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Direct Differentiation of the Particle Finite-Element Method
for Fluid-Structure Interaction

Minjie Zhu' and Michael H. Scott, M.ASCE?

Abstract: Sensitivity analysis of fluid—structure interaction (FSI) provides an important tool for assessing the reliability and performance of
coastal infrastructure subjected to storm and tsunami hazards. As a preliminary step for gradient-based applications in reliability, optimi-
zation, system identification, and performance-based engineering of coastal infrastructure, the direct differentiation method (DDM) is applied
to FSI simulations using the particle finite-element method (PFEM). The DDM computes derivatives of FSI response with respect to uncertain
design and modeling parameters of the structural and fluid domains that are solved in a monolithic system via the PFEM. Geometric non-
linearity of the free surface fluid flow is considered in the governing equations of the DDM along with sensitivity of material and geometric
nonlinear response in the structural domain. The analytical derivatives of elemental matrices and vectors with respect to element properties are
evaluated and implemented in an open source finite element software framework. Examples involving both hydrostatic and hydrodynamic
loading show that the sensitivity of nodal displacements, pressures, and forces computed by the finite-difference method (FDM) converge to
the DDM for simple beam models as well as for a reinforced-concrete frame structure. DOI: 10.1061/(ASCE)ST.1943-541X.0001426.
© 2015 American Society of Civil Engineers.
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Introduction

Wave loads induced by tsunami and storm surge events can cause
significant damage to critical coastal infrastructure as observed in
recent natural disasters such as the 2011 Great East Japan earth-
quake and tsunami and the Superstorm Sandy hurricane of 2012
(Chock et al. 2013; McAllister 2014). Subsequent efforts to im-
prove design and mitigation strategies for structures subject to
similar hazards have increased efforts to refine fluid—structure in-
teraction (FSI) simulation capabilities. The modeling of wave loads
as static forces on a deformable body, or conversely as hydrody-
namic forces on a rigid body, may not provide accurate predictions
of structural response. To obtain accurate response for structural
displacements and forces, fluid-—structure interaction must be con-
sidered accounting for the kinematics and deformation of both the
structural and fluid domains. It is also imperative to assess the sen-
sitivity of structural response to stochastic wave loading and uncer-
tain structural properties. The sensitivity has important implications
for the design of coastal infrastructure and in assessing the prob-
ability of failure of buildings and bridges in tsunami and storm
events as part of an overarching performance-based engineering
framework (Chock et al. 2011). Sensitivity analysis is also impor-
tant for gradient-based applications such as reliability and optimi-
zation (Fujimura and Kiureghian 2007; Gu et al. 2012).

The simulation of fluid—structure interaction with incompress-
ible Newtonian fluid is one of the most challenging problems in
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computational fluid mechanics because the incompressibility
condition leads to numerical instability of the computed solution.
A large number of finite-element methods (FEM) have been devel-
oped for the computation of incompressible Navier-Stokes equations
using the Eulerian, Lagrangian, or Arbitrary Lagrangian-Eulerian
(ALE) formulations (Girault and Raviart 1986; Gunzburger 1989;
Baiges and Codina 2010; Radovitzky and Ortiz 1998; Tezduyar et al.
1992). The particle finite-element method (PFEM) (Ofate et al.
2004), has been shown to be an effective Lagrangian approach to
FSI because it uses the same Lagrangian formulation as structures.
A monolithic system of equations is created for the simultaneous
solution of the response in the fluid and structural domains via
the fractional step method (FSM). This alleviates the need to couple
disparate computational fluid and structural modules through a stag-
gered approach in order to simulate FSI response. Through the
monolithic approach, compatibility and equilibrium are satisfied
naturally along the interfaces between the fluid and structural
domains.

While the solution of FSI simulations via a monolithic system
has computational advantages in determining the structural re-
sponse, the sensitivity of this response to uncertain design and
modeling parameters is just as, if not more, important than the re-
sponse itself. As a standalone product, sensitivity analysis shows
the effect of modeling assumptions and uncertain properties on sys-
tem response, but it is also an important component to gradient-
based applications in reliability and optimization. There are two
methods for calculating the sensitivity of a simulated response.
The finite-difference method (FDM) repeats the simulation with
a perturbed value for each parameter and does not require addi-
tional implementation as perturbations and differencing can be
handled with preprocessing and postprocessing. The accuracy of
the resulting finite-difference approximation depends on the size
of the perturbation where the results are not accurate for large per-
turbations and are prone to numerical round-off error for very small
perturbations. Due to the need for repeated simulations, the FDM
approach can become inefficient when the model is large, which is
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common for FSI simulations, and when there is a large number of
parameters.

