
1

mjb – November 13, 2012

Oregon State University
Computer Graphics

Parallel Computing:
MultiThreading and MultiCore

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

"If you were plowing a field, which would you rathe r use –
two strong oxen or 1024 chickens?"

-- Seymore Cray

mjb – November 13, 2012

Oregon State University
Computer Graphics

The Problem

We demand increasing performance for desktop applications. How can
we get that? There are four approaches that we’re going to discuss here:

1. We can increase the clock speed (the “La-Z-Boy approach”).

2. We can combine several separate computer systems, all working together
(multiprocessing).

3. We can develop a single chip which contains multiple CPUs on it (multicore).

4. We can look at where the CPU is spending time waiting, and give it something
else to do while it’s waiting (multithreading).

2

mjb – November 13, 2012

Oregon State University
Computer Graphics

1. Increasing Clock Speed -- Moore’s Law

“Transistor density doubles every 1.5 years.”

Note that oftentimes people (incorrectly) equivalence this to:
“Clock speed doubles every 1.5 years.”

Source: http://www.intel.com/technology/mooreslaw/i ndex.htm

mjb – November 13, 2012

Oregon State University
Computer Graphics

Moore’s Law

� From 1986 to 2002, processor performance increased an average of 52%/year

� Fabrication process sizes (“gate pitch”) have fallen from 65 nm to 45 nm to 32
nm to 22 nm

� Next will be 16 nm !

3

mjb – November 13, 2012

Oregon State University
Computer Graphics

� From 1986 to 2002, processor performance increased an average of 52%/year which
means that it didn’t quite double every 1.5 years, but it did go up by 1.87, which is close.

� Fabrication process sizes (“gate pitch”) have fallen from 65 nm to 45 nm to 32 nm.

� For example, the Intel Core i7-965 used a 45 nm process and had 731M transistors.
The Intel Core i7-980X uses a 32 nm process and has 1,170M transistors.

� The Intel Ivy Bridge processor uses 22 nm

� Next should be 16 nm, then 11nm !

Moore’s Law

65

45

32

22

16

11?

For the sake of an entertaining comparison, the
Intel 4004 processor, introduced in 1971, had a
clock speed of 108 KHz (=.000108 GHz), had
2300 transistors, and used a gate pitch of 10 µm
(=10,000 nm) !

mjb – November 13, 2012

Oregon State University
Computer Graphics

Clock Speed and Power Consumption

1981 IBM PC 5 MHz

1995 Pentium 100 MHz

2002 Pentium 4 3000 MHz (3 GHz)

2007 3800 MHz (3.8 GHz)

2009 4000 MHz (4.0 GHz)

Clock speed has hit a wall, largely because of power consumption.

2PowerConsumption ClockSpeed Voltage∝ ×

Yikes!is-proportional-to

4

mjb – November 13, 2012

Oregon State University
Computer Graphics

Source: Intel

mjb – November 13, 2012

Oregon State University
Computer Graphics

Source: Patrick Gelsinger, 2004 Intel Developer’s Forum .

What Kind of Power Density Would it Have Taken
to Keep up with Clock Speed Trends?

5

mjb – November 13, 2012

Oregon State University
Computer Graphics

Recently, AMD set the world record for clock speed (8.429 GHz)
using a Liquid Nitrogen-cooled CPU

mjb – November 13, 2012

Oregon State University
Computer Graphics

� From 1986 to 2002, processor performance increased an average of 52%/year which
means that it didn’t quite double every 1.5 years, but it did go up by 1.87, which is close.

� Fabrication process sizes (“gate pitch”) have fallen from 65 nm to 45 nm to 32 nm.

� For example, the Intel Core i7-965 used a 45 nm process and had 731M transistors.
The Intel Core i7-980X uses a 32 nm process and has 1,170M transistors.

� Intel says 22 nm CPUs ????????.

� Next should be 16 nm, then 11nm !

Why Multicore?
Moore’s Law

65

45

32

22

16

11?

For the sake of an entertaining comparison,
the Intel 4004 processor, introduced in
1971, had a clock speed of 108 KHz
(=.000108 GHz), had 2300 transistors, and
used a gate pitch of 10 µm (=10,000 nm) !

6

mjb – November 13, 2012

Oregon State University
Computer Graphics

Clock Speed and Clock Skew

There is another reason that clock speeds have gotten difficult to
dramatically increase:

A CPU chip is divided into
logical sections, all of which
must be able to interact with
each other. The clock pulse
comes in on a single pin of the
chip housing, which is then
routed all over the chip.

