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Introduction

The author presents an analysis of two algorithms based on the direct
differentiation method (DDM) for finite-element (FE) response
sensitivity analysis applied to FEmodels containing force-based frame
elements. The discussers would like to clarify some issues addressed
in the paper and correct somemisleading statementsmade in the paper.

Issue 1

The use of the terms consistent and inconsistent to characterize the
two formulations compared in the paper is incongruent with the
existing literature on FE response (e.g., Simo and Taylor 1985) and
response sensitivity analysis (e.g., Vidal et al. 1991; Conte et al.
2003), as well as in numerical analysis. In particular, a FE response
sensitivity algorithm is defined as consistent when it uses consistent
differentiation of the underlying FE response algorithm; i.e., the use
of algorithmic instead of continuum tangent operators and exact
analytical differentiation of the discrete equilibrium, compatibility,
and constitutive equations. In numerical analysis, consistency is
a property of a numerical method with respect to a continuous
problem, and it indicates that the discretized problem is a proper
discretization of the continuous problem. For example, a consistent
numerical method for partial differential equations ensures that the
discretization becomes exact as the mesh size tends to zero (Dxi,
Dt→ 0) (Mattheij and Molenaar 2002). However, the attributes of
consistent and inconsistent used in this paper relate to the propa-
gation of the round-off error in finite precision arithmetic; i.e., they
relate to an issue of numerical precision. Deviating from the termi-
nology established in the literature ismisleading and should be avoided.

Issue 2

As observed by the author, the two formulations compared in the
paper are equivalent in exact arithmetic. Indeed, these two for-
mulations are based on the exact analytical differentiation of the
same discrete equations of equilibrium, compatibility, and constitutive
models belonging to the force-based frame element. Themathematical
equivalence of the two formulations can be shown analytically. Thus,
both formulations are consistent based on the established terminology
and the statement that only one of the formulations is consistent with
the force-based response equations is incorrect.

Issue 3

Asignificant reduction of the condition number ofmatrixS in Eq. (23)
of the paper can be obtained simply by premultiplying the trailing
NBF(53) rows of Eq. (23) by the current element stiffness matrix
kð33 3Þ; i.e., by rewriting Eq. (23) as2
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In this discussion, the formulation presented in Scott et al. (2004) is
referred to asMethod I, whereas the formulation developed byConte
et al. (2004) is referred to as Method II-Unscaled and as Method II-
Scaled when Eq. (23) of the paper is replaced by Eq. (1). Through
a simple algebraic manipulation, Eq. (1) has a condition number
similar to that obtained from the equality constrained least-square
approach presented in Appendix I of the paper.

Issue 4

Most of the conclusions drawn in the paper are based only on the
condition numbers of the linear system of equations arising in the FE
response sensitivity computation using the two algorithms consid-
ered. Although the condition number provides an upper bound of the
potential error amplification in solving the linear system of equa-
tionsAx5 b (Cook et al. 2002), this upper bound usually drastically
overestimates the actual error, unless vector b is proportional to the
highest eigenvector (i.e., corresponding to the largest eigenvalue) of
matrix A and its perturbation (or error) Db is proportional to the
lowest eigenvector (i.e., corresponding to the smallest eigenvalue)
of matrix A (Haftka 1990). The joint occurrence of these two con-
ditions is very unlikely for the linear systems of equations to be
solved in Method II; i.e., Eq. (23) of the paper or Eq. (1). The per-
turbation analysis presented in the paper for a linear elastic simply
supported prismatic beam provides a better estimate of the possible
loss of accuracy. However, a perturbation analysis was not per-
formed in the paper for the nonlinear inelastic example considered.
Finally, a comparison of the FE response sensitivity results obtained
using the two algorithms of interest would arguably provide a more
direct andmore precise approach to determine conclusively whether
Method II suffers a significant relative loss of accuracy over Method
I. However, no such comparison was provided in the paper to
demonstrate decisively the claimed loss of accuracy for Method II.

