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Analytical Sensitivity of Plastic Rotations
in Beam-Column Elements
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Abstract: Analytical sensitivity equations for the plastic rotation of beam-column finite elements are derived for reliability and optimi-
zation algorithms in structural engineering and for the assessment of plastic rotation sensitivity to uncertain design parameters and
modeling assumptions. The plastic rotation is defined by elastic unloading of element forces in a basic system, which makes the
corresponding sensitivity computations applicable to most material nonlinear beam-column formulations available in the literature. The
analytical response sensitivity is verified by finite differences then applied to a first-order reliability analysis of a steel subassemblage
where the performance function places a limit on plastic rotation.

DOI: 10.1061/�ASCE�0733-9445�2007�133:9�1341�

CE Database subject headings: Finite elements; Optimization; Plastic hinges; Seismic effects; Sensitivity analysis; Simulation
models; Structural reliability; Beam columns.
Introduction

The plastic rotation of a beam-column member is an important
engineering demand parameter in assessing the response and
damage of a structure due to earthquakes or other loads causing
the formation of plastic hinges. Performance-based seismic de-
sign and rehabilitation provisions place limits on plastic rotation
depending on the member type and the desired performance level
�FEMA 2000�. Extensive experimental and analytical research
has been conducted to correlate plastic rotation to structural dam-
age due to seismic loading �Tsai and Popov 1988; Engelhardt and
Husain 1993; SAC Joint Venture 1996; Roeder and Foutch 1996;
Gupta and Krawinkler 2000; Lee and Foutch 2002; Rodgers and
Mahin 2006�.

To characterize structural performance in a probabilistic set-
ting, applications in structural reliability, optimization, and sys-
tem identification require the sensitivity of the plastic rotation to
be computed when the performance function is defined in terms
of the plastic rotation of one or more of the structural members.
There are two approaches to compute the sensitivity of a struc-
tural response quantity with respect to an uncertain parameter.
The first approach is the finite difference method �FDM�, which is
inefficient because it requires a full reanalysis for each parameter
that characterizes the structural system. In addition, for small pa-
rameter perturbations, the FDM is prone to numerical round-off
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errors that lead to slow convergence of gradient-based algorithms.
A more efficient and accurate approach to sensitivity computa-
tions is the direct differentiation method �DDM�, where the gov-
erning equations of structural mechanics are differentiated in
closed-form and incorporated in the finite-element analysis
�Kleiber et al. 1997�.

Previous work in structural response sensitivity has focused on
computing the gradient of the nodal response �Zhang and Der
Kiureghian 1993; Franchin 2004; Scott et al. 2004; Haukaas and
Der Kiureghian 2005�. This note points out that it is straightfor-
ward to develop expressions for the sensitivity of plastic rotation
in beam-column finite elements, which is a response quantity de-
rived from the nodal response. The presentation begins with the
definition of plastic rotation of a beam-column element and its
direct differentiation to obtain analytical response sensitivity
equations. Numerical examples that verify the response sensitiv-
ity equations for plastic rotation and demonstrate their application
in a first-order reliability analysis conclude the presentation.

Structural Response Sensitivity

For a structural system under static equilibrium, the DDM com-
putes the sensitivity of the nodal response, �U /��, by the follow-
ing linear system of equations �Kleiber et al. 1997�:

KT

�U

��
=

�P f

��
− � �Pr

��
�

U
�1�

where �=parameter that describes an uncertain property of the
structural system and applied loading. The matrix KT=�Pr /�U
is the tangent stiffness of the structure. The right-hand side of
Eq. �1� is formed from the derivative of the applied load vector,
�P f /��, which is nonzero for only the parameters that represent
the external loads, and the conditional derivative of the resisting
force vector, ��Pr /���U, which is assembled from element contri-

butions by standard finite-element procedures. The conditional
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derivative of Pr represents the forces that must be applied to the
structure to keep the nodal displacements, U, fixed due to changes
in the parameter �. As described by Zhang and Der Kiureghian
�1993�, path-dependent response sensitivity analysis is a two-
phase process requiring the assembly of Eq. �1� in phase one
followed by the updating of element sensitivity history variables
using �U /�� in phase two. This two-phase process is repeated for
each parameter of the structural system. The extension of Eq. �1�
to include inertial and damping forces for the case of dynamic
equilibrium is straightforward �Franchin 2004�.

