openlab.surattack.com

CHEAT SHEET

Basic structure

This is the basic of any Processing sketch.

void setup(){
//Runs only once.

}
void draw(){
//Runs repeatedly during the execution.

}

0 Variables Types

int

Positive and negative integer variables.

float

Floating point negative and positive variables.
boolean

Variables of which values can be: TRUE or FALSE.
color

Stores color type values in different formats.
char

Stores a single character.

string
Stores a single string.

Global variables

These variables can be called anytime, anywhere.

width

Returns sketch's width in pixels.
height

Returns sketch's height in pixels.
mouseX

Return mouse pointer's position (X axis).

mouseY

Return mouse pointer's position (Y axis).
pmouseX

Returns previous mouse pointer's X axis.
pmouseY

Returns previous mouse pointer's Y axis.
frameCount

Returns sketch's current frame.

frameRate
Returns sketch's current FPS.

o Basic functions

size(width,height);
Sets main window size in pixels.

background(color);

Sets window background color.
smooth();

Sets antialiasing on.
frameRate(fps);

Sets the application’s FPS.

println(string);
Writes a string to the console.

o Random & Noise

random(low, high);

Returns a random value within the limits.
randomSeed(seed) ;

Changes random seed.

noise(value);

Returns a value in Perlin Noise sequence.
noiseDetail (octaves);

Sets detail threshold for noise function results.

noiseSeed(seed);
Changes noise seed.

fill(),noFill(),stroke(),noStroke()

Shapes border, stroke & fill setting functions.

fill(color);
Sets the color used to fill shapes.

noFill();
Disables fill color.

stroke(color);
Sets the color used to draw strokes/borders around shapes.

noStroke();
Disables border for shapes.

fi11(255);
noStroke();

fil1(255);
stroke(0);

noFill();
stroke(0);

o Color functions

colorMode (mode) ;

Set color mode. Usually RGB or HSB.
red(color);

Return the red value of the color.
green(color);

Return the green value of the color.
blue(color);

Return the blue value of the color.
hue(color);

Return the hue value of the color.
saturation(color);

Return the saturation value of the color.
brightness(color);

Return the brightness value of the color.
alpha(color);

Return the transparency value of the color.

lerpColor(coloril,color2,moment);
Returns a color value between two colors.

Color handling o Color examples

These are the ways to pass color arguments.

// Value scale goes from @ to 255
color(grayscale); * -

color(grayscale,alpha); (100) (255)

color(red, green,blue); - - -

color(red, green,blue,alpha);

(255,0,0) (0,255,0) (0,0,255)

6 Components change depending on the number of arguments. (255,255,0) (0,255,255) (255,0,255)

& Coordinates system

X ty
Y ® In any Processing sketch, top left corner is the (0, 0) point. That axis
changes when we make use of translate() or rotate().
. . (100,100) Minimum unit of measurement in a computer screen is the Pixel.
v
@ (190, 200)
@® =(0,0)

o Matrix operations

pushMatrix();

Saves the current matrix. Meaning the “translate, rotate and scale” values. For every pushMatrix() belongs a final popMatrix().
popMatrix();

Allows you to go back to the last saved matrix. You need a previous pushMatrix() to go back to an older matrix.

printMatrix();
Prints current matrix to the console.

translate(posx,posy);
Moves the anchor point to a certain position. After this the (0,0) is the certain position.

rotate(radians);

Changes plane rotation according to axis.

scale(x,y);

Scales the plane, affects all sizes on the sketch can also be: scale(x,y,z) or scale(multiple).
shearX(radians);

Applies a shear on X axis.

shearY(radians);

Applies a shear on Y axis.

rotateX(radians);

Applies rotation to X axis. Works only on 3D enviroments.

rotateY(radians);
Applies rotation to Y axis. Works only on 3D enviroments.

rotateZ(radians);
Applies rotation to Z axis. Works only on 3D enviroments.
pushStyle();

Saves the current style of fill(), stroke(), tint(), strokeWeight(), strokeCap(), strokeJoin(), imageMode(), rectMode(), ellipseMode(), shapeMode(),
colorMode(), textAlign(), textFont(), textMode(), textSize(), textLeading(), emissive(), specular(), shininess(), ambient().

popStyle();
Goes back to last style used. You need a previous pushStyle() to go back to an older style.

