs back-to-back with a 3/8 in. gap are
used as a chord member in a planar truss. The angles are welded at
each end to a gusset plate and along the length at two intermediate
points with a spacing of 40 in.

From Manual Table 1-15 for double angles
A=4.82in%,r,=1.611in., ry=1211n, i’ =252 1in.and H=
0.640 in.

From Manual Table 1-7 for single angles
r; = 0.649 in. and J=0.0832 in.*

Check leg slenderness

b5 6o [E —071 2200 Syg
t 03125 F, 50

Thus, flexural-torsional buckling of the individual angles need not be
considered.

Fordocal‘buckling,

E= 4 =16.0>0.45 £=0.45,}M=10.8
t 0.3125 F, 50

Therefore, local bucklingimust be considered.

Determine the slenderness ratio for each axis if the member works
as a unit.
L ~10.0(12)

=745
16l
L_10.002) g0,
noo 121

Determine the effective slenderness ratio for buckling about the y-
axis, the axis that will put the connectors in shear. Since the
intermediate connectors are spaced at 40 in.

a_3__ N 46540

T, 0649

Therefore use Equation E6.2b

[%)m = \/(%j +(¥j2 =\/99.22 +(0.5(61.6))" =104
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Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Check the maximum permitted slenderness ratio between
connectors

%: 61.6<0.75(104) = 78.0

Determine the elastic buckling stress for flexural buckling using the
modified slenderness ratio
2 ?(29,000
R, - LE__T(22:000) ¢
OR

r

m

Determine the elastic buckling stress for torsional buckling using
Equation E4-7 with C,, = 0 based on the user note.

G 11,200(2(0.0832))

= — = 6019 ksi
A, 4:82(2.52)

Fez =

Determine the elastic buckling stress for flexural-torsional buckling
using Equation E4-3.

Fez(Fey+Fer A
2H (Fy* F)

i [MJ[I_ \/1_ 4(26:5)(60.9)(0.640) ] ok

2(0.640) (26:5+60.9)’

Determine the nominal stress.

Since the elastic buckling stress for flexural-torsional buckling is
less than that for flexural buckling, use that to determine the critical
stress.

5 _ 0 2.27>225

F 220

Therefore, use Equation E3-3
F. =0.877F, =0.877(22.0) =19.3 ksi

Determine if the local buckling must be included.

For the short leg b/t =3.0/0.3125=9.6
and for the long leg b/t =5.0/0.3125=16.0
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From Table B4.1a case 3

Ar =045 E =0.45 /M =174
F 19.3

b/t=16.0<%, =174

Since

the legs are not slender.

Step 10:  Determine the nominal strength.
P.=FA =19.3(4.82) =93.0 Kips
For
LRFD
Step 11:  Determine the design strength.
OP, = 0.9(93.0) =83.7 kips
For
ASD
Step 11: Determine the allowable strength.
P,/Q=93.0/1.67=55.7 kips

5.11

COLUMN BASE PLATES

When columns are supported on material other than steel, such as concrete or masonry, it
is necessary to distribute their load over an aréa significantly larger than the gross area of
the column. In these situations, a column base plate similar to that shown in Figure 5.31
is used.

Column base plates may be attached to the column in the shop, as shown in
Figure 531a, or shipped separatelyto the site and attached in the field. Columns are
normally welded to the plate but may be attached with angles when large plates must be
shipped separately. In either case, the selection of the dimensions and thickness of the
plate follows the same rules.

Column base plates are normally attached to a footing or pier with anchor rods,
and the space between the plate and the support is filled with a non-shrink grout. A
leveling plate, leveling nuts, or shims (as shown in Figure 5.31b) are used to level the
column base plate. In'cases where the column supports an axial compression only, anchor
rods are not designed to resist a specific force. However, all column base plates must be
anchored with a minimum of four anchor rods according to the Occupational Safety and
Health Administration (OSHA) regulations in OSHA 29 CFR 1926 Subpart R Safety
Standards for Steel Erection. Figure 5.32 illustrates a column with base plate in plan
(Figure 5:32a) and elevation (Figure 5.32b), including four anchor rods.
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(a) (b)
Figure 5.31  Example of a W-Shape Column and Base Plate
Photos courtesy Douglas Steel Fabricating Corporation

Column base plates are-normally attached to a footing or pier with anchor rods,
and the space.between the plate and the support is filled with a non-shrink grout. A
leveling plate, leveling nuts, or shims (as shown'in Figure 5.31b) are used to level the
column base plate. In cases where the:column supports an axial compression only, anchor
rods aré not designed to resist a specific force.' However, all column base plates must be
anchored with a minimum of four.anchor rods-according to the Occupational Safety and
Health ‘Administration (OSHA) regulations in OSHA 29 CFR 1926 Subpart R Safety
Standards for Steel Erection, Figure 5:32 illustrates a column with base plate in plan
(Figure:5.32a) and elevation (Figure 5.32b), including four anchor rods.