Plastic Rotation Response Sensitivity

The beam-column finite-element models considered in this note
are formulated in a simply supported basic system, as described
by Filippou and Fenves �2004� and depicted in Fig. 1�a�. The
element response is described in terms of the element deforma-
tions, v=v���, and the corresponding basic forces, q=q�v��� ,��.
It is possible to use a displacement-based, force-based, or mixed
formulation to compute the basic forces, as summarized by Ale-
mdar and White �2005�. Regardless of the numerical formulation,
the tangent stiffness matrix of the element in the basic system is
the partial derivative of the basic forces with respect to the defor-
mations, k=�q /�v. At every section along the element there are
section deformations, e=e���, compatible with the element defor-
mations; the corresponding section forces, s=s�e��� ,��, in equi-
librium with the basic forces; and the tangent stiffness matrix,
ks=�s /�e.

To define the plastic rotation of a beam-column element, the
deformations are decomposed into elastic and plastic components:
v=ve+vp. From this decomposition, the plastic deformation is the
difference between the total deformation and the elastic compo-
nent. A common assumption is the elastic component of deforma-
tions represents elastic unloading of the basic forces

vp = v − feq �2�

where the matrix fe=elastic flexibility of the element, which is
assembled easily from the elastic properties, cross-section dimen-
sions, and length of the element. A graphical representation of
Eq. �2� is shown in Fig. 1�b�, where the element unloads to
q=0 using the elastic flexibility. Alternative definitions of the
elastic component of deformation for the purpose of computing
the plastic rotation are possible, including those that account for

Fig. 1. Basic system of beam-column element: �a� basic forces and d
using the elastic stiffness
degradation of the unloading stiffness.
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To determine the gradient of the plastic rotation, Eq. �2� is
differentiated with respect to a parameter, �, that represents an
uncertain property of the structural system

�vp

��
=

�v

��
− fe�q

��
−

�fe

��
q �3�

By the chain rule of differentiation, the derivative of the basic
forces, �q /��=k�v /��+ ��q /���v, changes Eq. �3� to

�vp

��
=

�v

��
− fe�k

�v

��
+ � �q

��
�

v
� −

�fe

��
q �4�

The collection of terms in Eq. �4� that multiply the vector �v /��
gives the following expression for the gradient of the plastic
deformation:

�vp

��
= �I − fek�

�v

��
− fe� �q

��
�

v
−

�fe

��
q �5�

The derivative of the element deformations, �v /��, is related to
the derivative of the nodal displacement vector, �U /��, according
to the transformation of nodal displacements from the global
coordinate system to the basic system of the element. The deriva-
tive of the elastic flexibility matrix, �fe /��, is equal to zero when
� does not represent the elastic properties, cross-section dimen-
sions, or length of the element. The conditional derivative of
the basic force vector, ��q /���v, depends on the element formu-
lation for nonlinear material response within the basic system.
Thus, Eq. �5� applies to any beam-column formulation where a
basic system encapsulates the numerical implementation of the
equilibrium, compatibility, and constitutive equations that govern
the element response. The computation of ��q /���v is demon-
strated in the following section for the force-based formulation.

Force-Based Element Response Sensitivity

In the force-based formulation �Ciampi and Carlesimo 1986;
Spacone et al. 1996�, element equilibrium is satisfied in strong
form

s�x� = b�x�q �6�

The interpolation matrix relates section forces to forces in the
basic system

b�x� = �1 0 0 � �7�

ations; �b� plastic deformations defined by unloading of basic forces
eform
0 x/L − 1 x/L
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Without loss of generality, member loads are omitted from
Eq. �6�. From the principle of virtual forces, compatibility be-
tween section and element deformations is satisfied in integral
form and evaluated by numerical integration

v = 	
i=1

Np

bT�xi�e�xi�wi �8�

where xi and wi are the location and weight, respectively, of the
Np integration points in the element domain x= 
0,L�. The force-
based state determination procedure to compute basic forces from
element deformations is summarized by Neuenhofer and Filippou
�1997�.