A more accurate approach to gradient computations is the direct
differentiation method (DDM), where derivatives of the governing
equations are implemented alongside the equations that govern the
simulated response. At the one-time expense of derivation and im-
plementation, as well as additional storage, the DDM calculates the
response sensitivity efficiently as the simulation proceeds. This
eliminates the need for the repeated simulations that are required
for finite-difference calculation of the gradients. For a single
parameter, the DDM generally requires one additional backward
substitution to compute the sensitivity at a computational cost pro-
portional to N2, where N is the number of model degrees of free-
dom. Finite-difference methods (FDMs) require a full reanalysis to
find the sensitivity with respect to each parameter at a cost propor-
tional to N, For large models and/or models with a large number of
parameters, the computational savings of the DDM over FDMs can
be significant. The DDM is also more accurate than the FDM be-
cause the sensitivity is computed using the same numerical algo-
rithm as the response, making it subject to only numerical precision
rather than round-off error. Analytical approaches to DDM sensi-
tivity analysis for structural response under mechanical loads have
been well developed (Kleiber et al. 1997) and extended to material
and geometric nonlinear formulations of frame-element response
(Scott et al. 2004; Conte et al. 2004) as well as frame-element
geometry and cross-section dimensions (Haukaas and Scott 2006;
Scott and Filippou 2007). The DDM has also been applied to com-
posites processing (Bebamzadeh et al. 2010) and fire attack on
structures (Guo and Jeffers 2014); however, its application to FSI
has not been addressed. This is partly due to the complexity of the
computation for the FSI response and the cumbersome nature of
staggered computational approaches.

The goal of this paper is to develop the DDM approach for com-
puting the sensitivity of PFEM fluid—structure interaction simula-
tions to uncertain design and modeling parameters of the fluid and
structure domains. The PFEM response analysis will be introduced,
including the governing equations, combined FSI discrete equa-
tions, and the fractional step method (FSM). Then, the DDM ap-
proach is applied to obtain the PFEM sensitivity equations for FSI,
including geometrically nonlinear terms due to large displacements
of the fluid particles. Examples include comparisons between
DDM and FDM solutions for PFEM sensitivity in simple beam
models, as well as applications to a prototypical coastal structure
with nonlinear material and geometric response.

PFEM Response Computations

This section provides a brief review of the equations that govern
FSI response using the PFEM. After applying finite-element tech-
niques, discrete algebraic equations are formed from solid elements
in the fluid domain and arbitrary line and solid elements in the
structural domain. The algebraic equations will be differentiated
in the following section for sensitivity analysis via the DDM.
Although the presentation will focus on a particular fluid element,
the methods described herein are generally applicable to any
element formulation.

Governing Equations

All particles or nodes in the fluid and structural domains satisfy the
governing differential equation of linear momentum
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where v; = velocity vector; o;; = Cauchy stress tensor; x; = current
position vector; b; = body acceleration vector; and p = solid
or fluid density.

Mass conservation for incompressible fluid flow is described by
the divergence of the velocity field being zero

ov;
0x;

=0 @)

The stress tensor can be decomposed into deviatoric and hydro-
static parts as

0jj = Sij —P5ij (3)

where 6;; = Kronecker delta; and p = fluid pressure. Assuming
Newtonian flow, the constitutive equation for the fluid response
is defined by

Sij = 2ué;; (4)

where the deviatoric stress tensor §;; is related to the strain rate &;;
in the fluid by the viscosity .

Due to the inf-sup or Ladyzenskaja-Babuska-Brezzi (LBB) con-
dition (Brezzi and Fortin 1991; Girault and Raviart 1986), for
incompressible flow, the velocity and pressure spaces have to be
modified in order to produce numerically-stable results. Donea
and Huerta (2003) summarize stabilization approaches based on
the use of bubble functions at the element level or artificial (pen-
alty) parameters at the element or global levels. The classic PFEM
uses the finite calculus method (FIC) to stabilize linear fluid ele-
ments (Ofiate et al. 2006). In the literature, the bubble function and
stabilized formulations have been shown to be equivalent (Bank
and Welfert 1990; Matsumoto 2005; Pierre 1995).

MINI Element

The MINI element uses a bubble node for velocity at the element
center of gravity to satisfy the inf-sup condition for incompressible
fluids (Arnold et al. 1984). Although there are more accurate ele-
ments, the MINI element has been used in many fluid simulations
(Lee et al. 2009; Gresho 1998) and it is easy to implement, making
it an ideal choice to demonstrate the DDM for the PFEM. The
element pressure field does not utilize the bubble node and is based
on linear interpolation from the nodal pressures

p® = Nip{+ Nop3 + N3p§ (5)
where p¢ = nodal pressures. The shape functions, N;, are equal to
the area coordinates, L;, for any point in the triangle

i=123 (6)

The total area of the triangle is A, and A; is the tributary area as
shown in Fig. 1(a). The shape functions used for the 2D MINI
element are similar to those used in a 3D formulation (Nakajima
and Kawahara 2010). The Jacobian, J, that describes the element
transformation from global coordinates to area coordinates is

J = x93 = x3y0 + X3y1 — X1y3 + X1y2 — X0y (7)

where x; and y; = current coordinates determined from the current
nodal displacements relative to the initial coordinates, x? and y?, at
the start of the simulation for each corner node
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Fig. 1. Nodal unknowns for the MINI element: (a) pressure nodes;
(b) velocity nodes

X3 = xg + u‘)is

y3 =08+ Uss (8)

xp ="+ upy, Xy = x93+ U,

yi=yFuly vy =)+ ufy,

where Uy = kth component of the displacement vector uf.
The fluid velocities, as shown in Fig. 1(b), are interpolated by

