
mjb – July 15, 2019
Computer Graphics

1

Drawing Circles and Other Regular Polygons

Mike Bailey
mjb@cs.oregonstate.edu

circles.pptx

mjb – July 15, 2019
Computer Graphics

2
First, We Need to Understand Something about Angles

θ

If a circle has a radius of 1.0, then we can march around
it by simply changing the angle that we call θ.

mjb – July 15, 2019
Computer Graphics

3
First, We Need to Understand Something about Angles

θ

X

θ

Y

One of the things we notice is that each angle θ has a
unique X and Y that goes with it.

These are different for each θ.

mjb – July 15, 2019
Computer Graphics

4
First, We Need to Understand Something about Angles

θ

X

θ

Y

Fortunately, centuries ago, people developed
tables of those X and Y values as functions of θ.

They called the X values cosines and the Y values
sines. These are abbreviated cos and sin.

=X
=Y

mjb – July 15, 2019
Computer Graphics

5How People used to Lookup Sines and Cosines –
Fortunately We Now Have Calculators and Computers

mjb – July 15, 2019
Computer Graphics

6
First, We Need to Understand Something about Angles

θ

X

θ

Y

If we were to double the radius of the circle,
all of the X’s and Y’s would also double.

So, really the cos and sin are ratios of X and
Y to the circle Radius

mjb – July 15, 2019
Computer Graphics

7
First, We Need to Understand Something about Angles

θ

X

θ

Y

So, if we know the circle
Radius, and we march
through a bunch of θ
angles, we can determine
all of the X’s and Y’s that
we need to draw a circle.

mjb – July 15, 2019
Computer Graphics

8

void
Circle(int xc, int yc, int r, int numsegs)
{

float dang = (2.*PI) / float(numsegs);
float ang = 0.;
beginShape();

for(int i = 0; i <= numsegs; i = i + 1)
{

float x = xc + r * cos(ang);
float y = yc + r * sin(ang);
vertex(x, y);
ang = ang + dang;

}

endShape();
}

Processing Doesn’t Include a Circle-Drawing Function,
So We Add Our Own

numsegs is the number of line segments
making up the circumference of the circle.

numsegs=20 gives a nice circle.

5 gives a pentagon.
8 gives an octagon.
4 gives you a square. Etc.

Why 2.*PI ?

mjb – July 15, 2019
Computer Graphics

9

float dang = (2.*PI) / float(numsegs);

Why 2.*PI ?

We commonly meaure angles in degrees, but science and computers
like to measure them in something else called radians.

There are 360° in a complete circle.
There are 2π radians in a complete circle.

The built-in cos() and sin() functions expect angles given in radians.

Processing has build in functions to convert between the two:
float rad = radians(deg);
float deg = degrees(rad);

mjb – July 15, 2019
Computer Graphics

10
Circle, Pentagon, Octagon!

mjb – July 15, 2019
Computer Graphics

11
If We Move the Mouse, We Could Get:

mjb – July 15, 2019
Computer Graphics

12
Or, even:

mjb – July 15, 2019
Computer Graphics

13

void
Ellipse(int xc, int yc, int rx, int ry, int numsegs)
{

float dang = (2.*PI) / float(numsegs);
float ang = 0.;
beginShape();

for(int i = 0; i <= numsegs; i = i + 1)
{

float x = xc + rx * cos(ang);
float y = yc + ry * sin(ang);
vertex(x, y);
ang = ang + dang;

}

endShape();
}

And, there is no reason the X and Y radii need to be the same…

mjb – July 15, 2019
Computer Graphics

14
There is actually no reason the X and Y radii need to be the same …

mjb – July 15, 2019
Computer Graphics

15
There is also no reason we can’t gradually change the radius …

void
Spiral(int xc, int yc, int r0, int r1, int numsegs, int numturns)
{

float dang = numturns * (2.*PI) / float(numsegs);
float ang = 0.;
beginShape();

for(int i = 0; i <= numsegs; i = i + 1)
{

float newrad = map(i, 0, numsegs, r0, r1);
float x = xc + newrad * cos(ang);
float y = yc + newrad * sin(ang);
vertex(x, y);
ang = ang + dang;

}

endShape();
}

mjb – July 15, 2019
Computer Graphics

16
There is also no reason we can’t gradually change the radius …

mjb – July 15, 2019
Computer Graphics

17
We Can Also Use This Same Idea to Arrange Things in a Circle

void
draw()
{

stroke(0, 0, 0);
int numobjects = 10;
float radius = 200.;
int xc = 300;
int yc = 300;
int numsegs = 20;
int r = 50;
float dang = (2.*PI) / float(numobjects - 1);
float ang = 0.;
for(int i = 0; i < numobjects; i = i + 1)
{

float x = xc + radius * cos(ang);
float y = yc + radius * sin(ang);
int red = int(map(i, 0, numobjects – 1, 0, 255));
int blue = int(map(i, 0, numobjects – 1, 255, 0));
fill(red, 0, blue);
Circle(int(x), int(y), r, numsegs);
ang = ang + dang;

}
}

mjb – July 15, 2019
Computer Graphics

18
We Can Also Use This Same Idea to Arrange Things in a Circle

