ARTICLES

For a full, up-to-date list of publications, including book chapters, reports, and conference proceedings, please see my GOOGLE SCHOLAR and/or my RESEARCH GATE. Advised or co-advised students' names are underlined.

 

Montgomery, J., Wartman, J., Reed, A. N., Gallant, A. P., Hutabarat, D., and Mason, H. B. (2021). Field reconnaissance data from GEER investigation of the 2018 MW 7.5 Palu-Donggala earthquake, Data in Brief 34, 106742-1-11. 10.1016/j.dib.2021.106742

 

Mason, H. B., Montgomery, J., Gallant, A. P., Hutabarat, D., Reed, A. N., Wartman, J., Irsyam, M., Simatupang, P. T., Alatas, I. M., Prakoso, W. A., Djarwadi, D., Hanifa, R., Rahardgo, P., Faizal, L., Harnanto, D. S., Kawanda, A., Himawan, A., and Yasin, W. (2021). East Palu Valley flowslides induced by the 2018 MW7.5 Palu-Donggala earthquake, Geomorphology 373, 107482-1-17. 10.1016/j.geomorph.2020.107482

 

Gallant, A. P., Montgomery, J., Mason, H. B., Hutabarat, D., Reed, A. N., Wartman, J., Irsyam, M., Simatupang, P. T., Alatas, I. M., Prakoso, W. A., Djarwadi, D., Hanifa, R., Rahardgo, P., Faizal, L., Harnanto, D. S., Kawanda, A., Himawan, A., and Yasin, W. (2020). The Sibalaya flowslide initiated by the 28 September 2018 MW7.5 Palu-Donggala, Indonesia earthquake, Landslides 17, 1925-1934. 10.1007/s10346-020-01354-1

 

Abdollahi, A. and Mason, H. B. (2020). Estimating tsunami-induced uplift pressure, Geotechnique Letters 10(2), 270-276. 10.1680/jgele.19.00104

 

Abdollahi, A. and Mason, H. B. (2020). Pore water pressure response during tsunami loading, Journal of Geotechnical and Geoenvironmental Engineering 146(3), 04020004-1-11. 10.1061/(ASCE)GT.1943-5606.0002205

 

Qiu, Y. and Mason, H. B. (2019). Pore water pressure response in fully saturated soil beds during earthquake-tsunami multi-hazards, Bulletin of the Seismological Society of America 109(5), 1785-1796. 10.1785/0120190031

 

Exton, M., Harry, S., Kutter, B., Mason, H. B., and Yeh, H. (2019). Simulating tsunami inundation and soil response in a large centrifuge, Scientific Reports 9, 11138. 10.1038/s41598-019-47512-x

 

Abdollahi, A. and Mason, H. B. (2019). Tsunami-induced pore water pressure response of unsaturated soil beds: Numerical formulation and experiments, Computers and Geotechnics 110, 19-27. 10.1016/j.compgeo.2019.02.012

 

Carey, T. J., Mason, H. B., Barbosa, A. R., and Scott, M. H. (2019). Multihazard earthquake and tsunami effects on soil-foundation-bridge systems, Journal of Bridge Engineering 24(4), 04019004. 10.1061/(ASCE)BE.1943-5592.0001353

 

Abdollahi, A. and Mason, H. B. (2019). Coupled seepage-deformation model for predicting pore-water pressure response during tsunami loading, Journal of Geotechnical and Geoenvironmental Engineering 145(3), 04019002. 10.1061/(ASCE)GT.1943-5606.0002012

 

Slocum, R. K., Adams, R. K., Buker, K., Hurwitz, D. S., Mason, H. B., Parrish, C. E., and Scott, M. H. (2018). Response spectrum devices for active learning in earthquake engineering education, HardwareX 4, e00032. 10.1016/j.ohx.2018.e00032

 

Mason, H. B., Hurwitz, D. S., Adams, R. K., Buker, K., Slocum, R. K., and Scott, M. H. (2018). Increasing student understanding of response spectra: An argument for the inductive learning approach, Earthquake Spectra 34(2), 459-469. 10.1193/040417EQS060O

 

Leshchinsky, B. A., Mason, H. B., Olsen, M. J., and Gillins, D. T. (2018). Lateral spreading within a limit equilibrium framework: Newmark sliding blocks with degrading yield accelerations, Geotechnique 68(8), 699-712. 10.1680/jgeot.16.P.292 DISCUSSION

 

Asimaki, D., Mohammadi, K., Mason, H. B., Adams, R. K., Rajaure, D., and Khadka, D. (2017). Observations and simulations of basin effects in the Kathmandu Valley during the 2015 Ghorka Earthquake sequence, Earthquake Spectra 33(S1), S35-S53. 10.1193/013117EQS022M

 

Hess, D. M., Leshchinsky, B. A., Bunn, M., Mason, H. B., and Olsen, M. J. (2017). A simplified three-dimensional shallow landslide susceptibility framework considering topography and seismicity, Landslides 14(5), 1677-1697. 10.1007/s10346-017-0810-2