V= V1Y o Navhy + Navis o+ Ny ©)

where v¢, = nodeless variable defined as the difference between the
bubble velocity and the average velocity of the nodes

Vit TVt Vi

! (10)

Via =V~
The shape function, N, applied to the nodeless velocity vari-
able in Eq. (9) is defined in terms of the area coordinates

Nb :27L1L2L3 (11)

Using the shape functions for pressure and velocity in the MINI
formulation, the discrete equations for the fluid response at the
element level are

MSve — Gép© = F¢ (12)
Mjvi, — Gjp* = F} (13)
GS'v6 +Gylve, =0 (14)

where V;- = velocity vector; v;-4 is defined in Eq. (10); and p° =
pressure vector. The right-hand side contains viscous terms that
have been combined with the external force vector
Fi =F; —Kjv¢  F; =F; —Kjvy (15)
For the MINI element with shape functions based on area co-
ordinates, exact integration of the elemental matrices and vectors is
possible. Using the body force vector, b, and the element thickness,
t, and fluid density, p, exact integration yields F‘ comprised of 2 x
1 blocks and the 2 x 1 vector F¢

_ ptJ 9th
Fo) = [ Npav ="y = _
(F), = [ Nbav =7 / Nybav =22

(16)

where the subscript 7 is from 1 to 3. The form of the fluid viscous
matrix K} is similar to that for the stiffness matrix of a solid
element in the structure
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tJ
(K5, = /V BIDB,av = BIDB, (17)

where D = diag(2u,2p, 1) = constitutive matrix; and B; =
strain-velocity matrix defined by spatial derivatives of the shape
functions

ON;

Ox 0
ON;

dy Ox

The derivatives ON;/dx and ON,;/0y are calculated from the
element geometry

8N1:y2—y3 3N2:Y3—)’1 3N3:)’1—)’2
Ox J Ox J Ox J

(19)

and

aNl X‘;—Xz 8N2_.X1—X3 5N; x2—x1
Dy J ay  J 0y J

(20)

The fluid viscous matrix defined in Eq. (17) is uncoupled from
the viscous matrix for the bubble node (Zienkiewicz et al. 2005),
which is defined as

Kf;:/ve B/DB,dV
AN AR an,on,
81[11./ ox dy dx dy

Pl oo (o) (s
(21)

where the definition of B, is identical to Eq. (18), but contains
derivatives of N,.

After exact integration, the lumped fluid mass matrices M and
M, are uncoupled. Each 2 x 2 block of MY, the fluid mass matrix
for the element corner nodes, is

29
(M2) = / NNy + Ny + Na + Ny LdV = — pi T, (22)
.

120

where I, = the 2 x 2 identity matrix. Similar to the exact integra-
tion shown in Eq. (22) for the fluid mass matrix, the 2 x 2 mass
matrix for the bubble node is

207
Mi:/ pr(Nl+N2+N3+Nh)12dvz%ptjlz (23)
ve

The gradient operators for corner and bubble nodes are also
found by exact integration where each block is

(G9), = / B'mN,av = BTm,
o Jye 6

tJ
(GY), = /V B/mN,dV — —94—0BT (24)

where G§ = 6 x 3 matrix consisting of 2 x 1 blocks; (Gef)ij and

m = [110]" = selection vector; and G§ = 6 x 1 containing 2 x
1 blocks (Gj);.
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Numerical Time Integration

For efficient numerical time integration of the fluid response, the
nodeless variable, v, and its time derivative, must be removed
from the discrete fluid-element equations [Egs. (13) and (14)].
To this end, backward Euler time integration is employed, in which
case the time derivative of v%, can be expressed as

V6, — V5
o _ Yra TV
V=R (25)

where At = simulation time step; and v_e 4= value of v¢, at the start
of the time step. Assuming the bubble velocity, v;, is equal to the
average of the nodal velocities at the start of each time step, v,
will be zero according to Eq. (10). This makes v, = v, /At
which is substituted in to Eq. (13), giving the nodeless velocity

Viy = At(M})"!(Gip* + F}) (26)
This result is inserted into Eq. (14) giving
Gf'vi+Spe=F} (27)

where, S¢ = stabilization matrix

Mo !
Se = GgT< A’;) Gy (28)
and F}, = right-hand side vector
g (M)
Fo = —G;T< Af) F; (29)

After assembly of the element response defined in Egs. (12) and
(27), the discrete fluid equations at the global level are

Giv,+Sp=F, (31)

The equations, along with the structural response equations and
the equations that govern the interface response between the struc-
ture and fluid, will be differentiated according to the DDM for FSI
simulations based on the PFEM.

Discrete Structural Equations

Through the same finite-element procedures, the assembled alge-
braic equations for the structural response considering material and
geometric nonlinear response of the resisting forces are

Msvs + Csvs + Flsm(ua) = Fs (32)

where v, = velocity vector of the structural nodes; F; = external
load vector; static resisting force vector F i;"“ = nonlinear function
of the nodal displacements, u, which are related to the velocities
through the selected time integration method; and M, and C; =
structural mass and damping matrices, respectively.