To determine the area of bearing that is required, the strength of the material
upon which the base plate is bearing must be evaluated. For concrete, Section J8 of the
Specification gives provisions identical to those given in the concrete code, ACI 318.
When the bearing. plate is covering the full area of the concrete support, the nominal
bearing strength is

P, =P, =0.85f/A (AISC J8-1)

where f, is the specified concrete compressive strength and A, is the area of the plate and
concreteIf the plate does not cover all of the concrete, there will be an increase in
strength due to the spread of the load as it progresses down through the concrete. In this
case the nominal bearing strength is given as

P, =P, =0.85f/AJA /A <1.7f/A (AISC J8-2)
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Here A; is the maximum area of concrete with the same shape as the bearing plate. The
limit on the right side of the equation imposes a maximum ratio of areas of 4:1. If the
supporting element is designed based on the bearing strength of the soil, it will be
relatively easy to determine the extent to which the base plate covers the concrete
foundation or pier. In all cases, ¢ =0.65 and Q = 2.31.

O @]

N k
(a) (&)
Figure 5.32  Column and Base Plate Section and Plan Including Anchor Rods

The thickness of a column base plate is a function of the bending strength of the
plate. Since bending/has not yet been covered in this book, this topic is deferred to
Section 11.11. Those wishing to address base plate design further should proceed to
Section 11.11 and to the example problems given there as well as AISC Design Guides 1
and 10.
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5.12 PROBLEMS

1. Determine the theoretical buckling strength (Euler
buckling load) for a W8x48 A992 column with an
effective length of 20 ft. Will the theoretical column
buckle or yield at this length?

2. Determine the theoretical buckling strength (Euler
buckling load) for a W16x77 A36 column with an
effective length of 12 ft. Will the theoretical column
buckle or yield at this length?

3. Determine the theoretical buckling strength (Euler
buckling load) for a W24x370 A992 column with an
effective length of 20 ft. Will the theoretical column
buckle or yield at this length?

4. Determine the theoretical buckling strength (Euler
buckling load) for an HSS 10x5x3/8 A500 Grade C
column with an effective length of 20 ft. Will the
theoretical column buckle or yield at this length?

5. For a WI12x72 A992 column, determine the
effective length at which the theoretical buckling
strength (Euler buckling load) will equal* the/yield
strength.

6. For a W6x25 A992 column, determine. the
effective length at which the’ theoretical buckling
strength (Euler buckling load) will. equal the yield
strength.

7. For an HP8%x36 A572 Grade 50 column, determine
the effective length at which the theoretical buckling
strength (Euler ‘buckling load) will equal the yield
strength.

8. A W14x132 column has an effective length for y-
axis buckling equal-to 24 ft. Determine the effective
length for the x-axis that will provide the same
theoretical buckling strength (Euler buckling load).

9. A W14x53 column has an effective length for x-
axis/buckling equal to 20 ft. Determine the effective
length for the y-axis' that will provide the same
theoretical buckling strength-(Euler buckling load).

10. An HSS12x6%1/2 column has an effective length
for x-axis buckling equal to 16 ft. Determine the
effective length for the y-axis that will provide the
same theoretical buckling strength (Euler buckling
load).

11. A W14x132 A992 column has an effective length
of 36 ft about both axes. Determine the available
compressive strength for the column. Determine the
(a) design strength by LRFD and (b) allowable
strength by ASD. Is this an> elastic or inelastic
buckling condition?

12. Determine the available compressive strength for
a W12x210 A992 column with an effective:length
about both-axes of 40 ft. Determine the/(a) design
strength by LRED and (b) allowable. strength. by
ASD.. Is this 'an elastic or inelastic. buckling
condition?

13. A W6x15 A992 column has an effective length of
8 ft. about both axes.. Determine the available
compressive strength for the column. Determine the
(a) design strength by LRFD and (b) allowable
strength by ASD. Is this” an elastic or inelastic
buckling condition?