As clock speeds have
increased, it is harder to keep
the clock signal synchronized
all over the chip. This is
known as clock skew .

mjb – November 13, 2012

Oregon State University
Computer Graphics

2. Multiprocessing with Distributed Memory

Instead of one computer in a system, put in more than one. Distribute the overall
work to the posse of computers. This is called Multiprocessing.

Because each processor and its memory are distributed across a network, this is
oftentimes referred to as Distributed Computing or Cluster Computing.

Processor

Memory
• • •

Processor

Memory

Processor

Memory

network

This is interesting for many things, such as large semi-
autonomous calculations. But desktop games and
simulation are not like that. They need more help locally.

7

mjb – November 13, 2012

Oregon State University
Computer Graphics

3. Eliminating Wasted Time: Thread-Level Parallelis m

You are trying to watch two football games on TV at the same time. The
commercials come at unpredictable times and are exceedingly long and
annoying. It’s a waste of your time to watch them.

What strategy do you follow to maximize your football viewing and
minimize the commercials?

You could either:

1. Just watch one, and put up with the commercials as wasted time.

2. Flip back and forth at fixed time intervals (e.g., every minute)

3. Watch one until it goes to a commercial, then flip to the other.

mjb – November 13, 2012

Oregon State University
Computer Graphics

Thread Level Parallelism (TLP)

The code gets divided into multiple operations. When one operation
blocks, or its time slice is over, switch to another operation.

Sometimes a program can be naturally subdivided into independent
operations. Web serving and transaction processing are good examples.

Or, sometimes programs can be naturally divided into cooperating operations.
In a game, for example, there might be the User Interface, the AI, Physics, and
the Graphics all working independently, but cooperating with each other.

UI

AI

Physics

Graphics

How could you write this
as a single program and
give each operation its
own time slice?

8

mjb – November 13, 2012

Oregon State University
Computer Graphics

What Exactly is a Thread?

Threads are separate processes, all executing a common program and sharing
memory. Each thread has its own state (program counter, registers, and stack).

Program and Data in
Shared Memory

Program Counter

Registers

Stack
• • •

Thread Thread Thread

Program Counter

Registers

Stack

Program Counter

Registers

Stack

mjb – November 13, 2012

Oregon State University
Computer Graphics

What Exactly is a Thread?

Threads can share time on a single processor. You don’t have to have multiple
processors (although you can – multicore is our next topic).

This is useful, for example, in a web browser when you want several things to happen
autonomously:

• User interface
• Communication with an external web server
• Web page display
• Animation

A “thread” is an independent path through the program code. Each thread has its own
program counter, registers, and stack. But, since each thread is executing some part of the
same program, each thread has access to the same memory. Each thread is scheduled
and swapped just like any other process.

9

mjb – November 13, 2012

Oregon State University
Computer Graphics

When is it Good to use Multithreading?

• Where specific operations can become blocked, waiting for something else to happen

• Where specific operations can be CPU-intensive

• Where specific operations must respond to asynchronous I/O, including the user interface
(UI)

• Where specific operations have higher or lower priority than other operations

• Where performance can be gained by overlapping I/O

• To manage independent behaviors in interactive simulations

• When you want to accelerate a single program on multicore CPU chips

mjb – November 13, 2012

Oregon State University
Computer Graphics

So, to summarize:

1. Moore’s Law of Transistor Density is still going strong, but the
“Moore’s Law of Clock Speed” has hit a wall.

2. Multiple CPU chips are an option, but are too expensive for desktop
applications. Now what do we do?

Keep packing more and more transistors on a single chip, but don’t
increase the clock speed. Instead, increase computational throughput by
using those transistors to pack multiple processors on the same chip. All
these processors share the same memory.

Originally this was called single chip multiprocessing, but now it is referred
to as multicore . Because each processor has equal access to the whole
memory, this is oftentimes referred to as Symmetric Multiprocessing (SMP)
or Unified Memory Access (UMA).

Threads at their Very Best:
Multiprocessing + Shared Memory → Mul�core

10

mjb – November 13, 2012

Oregon State University
Computer Graphics

MultiCore

Multicore is a very hot topic these days. The chip vendors are implementing all new
chips this way. We, as programmers, can no longer take the La-Z-Boy approach to
getting program speedups.

We need to be prepared to convert our programs to run on MultiThreaded Shared
Memory Multicore architectures.

Multicore, even without multithreading too, is still a good thing. It can be used, for
example, to allow multiple programs on a desktop system to always be executing.

Multithreading, even without multicore too, is still a good thing. Threads can make it
easier to logically have many things going on in your program at a time, and can absorb
the dead-time of other threads.

But, the big hope for multicore is that it is a way to speed up a single program. For this,
we need a combination of both multicore and multithreading .