Discrete Combined Equations

Particles connected to both the fluid and structural domains are
identified as interface particles, whose contributions appear in both
fluid and structural equations. From the structural system, the inter-
face equations are extracted from Eq. (32) and assigned additional i
and s subscripts
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Mssvs + Msivi + Cssvs + Csivi + Fism(ux’ ui) = Fs (33)

Misvs + Mflvl + Cisvs + CiiV,- + F;m(us, u,-) = FlY (34)

where v; = velocity vector of the interface particles.
Similarly, the interface equations are extracted from Egs. (30)
and (31) for the fluid domain and given additional i and f
subscripts

M/¥; ~Gp = F/ (36)
Giv,+Glv;+Sp=F, (37)

Egs. (34) and (36) are combined in order to solve for the particle
response on the fluid—structure interface

M, ¥, + (MY + M)V, + Ciov, + Ciov; + F™(ug,u;) — Gp
=F +F/ (38)

Egs. (33), (35), (37), and (38) are the combined equations for
FSI response analysis by the PFEM. Their solution via numerical
time approximation is briefly summarized next.

Time Integration of FSI Response

The solution of Egs. (33), (35), (37), and (38) requires a set of
primary unknowns and numerical approximations relating these
unknowns to other quantities. Choosing particle velocity and pres-
sure as primary unknowns, the backward Euler method relates the
acceleration to velocity according to

. Vo =V
vV, =——— 39
= (39)
where the subscript n = response at the current time step and n — 1
at the previous time step. Similarly, the relationship between dis-
placement and velocity is

u, =u,_;+ Atvn (40)

These approximations are applied to all fluid, structure, and in-
terface particles.

Fixed-point iteration can be applied to the combined equations
in order to obtain a monolithic system of equations, which is
solved by the fractional step method (FSM). The resulting time-
discretized equations in residual form for response of the fluid
domain are then

M,,
ffn
A[ Aan anApn = rj n (41)
G}, ,Av,, + Gl ,Av,, +8,Ap, =1, (42)

and those for the structural domain are

M
(ﬁ + Css n + AIKXS n) Avs n
At ’ ' '

M.
+ ( A“t’n + Cyin + Astiﬂ) Av;, =1, (43)
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For the response of the interface, the equations are

( lyn+Cl“n+AtKlS'n)AV$n

A
+ Mf
|: ” d ~ n + Cu n T AtKu n:| Av Vin — Gi‘npn =T

(44)
where, ry, 1), 1y, and r; = residual vectors of each equation; and

K., K;i.. Kis ., and Kj; , = tangents of resisting force vector to
unknowns as defined as

OFt OFin, oFint
K _ S, . K. — s, ) Ki; L= in .
S Oug I O, 5 Ou,
8Fi~"‘
K. —Zin 45
im,n aui ( )

Further details on the residual functions, governing equations,
and their solution by the FSM can be found in Zhu and Scott
(2014a) but are omitted herein given that sufficient details have
been shown for their subsequent differentiation according to
the DDM.

Direct Differentiation of the PFEM

The application of the DDM to FSI simulations based on the PFEM
requires differentiation of the discrete equations that govern the
fluid and structural response. However, for large displacement ap-
plications such as FSI, additional terms that arise from updating the
configuration at each iteration must be taken in to account in
the derivation of sensitivity equations. The direct differentiation
method (DDM) is used here to compute the sensitivity of PFEM
analysis with FSM. As in Kleiber et al. (1997), the DDM is applied
on the fluid Eqgs. (30) and (31), and structural Eq. (32) to develop
the sensitivity equations for fluid and structure. Then the combined
sensitivity equations for FSI are obtained taking in to account both
material and geometric nonlinearity.

Fluid Sensitivity Equations

Taking the derivative of the discrete fluid equations [Egs. (30) and
(31)] with respect to an uncertain parameter, 0, gives

Mfae Crao™ 90~ 00|, 00|, 90,
(46)
avy . Op Ouf OF 8GT oS
T OVf LA—— A —
G o0 S0t an = a0y o0 |V 00 R

where du,/00, Ov;/08, Ov;/00, and Op/0f = sensitivity of
fluid displacements, velocities, accelerations, and pressures, re-
spectively. On the right-hand side, all derivatives with respect to
0 are taken with fluid displacements uy fixed. On the left-hand side,
the matrices H and T are partial derivatives that account for geo-
metric nonlinearity of the fluid response

(Gjvy)  o(Sp) _OF,

T:
8llf allf allf

(49)

These terms affect the fluid response sensitivity but do not de-
pend on the uncertain parameter, 6. The matrices shown in Eqs. (48)
and (49) are assembled from the derivatives of the element contri-
butions defined in Egs. (16)—(24) with respect to element displace-
ments. For instance, the kth column of the derivative of the element
inertial forces from Eq. (48) is defined as

O(Méve OM¢ OM¢ 2
( ( fe f)> — ()f v (_(f) - 28_{ I, (50)
8uf . Buf:k 8ufk a 120 8uf-k

where M; was defined in Eq. (22) and the element acceleration
vector, V%, is known at the end of the simulation time step. As
shown in Eq. (7), the Jacobian, J, is a function of the element dis-
placements. The derivatives of J with respect to the horizontal and
vertical displacements of node 1 are

aJ aJ
e — Y273 e 3T X% (51)
Oufl 6uf2

where the derivatives with respect to other nodal displacements can
be calculated similarly.