) Basic geometry

Anchor point

ellipse(posx,posy,width,height);
Draws an ellipse centered in position
(posx, posy) and with size "width" and

o Other primitive shapes

point(posx,posy);
Draws a point to the screen.

quad(x1,y1,x2,y2,x3,y3,x4,y4);

Draws a quadrilateral based upon the four vertex positions we pass.

arc(posx,posy,width,height,startangle,endangle);

rect(posx,posy,width,height);
Draws a rect anchored at top left corner,
in position (posx, posy) and with size
"height". "width" and "height".

line(posx1,posyl,posx2,posy2);
Draws a line from point (posx1, posy1)
to (posx2, posy2)

Draws an arc in position (posx, posy), with size "width" and "height", and "startangle" and "endangle" passed as radians.

triangle(x1,y1,x2,y2,x3,y3);

Draws a triangle based upon three positions passed as arguments.

o Bezier and curves

o beginShape() and endShape()

bezier(x1, y1, x2, y2, x3, y3, x4, y4)

Draws a Bezier. positions 1 and 4 are the main anchor points,
2 and 3 work as control points.

bezierDetail(level);

Sets the Bezier detail level.

bezierTangent(a, b, c, d, moment);
Returns the Bezier's tangent at "time".

bezierPoint(a, b, c, d, moment);
Returns the Bezier's axis position at "time".

curve(x1, yl1, x2, y2, x3, y3, x4, y4);
Draws a curve. positions 1 and 4 are the main anchor points,
2 and 3 work as control points.

curveTightness(tightness);

Sets tightness for the next curves.
curvePoint(a, b, c, d, t);
Returns the curve's axis position at "time".

curveTangent(a, b, c, d, t);
Returns the curve's tangent at “time".

curveDetail (detail);
Sets the curve detail level.

beginShape();
Starts listening for vertices to build a shape. It stops listening
when endShape() is called. Modes can be passed as arguments.

endShape();
Stops listening for vertices.

vertex(posx,posy);
Draws a vertex in position (posx, posy)

bezierVertex(x2, y2, x3, y3, x4, y4);
Defines a vertex based on a Bezier curve.

curveVertex(x, y);
Defines a vertex based on a curve.

texture(PImage);
Sets the texture for a drawn shape.

beginContour();
Starts listening for vertices to cut a previous form.

endContour();
Stops listening for "beginContour" vertices.

6 Available modes for beginShape are POINTS, LINES,

TRIANGLES, TRIANGLE_FAN, TRIANGLE_STRIP,
QUADS and QUAD_STRIP.

o Functions structure

// Create the function
void hello (){
println(”’Hello!”);

3

// Call the function
insult();

o Class structure

class ClassName{
ClassName (/*Variables*/){
//Constructor

void methodName(/*Variables*/){

//Declare an object
ClassName myClass;

void setup(){
//Initialize an object

myClass = new ClassName(/*Variables*/);

3

void draw(){
//Call an object method
myClass.methodName() ;

b

Classes may or may not have variables or variables
to be initialized.

For loops
These are codeblock that cycle through a condition.