The development of response sensitivity for force-based ele-
ments follows the presentation in Scott et al. �2004�, where the
derivatives of the equilibrium and compatibility relationships are
combined to give the conditional derivative of the basic force
vector. To this end, Eqs. �6� and �8� are differentiated with respect
to �

�s

��
= b

�q

��
+

�b

��
q �9a�

�v
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= 	

i=1

Np �bT �e

��
+
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��
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i=1

Np

bTe
�wi

��
�9b�

Using the derivative of the basic force vector, �q /��=�k�v /��
+�q /���v, and the derivative of the section force vector,
�s /��= �ks�e /��+�s /���e, the expansion of Eq. �9a� and subse-
quent solution for the derivative of the section deformations gives

�e

��
= fsbk

�v

��
+ fs�b� �q

��
�

v
+

�b

��
q − � �s

��
�

e
� �10�

where fs=ks
−1=section flexibility matrix. Eq. �10� is then substi-

tuted into Eq. �9b� and the solution for the conditional derivative
of the basic forces gives

� �q

��
�

v
= k	

i=1

Np

bTfs�� �s

��
�

e
−

�b

��
q�wi − k	

i=1

Np � �bT

��
e�i + bTe

�wi

��
�

�11�

The conditional derivative of the section force vector, ��s /���e, is
determined from the material properties and cross-section dimen-
sions at each integration point along the element. The terms
�b /�� and �wi /�� incorporate the derivative of the element
length, as well as the derivatives of the locations and weights of
the element integration points. When representing distributed
plasticity in force-based elements through Gauss-Lobatto quadra-
ture, the derivatives of the integration point locations and weights
are zero; however, these derivatives may be nonzero when a pre-
scribed hinge length defines the location and weight of the inte-
gration points in plastic hinge regions �Addessi and Ciampi 2002;
Scott and Fenves 2006�.

Numerical Examples

The response sensitivity equations summarized in this paper
have been implemented in the OpenSees software framework
�McKenna et al. 2000� with extensions for sensitivity and reliabil-
ity analysis �Haukaas 2003�. An adaptation of specimen PN3
�Popov et al. 1996�, a steel subassemblage with a web-bolted,

flange-welded moment connection, from Phase 1 of the SAC
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Steel Project �SAC Joint Venture 1996� is used to verify and
demonstrate the application of the plastic rotation sensitivity
equations. The subassemblage details for specimen PN3 are
shown in Fig. 2. Detailed finite-element analyses of specimen
PN3 were conducted by El-Tawil et al. �1999� to assess the non-
linear behavior of the panel zone region.

A single force-based element represents the beam member of
specimen PN3. Nonlinear material response in the beam is con-
fined to a plastic hinge region of length equal to the beam depth.
Although this subassemblage is determinate and an exact plastic
hinge length can be computed from static equilibrium, the as-
sumption that the hinge length is equal to the beam depth is
common when simulating the response of indeterminate steel
structures. The beam cross section is discretized into fibers whose
uniaxial stress–strain behavior is bilinear with 5% kinematic
strain hardening. Two Gauss-Radau integration points are located
in the plastic hinge region to capture the spread of plasticity
�Scott and Fenves 2006�. The beam is loaded at its tip through
one cycle of peak magnitude 1,000 kN. Material properties and
section dimensions are listed in Table 1.

Table 1. Random Variable Distribution properties Assigned to the
Uncertain Parameters in Reliability Analysis of Specimen PN3;
Parameter Values at Most Probable Failure Point �MPP�; and Importance
Measures Computed from the Analysis

Parameter Distribution COV Mean MPP Importance

Yield stress, fy

�MPa�
Lognormal 0.10 250.0 208.9 −0.7924

Beam depth, db

�mm�
Normal 0.02 910.6 892.1 −0.4564

Plastic hinge length, lp

�mm�
Normal 0.20 910.6 1044 0.3042

Flange width, bf

�mm�
Normal 0.02 304.2 301.7 −0.1902

Flange thickness, tf

�mm�
Normal 0.02 23.88 23.69 −0.1711

Web thickness, tw

�mm�
Normal 0.02 15.88 15.82 −0.07606

Fig. 2. Analytical model of test specimen PN3 �adapted from Popov
et al. 1996�
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Verification of Plastic Rotation Sensitivity

The equations for the sensitivity of plastic rotation are validated
by comparison with the finite difference computation

lim
�→0

vp�� + ��� − vp���
��

=
�vp

��
�12�

As the parameter perturbation � approaches zero, the finite differ-
ence computations should converge to the analytical sensitivity,
thereby validating the DDM implementation. The nonlinear static
analysis of specimen PN3 shows the plastic rotation response
sensitivity equations satisfy Eq. �12� for path-dependent behavior
under cyclic loading.