The kth column of the geometric tangent matrix for the gradient
operator is defined as

oG _ oG
6?u]er . B 814]‘2,(

0G$ r
(o) =& (mrmesgiim) 2
Ou'yy i 6 \du’ Usy Ul

where G¢ was defined in Eq. (24) and the pressure p¢ is known at
the end of the simulation time step when the response sensitivity is
computed. The derivative of the strain-velocity matrix, B; defined
in Eq. (18), with respect to nodal displacements is

,
p‘,

(2 — )’3)2 0
(x3 — x2)2 (53)
(3 — xz)z (y2 — y3)2

ous, —J?

Derivatives with respect to other nodal displacements for B,
B,, and B; have similar definitions.

For the right-hand side vector, FJ‘;, defined in Eq. (15), the kth
column of the geometric tangent matrix is

<8F;> B (aF;) B <8K;v;> B 3F?_3K?ve (54)
e - e e - e e ' f
oug), \oug/, oup J,  Oufy  Oufy

As defined in Egs. (16) and (17), derivatives of Fj and K} are
taken with respect to displacements

aF} _pt oJ b
Qusy ), 6 dufy

(52, -
Ougy i 2

In the same manner, the kth column of the geometric tan-

o . OBT OBT
(au B/DB, +Ja DB, +/BD_ fk> (55)

H = 5 P 3 (48) gent matrices for the stabilization matrix 8¢ and vector F{, are
uy uy uy defined as
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(a(sepf)) s <aF;) L )
k

Ouf Ouy ouy ), Oupy

where the original expressions of S¢ and F¢, defined in Egs. (28)
and (29), are triple multiplication of matrices and vectors including
a matrix inverse, leading to several terms for their derivatives

08°  9G{ (Mg\ ! o(x)” M\~ 9G;
— b ( b) GZ_’_GZT o e Ge¢ +GET(A?) 6ueb
Fk

Oufy  Oufy \ At
(57)
Mo\ 1
OF, _ Gy (M 4F6_Gﬂa(ﬁ) Fe
8uj-k_ Oujy \ At b b uigy b
1 OF;,
el
—Gh (At) Ouy (58)

where My, Gj, and Fj are defined in Eqgs. (23), (24), and (15),
respectively. The derivative of the mass matrix for the bubble
node is

oM 560 )
ous,  207pt? Ousy

(59)

while the derivative of the gradient operator for the bubble node is
e t OBT

(ace,,) _ _9_< el Y N m> (60)
8ufk i 40 8ufk aufk

The derivative of the right-hand side vector, Fj, defined in
Eq. (16), is also similar to that shown in Egs. (54) and (55)

oF;  OF;  OKj |

= 61
8uj‘}k 8u§ik 8uj‘;k b (61)
where the derivative of the force vector is
oF¢  9pr OJ

('htffk a E@u;k

The derivative of the viscosity matrix for the bubble node [de-
fined in Eq. (21)] becomes complex due to the nonlinearity of the
shape function, N, defined in Eq. (11), for the bubble DOFs

ON;\2 ON;\2 ON; ON;
oKy Siur | o1 |22 () -+ (%) ooy
dus, 40 ) ou® ON; ON, N, 2
fk fk ox dy (Z (?x) + 2(2 (?v)

PN,
4 Z <8x0u ) Z (()yr')ujk

&*N; ON; ON; PN,
(?xf)u;k dy Ox ﬁy?)u}’k

+J

As shown in Eq. (8), the displacements uf, differ with x and y
only by a constant. Therefore, the derivatives d/du, are equivalent
to 0/0x or J/0y and are easily computed. '

Structural Sensitivity Equations

The DDM is also applied to the nonlinear structural response in
Eq. (32)

o, OV, O oc,|  oFn
M C + K —2=""l_"5 s 5
0 a0 0 =0 an |, T aw |, T a0,
(64)

where du, /00, Ov,/00, and Ov,/00 = sensitivity of structural dis-
placements, velocities, and accelerations. All the derivatives on the
right-hand side are partial derivatives with structural displacements
u, fixed. On the left-hand side, K; is the tangent stiffness matrix, or
the derivative of the static resisting forces with respect to nodal dis-
placements of FI™ as defined in Eq. (45). Additional details on the
implementation of the DDM for finite-element simulations of non-
linear structural dynamics can be found in Franchin (2004).