//Simple usage of For loop
for(int i = @;i<condition;i++){
//Code in here will repeat i times

b

//Nested For loop

for(int i = @;i<condition;i++){
for(int j = 0;j<condition;j++){
//Code here will repeat ixj times

b

6 Inside the block we can take advantage of index

variables.

o Conditional operators

< :::>>:!:

Less than or Greater than
Less than equal to Equal Greater than or equal to Not equal

Logical operators
Work as connectors between conditions

o Conditional structure

if(condition1){

// Code to run if conditionl is True
Yelse if(condition2){

// Code to run if condition2 is True
Yelse{

// Runs if no previous condition was True

3

Conditions result from values comparison using logical
or conditional operators.

o While structure

while(conditionl){
// Code to run until conditioni
// becomes False

3

\ A4

Display an image o Image functions

Images must be stored in your sketch’s "data" directory.

image(img,posx,posy,width,height);

PImage img; Draws an image in the main screen.
. loadImage(fileName);
void setup() { Initializes a PImage passing an image file name or path as
img = loadImage("filename.jpg"); an argument
3 requestImage(fileName);
Initializes a PImage on a separate thread.
void draw() { tint(color);
image(img, 0, 0); Sets the tint value of an image.
¥ noTint();

Disables image tint.

saveFrame(filename);
Saves a screenshot of the current frame.

Q Supported formats: JPG, GIF, TGA and PNG.

o Text functions

Display text

Fonts must be stored in your sketch’s "data" directory.

text(string,posx,posy);
Displays a text on the screen.

PFont font;
loadFont(fileName);
. Initializes a PFont passing a font file name or path as an
void setup() { argument.

font = loadFont(”Helvetica-32.vlw");

textFont(font,size);
textFont(font, 32);

Sets font type and size.
textAlign(mode);
Sets align mode to: LEFT, RIGHT or CENTER.

}

void draw() {

text(”Hello”, 0, 0); textlLeading(size);
} Sets the spacing between lines of text in units of pixels.

We can create fonts in VLW format using the menu
function: Tools / Create Font..

Easing target

Easing allows us to smooth the passing of values.

float x;

q Easing value
Display a shape /! 2 _
Vectors must be stored in your sketch "data" directory. float easing = 0.05;

void setup() {

PShape myshape;
size(220, 120);

void setup() { b
myshape = loadShape(”myShape.svg");
} void draw() {
background(9);
void draw() { float targetX = mouseX;
shape(myshape, 0, 0); x += (targetX - x) * easing;

} ellipse(x, 40, 10, 10);

Example taken from “Getting started with Processing”

0 gl eliled ol S by Reas & Fry. O'Reilly / Make 2010

& Events capture

void mousePressed()
Runs when any mouse button is pressed.

void mouseClicked()

Runs when any mouse button is pressed and released.
void mouseMoved()

Runs everytime mouse is moved and NOT pressed.

void mouseDragged()

Runs everytime mouse is moved while a button is pressed.
void mouseReleased()

Runs when any mouse button is released.

void keyPressed()

Runs on a key press event.

void keyTyped()

Runs when a key is pressed except for SHIFT, CTRL or ALT.

void keyReleased()
Runs on a key release event.

keyPressed (Boolean) mousePressed (Boolean)

Returns True or False if any key is pressed. Returns True or False if any mouse button.

void draw() { void draw() {
if(keyPressed == true) { if(mousePressed == true) {
fill(e@); //If any key is pressed fill(@); //If mouse is pressed
} else { } else {
fill1(255); //Otherwise... fill(255); //Otherwise...
} }
rect(25, 25, 50, 50); rect(25, 25, 50, 50);
3 3

It's a special variable we can use for cheking a It's a special variable we can use for cheking
keypress status. mouseclick status

key keyCode

It's a special variables which returns the last key pressed. Special variable for detecting special keys.

void draw() { void keyPressed() {
if (keyPressed) { if (key == CODED) {
if (key == 'b’' || key == 'B") { if (keyCode == UP) {
// If B key is pressed // If UP arrow key is pressed.
3} } else if (keyCode == DOWN) {
} else { // If down arrow key is pressed.
// Otherwise. .. }
T } else {
3 // Otherwise. ..
}
}

Other keys: BACKSPACE , TAB , ENTER , RETURN ,

0 key variable is case sensitive. ESC, DELETE , RIGHT , LEFT.