The moment–rotation and moment–plastic rotation response
for the beam member are shown in Fig. 3. The sensitivity of the
plastic rotation response is computed with respect to the beam
depth, db, and yield stress, fy, in Fig. 4. For each parameter, the
finite difference computation for the plastic rotation sensitivity
converges to that obtained by the DDM as the parameter pertur-
bation decreases. In addition to verifying the DDM computations,
the results shown in Fig. 4 indicate both the yield stress and
the beam depth are resistance variables because an increase in
either of these parameters will reduce the magnitude of the plastic
rotation.

Reliability Analysis of Steel Subassemblage

A first-order reliability �FORM� analysis is conducted to assess
the effect of uncertain parameters on the computed response of
specimen PN3 �see Fig. 2�. The steel yield stress and cross-
section dimensions of the beam are treated as significant sources
of aleatory uncertainty, whereas the assumed plastic hinge length
contributes to epistemic uncertainty, giving a total of six random
variables. The distribution, mean, and coefficient of variation as-

Fig. 3. Computed response for analytical model of specimen PN3:
�a� tip load–displacement; �b� beam moment–plastic rotation

Fig. 4. Steel beam plastic rotation response sensitivity with respect
to: �a� beam depth; �b� the yield stress computed by the direct
differentiation and finite difference methods
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signed to each random variable are shown in Table 1. All random
variables are uncorrelated and the applied load is assumed deter-
ministic. Based on reliability analyses of steel frame structures
�Haukaas and Scott 2006�, the hardening ratio and elastic modu-
lus of the steel material rank low in importance and are thus
assumed to be deterministic.

The performance function for this analysis places a 0.025 rad
limit on the plastic rotation of the beam after one load cycle

g = 0.025 − �p �rad� �13�

More precise performance functions for the plastic rotation can be
derived from statistical data compiled by Roeder �2002� for vari-
ous connection types. For this performance function, however, the
most probable failure point in the FORM analysis is found after
eight evaluations of the function and its gradient with respect to
each random variable. The resulting reliability index is �=2.229,
which corresponds to a 1.29% probability that the beam plastic
rotation will exceed 0.025 rad given the uncertain properties of
the random variables. The MPP values and importance factors
�� values� of each random variable are listed in Table 1 and the
plastic rotation response at the mean and MPP values is shown in
Fig. 5. The steel yield stress and beam depth rank highest in
importance and thus have the greatest influence on the system
performance. The positive value of importance associated with
the plastic hinge length indicates the model should be updated
with a longer hinge length in order to better capture the spread of
plasticity.

Conclusions

Analytical equations have been derived for response sensitivity
analysis and gradient-based reliability and optimization algo-
rithms in structural engineering where the performance function
is defined in terms of plastic rotation. Direct differentiation of
plastic rotation defined by elastic unloading provides the neces-
sary response sensitivity equations, which are verified for the
force-based element formulation of nonlinear material response.
It is straightforward to extend the results of this work to defini-
tions of plastic rotation that account for stiffness degradation
and to alternative element formulations for nonlinear material
response. Further applications of this work include system reli-
ability analyses of frame structures where plastic rotation perfor-
mance functions are defined for each member and applications
where structural performance is optimized based on the plastic

Fig. 5. Computed moment–plastic rotation response for analytical
model of specimen PN3 using the mean and MPP values of the
random variables
rotation response of one or more members.
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Notation

The following symbols are used in this technical note:
b � section force interpolation matrix;
e � section deformation vector;
f � element flexibility matrix;

fe � elastic element flexibility matrix;
fs � section flexibility matrix;
k � element stiffness matrix in the basic system;

ks � section stiffness matrix;
lp � plastic hinge length;

Np � number of element integration points;
q � element basic force vector;
s � section force vector;
v � element deformation vector;

ve � element elastic deformation vector;
vp � element plastic deformation vector;
x � integration point location;
w � integration point weight;
� � uncertain parameter; and

�p � plastic rotation.
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