 

Scott, M. H. and Mason, H. B. (2017). Constant-ductility response spectra for sequential earthquake and tsunami loading, Earthquake Engineering & Structural Dynamics 46(9), 1549-1554. 10.1002/eqe.2871

 

Mason, H. B. and Yeh, H. (2016). Sediment liquefaction: A pore-water pressure gradient point-of-view, Bulletin of the Seismological Society of America 106(4), 1908-1913. 10.1785/0120150296

 

Kraupa, T. J., Stuedlein, A. W., Mason, H. B., and Higgins, C. C. (2016). Engineered Ecoroof Systems: Geotechnical Considerations, Journal of Infrastructure Systems 22(3), 04016015. 10.1061/(ASCE)IS.1943-555X.0000302

 

Moss, R. E. S., Thompson, E. M., Kiefer, D. S., Tiwari, B., Hashash, Y. M. A., Acharya, I., Adhikari, B., Asimaki, D., Clahan, K. B., Collins, B. D., Dahal, S., Jibson, R. W., Khadka, D., MacDonald, A., Madugo, C. L. M., Mason, H. B., Pehlivan, M., Rayamajhi, D. and Uprety, S. (2015). Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal earthquake and aftershocks, Seismological Research Letters 86(6), 1514-1523. 10.1785/0220150158

 

Trombetta, N. W., Mason, H. B., Hutchinson, T. C., Zupan, J. D., Bray, J. D., and Kutter, B. L. (2015). Nonlinear soil-foundation-structure and structure-soil-structure interaction: Engineering demands, Journal of Structural Engineering 141(7), 04014177 10.1061/(ASCE)ST.1943-541X.0001127

 

Bolisetti, C., Whittaker, A. S., Mason, H. B., Almufti, I., and Willford, M. (2014). Linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures, Nuclear Engineering and Design 275, 107-121. j.nucengdes.2014.04.033

 

Yeh, H. and Mason, H. B. (2014). Sediment response to tsunami loading: Mechanisms and estimates, Geotechnique 64(2), 131-143. 10.1680/geot.13.P.033. CORRIGENDUM

 

Trombetta, N. W., Mason, H. B., Hutchinson, T. C., Zupan, J. D., Bray, J. D., and Kutter, B. L. (2014) Nonlinear soil-foundation-structure interaction: Centrifuge observations, Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 04013057.  10.1061/(ASCE)GT.1943-5606.0001074

 

Trombetta, N. W., Mason, H. B., Chen, Z., Hutchinson, T. C., Bray, J. D., and Kutter, B. L. (2013). Nonlinear dynamic foundation and frame structure response observed in geotechnical centrifuge experiments, Soil Dynamics and Earthquake Engineering 50, 117-133. 10.1016/j.soildyn.2013.02.010

 

Mason, H. B., Trombetta, N. W., Bray, J. D., Chen, Z., Hutchinson, T. C., and Kutter, B. L. (2013). Soil-foundation-structure interaction of shallowly embedded footings supporting inelastic frame structures, Soil Dynamics and Earthquake Engineering 48, 162-174. 10.1016/j.soildyn.2013.01.014

 

Chen, Z. Trombetta, N. W., Hutchinson, T. C., Mason, H. B., Bray, J. D., and Kutter, B. L. (2013). Seismic system identification for centrifuge-based nonlinear building models, Journal of Earthquake Engineering 17(4), 469-496. 10.1080/13632469.2012.762956

 

Cox, B. R., Boulanger, R. W., Tokimatsu, K., Wood, C., Abe, A., Ashford, S., Donahue, J., Ishihara, K., Kayen, R., Katsumata, K., Kishida, T., Kokusho, T., Mason, H. B., Moss, R., Stewart, J. P., Tohyama, K., and Zekkos, D. (2013). Liquefaction at strong motion stations and in Urayasu City during the 2011 Great East Japan Earthquake, Earthquake Spectra 29(S1), 55-80. 10.1193/1.4000110.

 

TEACHING

 

ENGR 211H: HONORS STATICS

Analysis of forces induced in structures and machines by various types of loading.

 

CE 373: GEOTECHNICAL ENGINEERING II

Application of fundamental soil mechanics principles to analyses of slope stability, retaining structures, and foundation support.

 

CE 577: STATIC AND DYNAMIC SOIL BEHAVIOR

An advanced coverage of volume change and strength behavior of soil. Specific course topics include effective stress, one-dimensional compression of soil, rate of soil consolidation, Mohr circle analysis, shear strength of sands, clays, and silts, and dynamic soil properties, strength, and testing.

 

CE 578: GEOTECHNICAL EARTHQUAKE ENGINEERING

Major course topics include engineering seismology, strong ground motion, seismic hazard analysis, soil dynamics, seismic site response, earthquake motion selection, liquefaction, and seismic slope stability. Attention will be given to earthquakes created by the Cascadia Subduction Zone.