Combined Sensitivity Equations

Following the same strategy as for Egs. (33) and (34), the interface
equations for structural sensitivity are extracted from Eq. (64) and
assigned additional i and s subscripts,
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N; ON; Z% PN,
Bxauek Ay Ox ayauik

23 <axau ) 4> (9%ZM)

o, v, v, v, ou ou,
Mw 8(9 + le 90 + Css% + C.ri% + Kw 96 + KU 89
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Similarly, the fluid sensitivity from Eqs. (46) and (47) are also
split and given additional i and f subscripts

My g = Gr g Hir g+ Mg

OF; My G

., 9Gy
=t N 7
0 o0 0P (67)
v, op ou ou; OF oMl oG,
roVi _ ~ 9P f [t Al SN Uy, !
igg ~Gigg tHigy Mgy =50~ 59 Vit P
(68)
ov ov; 0 ou ou;
T f T p f i
T.
Gi a0 TC 59 TS %0
OF, 9Gf  aGT oS
S0 o0 eV a0® (©)

J. Struct. Eng.

J. Struct. Eng., 2016, 142(3): 04015159



Downloaded from ascelibrary.org by OREGON STATE UNIVERSITY on 03/10/16. Copyright ASCE. For personal use only; al rights reserved.

The sensitivity equations for the interface are a combination of
Egs. (66) and (68)

v, s 7\ OV, v, ov; Ou,
Mis T (Mii M) g Cis g Cirgg T Kis
6 6uf (9p
+ (Kii + Hy) — o0 L+ H 20 Gi%

_8Ff+8F{ oM, 5M§i+8M{; . _0Cy
“o0 o0 o0 \ o0 ' o0 o "
aC,  OFM G,

"0 o0 "o P

(70)

Eqgs. (65), (67), (69), and (70) represent the combined equations
for sensitivity analysis of FSI via the PFEM.

Numerical Solution of DDM Equations

The foregoing combined equations for DDM sensitivity analysis of
the PFEM are continuous in time, save for the numerical approxi-
mation at the element level for the bubble node. Consistent differ-
entiation of the time-discretized equations is necessary for proper
implementation of the DDM (Conte et al. 2003). Using backward
Euler time integration at the global level, it is straightforward to
express the derivatives of acceleration and displacement in terms
of the primary unknown velocity

ov,, 1 [/ov, Ov,,

71
90~ At (89 00 ) 71)
with identical expressions for the acceleration sensitivity of fluid
and interface particles. Similarly, the relationship between the

derivatives of displacement and velocity for backward Euler time
integration is

ou, _ ou,,_, LA ov,,
00 00 00
again with identical expressions of the displacement sensitivity of
fluid and interface particles. With these numerical approximations,
the solution for the response sensitivity follows the same process as

(72)

8 ((Mlll’L +le;n)
5+

M.
B4 Cyy o+ ALK,
( + is.n + zs,n) p) At

At

+ Cll N + AZ‘I(ll I‘I)

that required for the PFEM response (Zhu and Scott 2014a), save
for the geometric nonlinearity terms, H and T. Retaining these
terms on the left-hand side when solving for the sensitivity accord-
ing to Egs. (67), (69), and (70) would make the solution for the
sensitivity inconsistent with that used for the PFEM response
via the FSM. To avoid this inconsistency, the geometric nonlinear-
ity terms are moved to the right-hand side with values of particle
velocity sensitivity from the previous time step. The resulting time-
discretized equations for sensitivity of the fluid domain are then

Mffn 8Vf,n G 8])" B 6an Mff,n 8Vf.n_1 _ 6Mffn .

Ar 00 Mo T o0 T Ac o0 o9
+ag§”pn Hyp, 8"55“
—ny,, P 7
- %Pn — T 6"55_1
-T,, 8115;_1 (74)

while those for the structural domain are

Mss.n avs.n Msz n ov Vin
( Al +Css,n+Aths,n) W‘F < At +CS”,+A[K”,1) 89
- an,n Mss.n avs,n—l st,n 8Vs,n—l . 8M.v,n
o0 At 09 A o0 o0 |, "
9Cs, oFy,
T uxvm 50 . (75)

The sensitivity of the time discretized equations for the interface
response are

aVi,n apn
o0 ~Gin a0

_ aF?n + athn Mis,n avs,n—l + (M?z n + lel n) 8 Vi, n—1
00 00 Ar 00 At 00
aFiinitz aGl n 6“1 n—1 auf n—1
— > > —H.. — H. >
90 + 96 Pn ii,n 90 if,n 90

For a single parameter, 6, of the FSI model, the right-hand sides of
Egs. (73)—(76) are assembled from element contributions. For the
structural frame elements, DDM formulations are available in the
literature (Scott et al. 2004; Conte et al. 2004), while contributions
of the fluid elements is based on differentiation of the closed form
expressions in Egs. (16)—(24) with respect to 6. For example, the
derivative of the fluid mass matrix defined in Eq. (22) is

8Mis.n . aMﬁt n 8Mf, n acis,n aCii.n
- Vs + i n

00 00 00

(76)

where Jp/06 and 0t/00 are equal to 0 or 1 depending on which
parameter is chosen. The derivative 9J/90 corresponds to the
geometric sensitivity and is a function of the nodal displacement sen-
sitivity, duf, /00, consistent with differention of Eq. (7) with respect
to . Similar expressions for the aforementioned fluid matrices and
vectors can be calculated. The solution for the derivatives of velocity
and pressure are computed using the same FSM solver as the ordi-
nary response in Egs. (41)—(44) because the left-hand side matrices
are the same as those in Egs. (73)—(76).