Multicore

Multithreading

Both

mjb – November 13, 2012

Oregon State University
Computer Graphics

However, Multicore is not a Free Lunch:
Amdahl’s Law

1

#
parallel

sequential

xSpeedup
F

F
processors

=
+

If you think of the operations that a program needs to do as divided
between a fraction that is parallelizable and a fraction that isn’t (i.e., is
stuck at being sequential), then Amdahl’s Law says:

Wrong!

If you put in N cores, you should get N times speedup, right?

There are always some amount of operations that are serial and cannot
be parallelized no matter what you do. These include reading data,
setting up calculations, control logic, etc.

11

mjb – November 13, 2012

Oregon State University
Computer Graphics

Amdahl’s Law as a Function of Number of Processors and Fparallel

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Processors

x
S

pe
ed

up

60%

40%

90%

80%

20%

Fparallel :

mjb – November 13, 2012

Oregon State University
Computer Graphics

Amdahl’s Law

#

1 1
max lim

1processors
sequential parallel

Speedup xSpeedup
F F→∞

= = =
−

Note that these fractions put an upper bound on how much benefit you will
get from adding more processors:

Fparallel maxSpeedup

0.00 1.00

0.10 1.11

0.20 1.25

0.30 1.43

0.40 1.67

0.50 2.00

0.60 2.50

0.70 3.33

0.80 5.00

0.90 10.00

0.95 20.00

0.99 100.00

12

mjb – November 13, 2012

Oregon State University
Computer Graphics

Source: Sandia National Labs

It’s actually worse – if you increase the number of processors without
limit, at some point they start to get in each othe r’s way!

mjb – November 13, 2012

Oregon State University
Computer Graphics

A Comparison of Intel Processors

Note: these are
not the same !!

Note: these are
not the same !!

(Count the Execution Units)

Source: Intel

13

mjb – November 13, 2012

Oregon State University
Computer Graphics

A Comparison of Intel Processors

Source: Intel

mjb – November 13, 2012

Oregon State University
Computer Graphics

There are many ways to perform Multicore/Multithrea ding
Programming – the Bane of them all is Debugging

Deadlock and Livelock Faults

• Deadlock: Two threads are each waiting for the other to do something

• Livelock: like Deadlock, but both threads are changing state in sync with each
other, possibly to avoid deadlock, and thus are still deadlocked

Race Condition Fault

• One thread modifies a variable while the other
thread is in the midst of using it

A good example is maintaining and
using the pointer in a stack data structure:

Worse yet, these problems are not always deterministic!

Thread #1:
Pushing:

p++ ;
*p = incoming ;

p++ Thread #2:
Popping:

outgoing = *p ;
p- - ;

p

A good example is the dreaded hallway encounter

4

3

2

1

Execution
order:

14

mjb – November 13, 2012

Oregon State University
Computer Graphics

Race Conditions can often be fixed through the use of
Mutual Exclusion Locks (Mutexes)

Thread #1: Pushing:

. . .
Lock A
{

p++ ;
*p = incoming ;

}
. . .

p++ Thread #2: Popping:

. . .
Lock A
{

outgoing = *p ;
p- - ;

}
. . .

p

2

4

3

1

Execution order:

Note that, while solving a race condition, we can also create a new deadlock condition if
the thread that owns the lock is waiting for the other thread to do something

Mutex Locks are
usually named
somehow so that
you can have
multiple ones with
no ambiguity.

mjb – November 13, 2012

Oregon State University
Computer Graphics

Barriers

A barrier is a way to let all threads get to the same point before moving on together.

For example, it is a common parallel numeric technique to solve a large matrix [A]{x} = {b} by letting
each thread solve a smaller sub-matrix, share its results across its boundaries, re-solve the sub-
matrix, re-share, …

But, each thread might not reach the “sharing point” at the same time. You need all the threads to
wait at that point until everyone else gets there, then proceed with the sharing and re-solving.

Thread #1:

. . .
Barrier C
. . .

Thread #2:

. . .
Barrier C
. . .

15

mjb – November 13, 2012

Oregon State University
Computer Graphics

OpenMP Multithreaded Programming

• OpenMP is a multi-vendor standard

The OpenMP paradigm is to issue C/C++ “pragmas” to tell the
compiler how to build the threads into the executab le

#pragma omp directive [clause]

All threads share a single global heap (malloc, new)

Each thread has its own stack (procedure arguments, local variables)

OpenMP probably gives you the biggest multithread benefit per amount of work put in to
using it

mjb – November 13, 2012

Oregon State University
Computer Graphics

Creating OpenMP threads in Loops

#include <omp.h>

int i;

#pragma omp parallel for private(i)

for(i = 0; i < num; i++)
{

. . .