0 One dimension array

int [] arrayInt = { 43, -2, 8 , 13};
println(arrayInt[@]);// Prints 43

println(arrayInt[1]);// Prints -2
println(arrayInt[2]);// Prints 8

Q Arrays index starts from 0

o Arrays & For loops

//Declaration of an array.
int [] arraylnt;

void setup(){
//Set the array's size.
arrayInt = new int[50];

//Initialize each index value.
for(int i = @; i<arrayInt.length; i++){
arrayInt[i] = i;

3

3

void draw(){

//Print each array's index value.
for(int i = @; i<arrayInt.length; i++){
println(arrayInt[i]);

}

}

Q For loops allow to quickly initialize each array's index.

o Array functions

append(array,value);

Add a value to an array.

arrayCopy(src, srcPos, dst, dstPos, length);
Copy an array or part of it into another.

concat(a,b);

Concatenates two arrays.
expand(array,newSize);

Expands and array's size value.

reverse(array);

Reverses an array order.

shorten(array);

Reduces array's size by one index.

sort(array);

Sorts an array in increasing order.
splice(array,value/array,index);

Inserts a value or an array inside any given index.
subset(array, start, count)

Extracts a set from a given array from "start" to "count".

Objects array

Arrays can be made up from a given class.

//Declaration of an object array.
Particle [] particles;

void setup(){
//Set the size of our array.
particles = new Particle[50];

//Initializing every index.
for(int i = @; particles.length; i++){
particles[i] = new Particle();

3

3

void draw(){

//Call a function of each object.
for(int i = @; i<particles.length; i++){
particles[i].draw();

3

3

Two-dimensional arrays

These arrays can be called with two values.

//Declaration of our array.
int [][] array2D;

void setup(){
//Declaration of our array.
array2D = new int[width][height];

//Initializing every index.

for(int i = @; i<width; i++){
for(int j = 0; j<height; j++){
array2D[i][j] = int(random(100));
3

3

3

void draw(){

//Displaying each index value.

for(int i = 0; i<width; i++){
for(int j = 0; i<height; j++){
println(array2D[il[j1);

6 To go over a multiple dimensions array we have to

use nested For loops.

& Some reference books.

Learning Processing:
A Beginner's Guide

Dantel Shiffman

An excellent book for beginners.
Covers a lot of topics. Perfectly
explained.

Getting Started with
Processing.

'
Getting
Started
with
Processing

Casey Reas & Ben Fry

A good book as a complement to
“Learning Processing", both of them
make a good introduction.

Processing: Creative coding
and Computational Art.

Processing

Another good alternative to start
with Processing. Contains a diverse
amount of examples.

Programming
Interactivity.

ey —————

Programming

Interactivity

O'RELLY" i Nobe

It's an introduction to Processing,
Openframeworks and Arduino.
Covers many aspects of of the
three.

Generative Art: a practical
guide using processing.

generative
art

It's a Generative art oriented book.

Covers some Processing based projects

and comes with a lot of examples to
download.

Processing: A programming
handbook.

This book reviews some important
aspects to go further in the task of
learning Processing.

processing.org
Official Processing’s website. Documentation and download.

openprocessing.org
Open Processing community where you can upload and review related works.

wiki.processing.org
Processing’s official Wiki.

forum.processing.org
Processing official forum.

vimeo.com/channels/processing
Processing channel on Vimeo.

flickr.com/groups/processing/
Processing account on Flickr.

creativeapplications.net
This forum gathers digital installations and works made with Processing and other creative coding tools.

createdigitalmotion.com
One of the most updated blogs with information about new communication media.

\ A/

BHEAT SHEET openlab.surattack.com ; 5 SURATTACK.COM

Questions and Suggestions: info surattack.com