% = <@ tJ+p or J+ tﬂ) I, (77) This computational process of forming a right-hand side vector
a0 120 \ 00 P00 a0 and solving for the sensitivity using the same left-hand side system
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Fig. 2. Model for elastic structure interacting with static water
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is repeated for each parameter in the FSI model. The steps have
been implemented within the finite-element response sensitivity
framework of OpenSees (Scott and Haukaas 2008). Further details
of the PFEM implementation for computing deterministic FSI re-
sponse in OpenSees are described in Zhu and Scott (2014b).

Examples

In the following examples, the PFEM sensitivity calculated by the
DDM is compared to analytical solutions of FSI and to the results
of finite-difference calculations for more-complex FSI simulations
involving nonlinear structural response.
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Fig. 3. Displacement of tip node and convergence with respect to mesh size: (a) tip displacement; (b) displacement convergence
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Fig. 4. Pressure of base node and convergence with respect to mesh size: (a) base pressure; (b) pressure convergence
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Fig. 5. Sensitivity of tip node displacement with respect to beam elastic modulus and convergence with respect to mesh size: (a) scaled displacement

sensitivity to E; (b) displacement sensitivity convergence
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Fig. 6. Sensitivity of tip node displacement with respect to fluid density and convergence with respect to mesh size: (a) scaled displacement sensitivity

to ps; (b) displacement sensitivity convergence
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Fig. 7. Sensitivity of base node pressure with respect to beam elastic
sensitivity to E; (b) pressure sensitivity convergence
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(b) pressure sensitivity convergence
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Hydrostatic Loading on a Beam

A classic problem in structural analysis is solving for the deflection
of a beam subjected to hydrostatic pressure. With a closed-form
solution in the small displacement, linear-elastic range, this repre-
sents a suitable problem to verify the DDM sensitivity implemen-
tation prior to examining simulations with material and geometric
nonlinear structural response.

The model for this example, shown in Fig. 2(a), is an open tank
with fixed boundaries on the left and bottom and a flexible beam on

© ASCE
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the right. The fluid depth is & = 0.08 m while the beam length is
L = 0.1 m. Using the structural analysis model shown in Fig. 2(b),
the horizontal deflection at the free end of the beam is

w [h 3
u:a[;l—o—&-(L—h)%} (78)

where E = 100 MPa is the elastic modulus of the beam. The sec-
ond moment of the beam cross-sectional area, /, is computed from
the section width, » = 0.012 m, and section depth, d = 0.012 m.
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Fig. 9. Geometry and floor loads of reinforced-concrete frame example

Beam Cross Section

Column Cross Section

The peak intensity of distributed loading on the beam, w, is equal to
the beam width multiplied by the peak hydrostatic pressure,

P = psgh
w = (prgh)b (79)

where the fluid density p{ = 1,000 kg/m?; and the gravitational
constant is g = 9.81 m/s”. The out-of-plane thickness of the fluid
domain is assumed equal to the beam width, b. Using the given
numerical values, the peak hydrostatic pressure at the base of
the beam is p = 784.8 Pa, leading to a peak distributed load of
w=9.418 N/m according to Eq. (79), and a static deflection
of u=0.09767 mm from Eq. (78). The density of the beam
is p, = 2,500 kg/m>.

Time histories of the beam deflection and base pressure are
shown in Figs. 3 and 4, wherein the simulated responses reach
a steady state about the known static solutions and converge as
the fluid and beam mesh sizes decrease. The ensuing time histories
of response sensitivity with respect to beam modulus, E, and fluid
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Fig. 10. Beam and column cross-sections of reinforced-concrete frame
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Fig. 11. Snap shots of the tsunami runup on coastal structure
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Fig. 12. Floor displacements and axial force and bending moment at the base of right column: (a) floors’ displacements; (b) base axial forces; (c) base
bending moments
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Fig. 13. Sensitivity of second-floor displacement with respect to steel elastic modulus, column concrete compressive strength, fluid density, and
structural mass computed by DDM and FDM: (a) scaled displacement sensitivity to E; (b) scaled displacement sensitivity to f<; (c) scaled displace-
ment sensitivity to ps; (d) scaled displacement sensitivity to nz,
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Fig. 14. Sensitivity of axial force at the base of right column with respect to steel elastic modulus, column concrete compressive strength, fluid
density, and structural mass computed by DDM and FDM: (a) scaled axial force sensitivity to E; (b) scaled axial force sensitivity to f¢; (c) scaled axial

force sensitivity to py; (d) scaled axial force sensitivity to m,

density, py, are computed for the beam deflection and base pres-
sure. The derivatives of the exact solution of deflection are scaled
by the parameter value as follows:

Ou Ou

E—=—u, - =
oE~ " Py,

u (80)

As shown in Fig. 5, the sensitivity of the tip deflection to E con-
verges to the expected derivative of the static solution as the fluid
and beam mesh sizes decrease. The sensitivity is negative because
the deflection will decrease if E increases, making the beam stiffer.
Similarly, the deflection sensitivity with respect to fluid density,
py» is positive as this parameter corresponds to the loading applied
to the beam as shown in Fig. 6. For the sensitivities of pressure
shown in Fig. 7, the computed solutions reach the steady-state sol-
ution of zero as the hydrostatic pressure does not depend on the
beam properties. The scaled pressure sensitivity to fluid density
converges to the expected solution, pf((?p/ 8pf) = p, as shown
in Fig. 8.