Issues 3 and 4 are illustrated using the same two examples pre-
sented in the paper (i.e., linear elastic simply supported prismatic
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beam and nonlinear inelastic RC column) analyzed using FedeasLab
(Filippou and Constantinides 2004) in which Method I, Method
II-Unscaled, and Method II-Scaled were implemented by the dis-
cussers. Fig. 1 shows the condition numbers corresponding to
Method I, Method II-Unscaled, and Method II-Scaled for a linear-
elastic prismatic frame element with varying radii of gyration r, and
E5 2:03 108 kPa, A5 0:01 m2, and L5 8:0 m. Fig. 2 plots the
results of a perturbation analysis performed for Method II (both un-
scaled and scaled) according to Eq. (31) of the paper. It is observed
that, for this example, the condition number corresponding toMethod
II-Scaled decreases from [1011e1013] for Method II-Unscaled to
[106e107], and the loss of accuracy forMethod II-Scaled is negligible
(i.e., zero digit lost for each of the 13 equations considered, where
NNSR1NBF 5 53 21 35 13, in which N5 5 is the number of
Gauss-Lobatto points, NSR5 2 is the number of section forces, and
NBF 5 3 is the number of element basic forces). Fig. 3 shows the
condition numbers forMethod I,Method II-Unscaled, andMethod II-
Scaled as a function of the horizontal tip displacement, D, of the
nonlinear RC cantilever column. Fig. 4 shows the maximum number

of digits lost over all 11 equations (NNSR1NBF 5 43 21 35 11) as
a function of D for both Method II-Unscaled and Method II-Scaled.
These results were obtained using perturbation analysis. Also in this
case, Method II-Scaled results in significantly smaller condition
numbers than Method II-Unscaled and in a negligible loss of accu-
racy. The inset in Fig. 4 provides the pushover curve relating the
horizontal force, P, to D for the same RC cantilever column. Both
the FE response (see the inset in Fig. 4) and condition numbers (see
Fig. 3) are very similar to those presented in the paper. The small
differences observed are most likely a result of the use of material
constitutive models and fiber section discretization that are different
from those adopted by the author to model the same RC column.
Finally, Fig. 5 plots the normalized sensitivity of D to the yield
strength, fy, of the reinforcement steel (i.e., ∂D=∂fy 3 fy=D) as
a function of D for the three methods considered in this discussion. It
was verified that the three FE response sensitivity curves coincide in
double precision. A zoom view of these sensitivity results is also
provided in the inset of Fig. 5.

It is worth mentioning that the discussers have utilized Method
II-Unscaled in numerous studies for various application examples

Fig. 1. Condition numbers of various force-based response sensitivity
formulations for a linear elastic prismatic frame element with varying
radii of gyration and E5 2:03 108 kPa, A5 0:01 m2, and L5 8:0 m

Fig. 2. Digits lost in Method II estimated using perturbation analysis:
linear elastic prismatic frame element with E5 2:03 108 kPa;
A5 0:01 m2; L5 8:0 m; r2 5 0:04 m2; number of integration points
N5 5; sensitivity parameter L 5 element length

Fig. 3.RC column example: condition numbers of various force-based
response sensitivity formulations

Fig. 4. RC column example: maximum number of digits lost over
all equations using perturbation analysis (inset: load-displacement
response)
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and have not encountered any case in which the potential loss of
accuracy predicted by this paper has actually taken place.
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The author would like to thank the discussers for their interest in
the original paper and for addressing numerical issues related to

response sensitivity analysis using force-based frame finite ele-
ments. The discussers introduced terminology forMethod I,Method
II-unscaled, andMethod II-scaled that will be used herein. Method I
refers to the response sensitivity formulation presented by Scott et al.
(2004), and Method II-unscaled refers to the formulation of Conte
et al. (2004). The numerical algorithms for these two formulations
were compared in the original paper, and Method II-scaled was
presented in the discussion as a modified version of the Conte et al.
(2004) formulation. Responses to the four issues raised by the dis-
cussers follow.