}

This tells the compiler to parallelize the for loop into multiple threads, and to give
each thread its own personal copy of the variable i. But, you don’t have to do this
for variables defined in the loop body:

#pragma omp parallel for

for(int i = 0; i < num; i++)
{

. . .

}

16

mjb – November 13, 2012

Oregon State University
Computer Graphics

Creating Sections of OpenMP Threads

#pragma omp parallel sections

{

#pragma omp section
{

. . .
}

#pragma omp section
{

. . .
}

}

This tells the compiler to place each section of code into its own thread

If each section contains a procedure call, then this is a good way to approximate the
pthreads paradigm

mjb – November 13, 2012

Oregon State University
Computer Graphics

Number of OpenMP threads

Two ways to specify how many OpenMP threads you want to have available:

1. Set the OMP_NUM_THREADS environment variable

2. Call omp_set_num_threads(num);

Asking how many OpenMP threads this program is using:

num = omp_get_num_threads();

Asking which thread this one is:

me = omp_get_thread_num();

num = omp_get_num_procs();

Asking how many cores this program has access to:

num = omp_set_num_threads(omp_get_num_procs());

Setting the number of threads to the exact number of cores available:

17

mjb – November 13, 2012

Oregon State University
Computer Graphics

Data-Leval Parallelism (DPL) in OpenMP

These last two calls are especially important if you want to do
Data-Level Parallelism (DLP) !

total = omp_get_num_threads();

#pragma omp parallel private(me)

me = omp_get_thread_num();

DoWork(me, total);

#pragma omp end parallel

mjb – November 13, 2012

Oregon State University
Computer Graphics

1. To enable OpenMP in VS, go to the Project menu → Project Properties

2. Change the setting Configuration Properties → C/C++ → Language →
OpenMP Support to "Yes (/openmp)"

Enabling OpenMP in Visual Studio

18

mjb – November 13, 2012

Oregon State University
Computer Graphics

More on Creating OpenMP threads in Loops

float x, y;

#pragma omp parallel for private(x,y)

for(int i = 0; i < num; i++)
{

}

Normally, variables are shared among the threads. Each thread receives its own copy of
private variables. Any temporary intermediate-computation variables defined outside the loop
must be private:

#pragma omp parallel for private(i,partialSum) reduction(+:total)

for(int i = 0; i < num; i++)
{

// compute a partial sum and add it to the total
float partialSum = . . .
total += partialSum;

}

Variables that accumulate are especially critical. They can’t be private, but they also must be
handled carefully so they don’t get out of sync.

In the reduction clause argument (A:B), A is the operation and B is the
variable on which the operation will take place

mjb – November 13, 2012

Oregon State University
Computer Graphics

0

1

2

3

4

5

0

6

7

2

4

6

0

4

0

Here’s How Reduction Really Works

Let’s suppose we are adding up 8 numbers.

To do that, we will need 4 cores and 3 steps:

19

mjb – November 13, 2012

Oregon State University
Computer Graphics

0

1

2

3

4

5

0

6

7

2

4

6

0

4

0

Core #0:
nums[0] += nums[1];

Core #1:
nums[2] += nums[3];

Core #2:
nums[4] += nums[5];

Core #3:
nums[6] += nums[7];

Core #0:
nums[0] += nums[2];

Core #2:
nums[4] += nums[6];

Core #0:
nums[0] += nums[4];

Here’s How Reduction Really Works

mjb – November 13, 2012

Oregon State University
Computer Graphics

Synchronizing OpenMP threads

omp_lock_t Sync;
. . .

omp_init_lock(&Sync);

. . .

omp_set_lock(&Sync);

<< code that needs the mutual exclusion >>
omp_unset_lock(&Sync);

omp_test_lock(&Sync);

The OpenMP paradigm is to create a mutual exclusion lock that only one thread can
set at a time:

omp_set_lock blocks, waiting for the lock to become available

omp_test_lock does not block – this is good if there is some more computing that could be
done if the lock is not yet available

20

mjb – November 13, 2012

Oregon State University
Computer Graphics

Other OpenMP Operations

See if OpenMP is available:

#ifdef _OPENMP

. . .

#endif

Force all threads to wait until all threads have reached this point:

#pragma omp barrier

Make this operation atomic (i.e., cannot be split by thread-swapping):

#pragma omp atomic
x += 5.;

(Note: there is an implied barrier after parallel for loops and OpenMP sections, unless the
nowait clause is used)

(Note: this is important for read-modify-write oper ations like this one)