14. Determine the available compressive strength for
an M10%7.5 A572 Gr 50 column with an effective
length about both axes of 7 ft. Determine the (a)
design strength by LRFD and (b) allowable strength
by ASD. Is this an elastic or inelastic buckling
condition?

15. A W14x211 A992 column has an effective length
of 40 ft about both axes. Determine the available
compressive strength for the column. Determine the
(a) design strength by LRFD and (b) allowable
strength by ASD. Is this an elastic or inelastic
buckling condition?

16. Determine the available compressive strength for
a W12x72 A992 column when the effective length is
20 ft about the y-axis and 40 ft about the X-axis.
Determine the (a) design strength by LRFD and (b)
allowable strength by ASD. Is this an elastic or
inelastic buckling condition? Describe a common
condition where the effective length is different about
the different axes.



17. A W8%24 A992 column has an effective length of
12.5 ft about the y-axis and 28 ft about the x-axis.
Determine the available compressive strength and
indicate whether this is due to elastic or inelastic
buckling. Determine the (a) design strength by LRFD
and (b) allowable strength by ASD.

18. Determine the available compressive strength for
an HSS 5x5x3/8 A500 Grade C column where the
effective length is 10 ft about the y-axis and 15 ft
about the x-axis. Determine the (a) design strength by
LRFD and (b) allowable strength by ASD. Is this an
elastic or inelastic buckling condition?

19. A round HSS 16.000%0.375 A500 Grade C
column has an effective length of 20 ft. Determine
the available compressive strength and indicate
whether this is due to elastic or inelastic buckling.
Determine the (a) design strength by LRFD and (b)
allowable strength by ASD.

20. A W8x40 is used as a 12 ft column in a braced
frame with W16x26 beams at the top and bottom as
shown in Figure P5.20. The columns above and
below are also 12 ft W8x40s. The beams provide
moment restraint at each column end. Determine the
effective length using the alignment chart and the
available compressive strength, and the (a) design
strength by LRFD and (b) allowable strength by
ASD. Assume that the columns are oriented for (i)
buckling about the weak axis and (ii) buckling about
the strong axis. All steel'is A992.

W16 x 26 W16 x 26

It

W 8 x 40

W16 x 26 B W16 x26

24%e 24 ft

P5.20
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21. If the structure described in Problem 20 is an
unbraced frame, determine the effective length and
compressive strength as requested in Problem 20.

22. A W12x136 column is shown in Figure P5.22
with end conditions that approximate ideal
conditions. Using the recommended. approximate
values from Commentary Table C-A-7.1, determine
the effective lengths for the y-axis and the X-axis.
Which effective length will control the column

strength?
~T
18 ft
r
P5.22

23. A W12%96 column is shown in Figure P5.23 with
end conditions«that approximate ideal conditions.
Using the tecommended approximate values from
Commentary Table C-A-7.1, determine the effective
lengths for the y-axis and the x-axis. Which effective
length'will control the column strength?

Z Z

26 ft

P5.23
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24, A W10x54 column with an effective length of 30
ft for both axes is called upon to carry a compressive
dead load of 80 kips and a compressive live load of
100 kips. Determine whether the column will support
the load by (a) LRFD and (b) ASD. Evaluate the
strength for (i) Fy = 50 ksi and (ii) Fy = 70 ksi.

25. A W14x257 A992 column in a building has
effective lengths of 16 ft for both axes. Determine
whether the column will carry a compressive dead
load of 800 kips and a compressive live load of 1100
kips by (a) LRFD and (b) ASD.

26. An A992 W12x53 is used as a column in a
building with an effective length for each axis of 15
ft. Determine whether the column will carry a

compressive dead load of 85 kips and a compressive
live load of 255 kips by (a) LRFD and (b) ASD.

27. An A992 W8x58 is used in a structure to support
a dead load of 60 kips and a live load of 100 kips.
The column has an effective length of 22 ft.
Determine whether the column will support the load
by (a) LRFD and (b) ASD.

28. An A992 W10x54 is used as a column in a
building with an effective length of 30 ft..Determine
whether the column will carry acompressive dead
load of 24 kips and a compressive live load of 72 kips
by (a) LRFD and (b) ASD.