Tsunami Impact on Coastal Structure

This example is of a tsunami bore impacting a three-story rein-
forced-concrete building. The structural model shown in Fig. 9
was adapted from Madurapperuma and Wijeyewickrema (2012)
for the analysis of water-borne debris and was further analyzed
by Zhu and Scott (2014b) to demonstrate fluid—structure interaction
using the PFEM. To capture material and geometric nonlinearity,
each frame member is discretized in to 10 displacement-based
beam—column finite-elements (dispBeamColumn in OpenSees)
with fiber-discretized cross sections at the element integration
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points and the corotational geometric transformation (Crisfield
1991). The refined mesh of beam elements also prevents fluid from
passing through the frame members, indicative of a closed first
story. DDM sensitivity for the frame elements is described in Scott
et al. (2004) while that for the corotational transformation is
provided in Scott and Filippou (2007).

The cross-section dimensions, reinforcing details, and concrete
properties of the frame are shown in Fig. 10. Light transverse
reinforcement provides residual concrete compressive strength in
the core regions of the members. Zero tensile strength is assumed
for the concrete (ConcreteOl in OpenSees) and the longitudinal
reinforcing steel is assumed bilinear with elastic modulus
200 GPa, yield strength 420 MPa, and 1% kinematic strain hard-
ening (Steel01 in OpenSees). Gravity loads and nodal mass were
calculated assuming uniform pressure of 4.8 kPa on floor slabs and
1.0 kPa on the roof with a tributary width of 3 m.

The tsunami bore has a height of 4 m, initial velocity of 2 m/s,
and out-of-plane thickness of 3 m. The simulation begins at im-
pending impact of the frame and the response at various snapshots
is shown in Fig. 11. The floor displacements and the axial forces
and the bending moment at the base of the right-most first-floor
column are shown in Fig. 12.

Sensitivity time histories of the roof displacement, axial force,
and bending moment computed by the DDM are compared to FDM
results with respect to the steel elastic modulus, £; column concrete
compressive strength, f¢; fluid density, p;; and structural mass, m,
as shown in Figs. 13—15. Due to high-frequency response for pres-
sures and their contributions to stress and force recovery, the results
for the axial force and bending moment sensitivity computed by the
DDM and FDM have been smoothed with the same algorithm.
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Fig. 15. Sensitivity of bending moment at the base of right column with respect to steel elastic modulus, column concrete compressive strength, fluid
density, and structural mass computed by DDM and FDM: (a) scaled bending moment sensitivity to E; (b) scaled bending moment sensitivity to f¢;
(c) scaled bending moment sensitivity to py; (d) scaled bending moment sensitivity to

Regardless of smoothing, as the parameter perturbations decrease,
the finite-difference approximation should converge to the DDM
result, thereby verifying the DDM implementation

. AU 00U
AN T (81)
Figs. 13—15 show that the DDM matches the smallest finite-
difference perturbation, = 1071°, where € = A#/0. For the larger
parameter perturbations such as e= 10™* and e= 107°, the figures
show sudden jumps in the finite-difference results. These jumps are
due to remeshing of the fluid domain at every time step, where ul-
timately the finite-difference approach breaks down because it
compares response quantities from two different meshes. The fig-
ures show that smaller parameter perturbations tend to postpone
the divergence of the finite-difference approximations to later
in the simulation. Although it provides a useful verification tool,
the FDM is not a reliable approach for gradient-based problems
involving FSI simulations based on the PFEM.

Conclusion

The PFEM is an effective approach to simulating FSI because it
uses a Lagrangian formulation for the fluid domain, which is
the same formulation typically employed for finite-element analy-
sis of structures. The development of DDM sensitivity equations
for the PFEM broaden its application to gradient-based algorithms
in structural reliability, optimization, and system identification of
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FSI as well as other application spaces of the PFEM including
thermo-mechanical analysis and fluid—soil-structure interaction
(Marti et al. 2012; Onate et al. 2011). Due to geometric nonlinearity
of the fluid domain, additional terms were required to derive and
implement the DDM equations for the PFEM. Following the same
analysis procedure as for the response itself, the sensitivity equa-
tions are solved using the fractional step method (FSM). The sen-
sitivity equations were verified using closed-form solutions for the
classic problem of hydrostatic loading on a beam and shown to
match finite-difference solutions with decreasing parameter pertur-
bations for tsunami loading on a reinforced-concrete frame. It was
also shown that the finite-difference approach to computing sensi-
tivity is not applicable to the PFEM because the finite-element
mesh of the fluid domain changes throughout a simulation. Future
applications of DDM sensitivity for the PFEM include time vari-
able reliability analysis of fluid—structure interaction, which is an
important consideration for multihazard analysis involving wind
loading concurrent with storm surge and tsunami following an
earthquake.
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