Issue 1

The discussers noted that the consistent/inconsistent terminology
used with respect to the two formulations compared in the original
paper is incongruent with existing finite-element literature. In the
paper, Method I was termed consistent, because the element re-
sponse sensitivity is computed using only objects that are formed
in computing the ordinary response. This is in contrast toMethod II-
unscaled, which used an aggregation of these objects [Eq. (23)] not
seen in the ordinary response, resulting in its label as inconsistent.

Issue 2

As noted by the discussers, the mathematical equivalence of the two
formulations can be shown analytically. This was shown in the
original paper; however, the discussers once again bring up the se-
mantics of the consistent terminology with this issue. As pointed out
in the response to Issue 1, consistency in the original paper referred
to the similarity of the response sensitivity algorithm with the al-
gorithm required to compute the ordinary response.

Issue 3

The discussers multiply the trailing NBF rows of Eq. (23) in the
original paper by the basic stiffness matrix, k, leading to Eq. (1) in
the discussion, or Method II-scaled. This reduces the condition
number of the matrix originally proposed in Method II-unscaled
to the order of the equality-constrained least-squares approach
presented in Appendix I of the original paper. This is a welcome
modification toMethod II-unscaled; however, the condition number
of Method II-scaled remains much higher than that associated with
Method I.

Issue 4

The discussers state that most of the conclusions drawn in the
original paper are based only on the condition number of the matrix
in Eq. (23), which can severely overestimate the actual error. To
support this statement, the discussers cite an error analysis byHaftka
(1990) based on the proportionality of the right-hand side vector
and its perturbation to the eigenvectors that correspond to the highest
and lowest eigenvalues of the left-hand side matrix.

The analysis by Haftka (1990) was based on linear systems of
equations with a symmetric positive definite (SPD) left-hand side
matrix. An SPDmatrix has eigenvalues that are all real and positive;
however, neither of the matrices in question for Method II-unscaled
[Eq. (23) of the original paper] and Method II-scaled [Eq. (1) of the
discussion] is SPD. Furthermore, both of these matrices can have
complex eigenvalues under realistic scenarios where the structural
stiffness matrix is SPD.

Fig. 5.RC column example: normalized sensitivity ofDwith respect to
fy computed using various FE response sensitivity formulations for the
force-based element (inset: zoom view)
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Consider a force-based frame element of length L5 8 m with
fiveGauss-Lobatto points, where the axial andflexural responses are
uncoupled at the section level with E5 2. 0e5 MPa, A5 0:01 m2,
and I5 4e-4 m4. It is straightforward to show that when flexural
yielding occurs at any one of the five sections and the flexural
stiffness of that section is reduced to 0.001EI in an attempt
to simulate perfectly plastic behavior, the basic stiffness of the
element remains SPD. However, the resulting nonsymmetric
matrix of Method II-scaled computed at this element state pos-
sesses one pair of complex eigenvalues (0:041996 0:2797iwhen
yielding occurs at either end of the element). When the same
analysis is repeated with E defined equivalently as 200 GPa
instead of 2.0e5 MPa, three pairs of complex eigenvalues ap-
pear for the Method II-scaled matrix (16 i, 0:046 0:28i, and
0:0021126 0:008939i). The associated eigenvectors are also
complex.

The discussers show by perturbation analysis that there is not
a significant loss of accuracy for Method II-scaled compared with

Method I. However, it is unclear how the results presented byHaftka
(1990) relate to Method II-scaled when the matrix possesses com-
plex eigenvectors, because proportionality of the right-hand side
vector in Eq. (1) of the discussion to a complex vector is not possible.
The generalization of algorithmic analyses based on SPDmatrices to
problems with nonsymmetric matrices is misleading and should be
avoided.
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