29. An A992 W16x77 is used as a column in a
building to support a dead load of 130 kips and a live
load of 200 kips. The column effective length is 20 ft
for the y-axis and 30 ft for.the X-axis. Determine
whether the column will support the load by (a)
LRFD andi(b) ASD:

30. An A992:W21x111 is used as a column in a
building to support a dead load-of.120 kips.and a live
load of 300 kips. The column effective length is 22 ft
for the y-axis and 33 ft for the x-axis. Determine
whether the column will support the load by (a)
LRFD and (b) ASD.

31. An A992 W24x146 is used as a column in a
building to support a dead load of 245 kips and a live
load of 500 kips. The column has an effective length
about the y-axis of 18 ft and an effective length about
the X-axis of 36 ft. Determine whether the column
will support the load by (a) LRFD and (b) ASD.

32. An AS500 Gr. C HSS7x7x1/2 is used as a
column to support a dead load.of 175 kips and a live
load of 100 kips. The column hasian effective length
of 10 ft. Determine whether the' column will support
the load by (a) LRFD and (b) ASD.

33. For the W10x77 column with bracing and end
conditions shewn in Figure P5.33, determine the
theoretical effective length for each axis and identify
the axis that will limit the column strength.

88 10 fi
— | —
- J|—— —
14 ft 10 ft
— |
—J|CaR- —Si
] ft 10 ft
;;‘é// :é;/-/
H T
P5.33

34. For the W8x24 column with bracing and end
conditions shown in Figure P5.34, determine the
theoretical effective length for each axis and identify
the axis that will limit the column strength.
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35. A W10x100 column with end conditions and
bracing is shown in Figure P5.35. Determine the least
theoretical bracing and its location about the y-axis,
in order that the y-axis not control the strength of the

column.
0
Ve

201t

H L
P5.35

36. A/W14x176 column with end conditions and
bracing is shown in Figure P5.36. Determine the least
theoretical bracing and its location about the y-axis,
in order that.the y-axis not.control the strength of the
column.
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! Pl/ //*P
Y. Y

A

>0
I_
>0

P5.36

37. A W12x72 column is an exterior 2™ story column
(gridline A) with strong_ axis buckling in the plane of
the frame in an unbraced multi-story frame. The
column below issalso a WI12x72. Beams and
dimensions are’ as shown in Figure P5.37.
Determine the.effective length for this condition and
the corresponding compressive strength by (a) LRFD
and (b) ASD. All steel is A992.

Do § v §

WI16%26
i
15 ft
1 W16%26 W18x35
i
15 ft
| I —1 —1
- 30 fi — 40 fi -
P5.37

38. A W12x72 column is an exterior 2" story column
(at gridline C) with strong axis buckling in the plane
of the frame in an unbraced multi-story frame. The
column below is also a WI12x72. Beams and
dimensions are as shown in Figure P5.37.
Determine the effective length for this condition and
the corresponding compressive strength by (a) LRFD
and (b) ASD. All steel is A992.
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39. A W12x72 column is an exterior 1% story column
(at gridline C) with strong axis buckling in the plane
of the frame in an unbraced multi-story frame. The
column above is also a WI12x72. Beams and
dimensions are as shown in Figure P5.37. Using the
AISC Commentary recommended stiffness, G, for
the base of a fixed base column, determine the
effective length for this condition and the
corresponding compressive strength by (a) LRFD and
(b) ASD. All steel is A992.

40. A W12x72 column is an interior 2" story column
(at gridline B) with strong axis buckling in the plane
of the frame in an unbraced multi-story frame. The
column below is also a WI12x72. Beams and
dimensions are as shown in Figure P5.37.
Determine the effective length for this condition and
the corresponding compressive strength by (a) LRFD
and (b) ASD. All steel is A992.

41. A W12x72 column is an interior 1* story column
(at gridline B) with strong axis buckling in the plane
of the frame in an unbraced multi-story frame. The
column above is also a WI12x72. Beams and
dimensions are as shown in Figure P5.37. . Using the
AISC Commentary recommended stiffness, G, for
the base of a fixed base column, determine the
effective length for this condition and. the
corresponding compressive strength by (a) LRFDand
(b) ASD. All steel is A992.

42. Repeat Problem 39 if the. column support were
given as a pin.

43. Repeat Problem41 if the column support were
given as a pin.

44. A<W12x50 column is an interior column with
strong axis-buckling in the plane of the frame in an
unbraced multi-story frame. The.columns:above and
below are also W12x50. The beams framing in at the
top are W16%31 and those at the bottom are W16x40.
The columns are 14 ft and the beam span is 25 ft. The
column carries a dead load of 75 kips and a live load
of 150 kips. Determine the inelastic effective length
for this condition and the corresponding compressive
strength by{(a) LRFD and (b) ASD. All steel is A992.

45. Select the least-weight W12 A992 column to
carry a live load of 130 kips and a dead load of 100

kips with an effective length about both axes of 15 ft
by (a) LRFD and (b) ASD.

46. Seclect the least-weight W14 A992 column to
carry a dead load of 200 kips and a live load of 600
kips if the effective length about both axes is 22 ft by
(a) LRFD and (b) ASD.

47. Select the least-weight W10 A992 column to
carry a dead load of 80 kips andra live load of 280
kips with an effective length about both axes of 15 ft
by (a) LRFD and (b) ASD.

48. Select the least-weight W8 A992 column to carry
a dead load of20 kips and a live load of 50 kips with
an effectiveslength about both axes of 25 ft by«(a)
LRFD and (b)‘ASD.

49. Select the'least-weight W6 A992 columnito carry
a dead load-of 12 kips and a live load of 36 kips with
an effective length about both axes of 8 ft by (a)
LRED and (b) ASD.

50. Select the least=weight W8 A992 column to carry
a dead load of 13 kips anda'live load of 39 kips with
an effective length about both axes of 14 ft by (a)
LRFD and (b) ASD.

51. A column with pin ends for both axes must be
selected to carry a compressive dead load of 95 kips
and a compressive live load of 285 kips. The column
is_14 ft long and is in a braced frame. Select the
lightest-weight W12 to support this load by (a) LRFD
and (b) ASD.

52. If the column in Problem 48 had an effective
length of 32 ft, select the lightest-weight W12 to
support this load by (a) LRFD and (b) ASD.

53. A W14 A992 column must support a dead load of
80 kips and a live load of 300 kips. The column is 22
ft long and has end conditions that approximate the
ideal conditions of a fixed support at one end and a
pin support at the other. Select the lightest-weight
W14 to support this load by (a) LRFD and (b) ASD.

54. Select the least-weight W8 A992 column to
support a dead load of 170 kips with an effective
length of 16 ft by (a) LRFD and (b) ASD.



55. A column with an effective length of 21 ft must
support a dead load of 120 kips, a live load of 175
kips, and a wind load of 84 kips. Select the lightest
W14 A992 member to support the load by (a) LRFD
and (b) ASD.

56. A W14x99 A992 column is 20 ft long, pinned at
each end, and braced at mid-height to prevent lateral
movement for buckling about the y-axis. However,
the y-axis bracing is not adequate to resist torsion.
Considering flexural and torsional buckling,
determine the nominal strength of this compression
member.

57. An A36 single-angle compression web member
of a truss is 10 ft long and attached to gusset plates
through the same leg at each end with a minimum of
two bolts. The member must carry a dead load of 8
kips and a live load of 10 kips. Select the least-weight
equal leg angle to carry this load by (a) LRFD and (b)
ASD.

58. If the compression web member of Problem 57
were loaded concentrically, determine the least-
weight single angle to carry the load by.(a) LRFD
and (b) ASD.

59. Determine the web and flange width-to-thickness
ratios and determine if a Wi14%x43 A913 Gr 70
compression member requires consideration as a
slender element member.

60. Determine the web and flange width-to-thickness
ratios and determine if a W8x10 A992 compression
member requirés consideration as a slender element
member.

61. A“W16%36 A992 compression. member has a
slender web ‘when_‘used in uniform compression.
Determine the available strength-by (a) LRFD and (b)
ASD when the effective length'is, (1) 6 ftand (ii) 12
ft.

62. The W14x43 is the.only A992 column shown in
the 'Manual column tables that has a slender web.
Determine the available strength for this column if
the effective length is. 8 ft and show whether the
slender web impacts that strength by (a) LRFD and
(b) ASD.
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63. Determine the available strength of a WT6x25
A992 steel compression chord of a truss with
effective length Lo = 14 ft. Consider the member
braced laterally and torsionally at its ends only.
Determine by (a) LRFD and (b) ASD.

64. Determine the available strength of a WT12x125
A992 steel column with effectiveclength L. = 18 ft.
Consider the member braced laterally and torsionally
at its ends only. Determine by (a) LRFD and (b)
ASD.

65. Determine the. available strength of a C9x20
A992 steel compression. chord of a truss with
effective length; L. = 16 ft. Consider thesmember
braced laterally and: torsionally at its ends only.
Determine by(a) LRFD and (b) ASD.

66. Determine the available strength. of an A572 Gr
50,20t long, 2L.6x4x5/8 double-angle.compression
member in a planar truss. The angles are long legs
back-to-back with a 3/8 in. gap. The angles are
welded at each end to a gusset plate and along the
length at two intermediate points with a spacing of 80
in. Determine the (a) design strength by LRFD and
(b) allowable-strength by ASD. Compare the results
to that found in Manual Table 4-9.

67. Determine the available strength of an A572 Gr
50,0 15 ft long, 2L6x3-1/2x1/2 double-angle
compression member in a planar truss. The angles
are long legs back-to-back with a 3/8 in. gap. The
angles are connected with pretensioned bolts at each
end to a gusset plate and along the length at two
intermediate points with snug-tight bolts at a spacing
of 60 in. Determine the (a) design strength by LRFD
and (b) allowable strength by ASD. Compare the
results to that found in Manual Table 4-9 and explain
why they differ.

68. Determine the available strength of an A572 Gr
50, 18 ft long, 2L.3x3x1/2 double-angle compression
member in a planar truss. The angles have a back-to-
back gap of 3/8 in. The angles are welded at each end
to a gusset plate and along the length at two
intermediate points with a spacing of 72 in.
Determine the (a) design strength by LRFD and (b)
allowable strength by ASD. Compare the results to
that found in Manual Table 4-9.
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69. Redo Problem 68 if the intermediate points are v: The column on the edge at the
connected with snug-tight bolts and compare the intersection of lines 4 and A that supports
results to Problem 68. eight floor levels plus the roof.
vi:  The interior column at the intersection
Multi-Chapter Problems of line 4 and the point between lines C and
70. Using the framing plan shown in Figure P5.70 D that supports three floor levels plus the
(presented earlier as Figure 2.9), design the columns roof.
marked 4 and 5. This is the same structure used in
Section 2.5, where load calculations with live load | i il 16"
reductions were discussed. Those calculations can be 1 1 T el nrrve|| T
reused here. Load case 2 for dead plus live load is to w 2
be considered. The building is an office building with 1—|—®
a nominal live load of 50 pounds per square foot (psf) ; : Ay
and a calculated dead load of 70 psf.
99 - 1< ©
. : 141 i’l\ v [ ’,4'
4: Interior column D-2 regardless of deck i N
span direction Y )
5: Exterior column D-4 regardless of deck 24/
span direction g N 3 _i_@
::T(ﬂi24’——|-—24'——|——’4 fmfay —-|-—24'——|—-24'+ it 1767
Design for column length L = 14 ft and K = 1.0 using @) ® 0 @ ® @) ®
(a) LRFD and (b) ASD. P5.71
I I I I I T® 72. Integrated Design Project. Using the gravity
| ] | | /l{ | 204t column loads determined”in Chapter 2, design the
I I I I I —*—@ gravity-only.columns. Design columns as single-
‘ | |3 jé | 20 ft story members. (It is often more economical to use
I T T I I ©) multi-story columns because of construction costs.)
| | l 5 20 ft Select the final columns so that they are two-story
1 T T - T i@ from below grade to the second floor, two-story from
I ‘ | iI/ the second floor to the fourth floor, and then use a
[ 40 ft | 404t g 30 fr—===30 ft single-story cplumn to support. the roof.
@ ® © 0) ® Demgn the columns in the braced frame for
P5.70 the gravity loads determined in Chapter 2 and the

wind load determined in Chapter 4. Remember that
the wind load must be considered to act in two
directions, so use the largest compression forces from
wind to combine with the gravity loads.

Using the wind load analysis from Chapter
4, design all the braces as compression members.
Compare the tension design with the compression
design and select the appropriate final members.

71. The framing plan shown in Figure P5.71.is the
same as the one shown in Figure P2.24 for an 18-
story office building. It must support a floor.and roof
dead loadof 80 psf and a floor live load of 50 psfand
a roof live load of 30 psf. In all casesy the decking
spans ‘in a direction from line A toward line E.
Determine the required axial strength for the columns
and design the columns-as.required below for (a)
design by LRFD and (b) design by ASD. The
required axial<load. strengths were determined in
Problem 24.0f Chapter 2. Use a story height of 13.5 ft
in a braced frame so that K = 1.0.

iv: The.column at the corner on lines 1 and

E that supports eight floor levels plus the

roof.



