Solving a Nonlinear Equation: Newton's Method

Mike Bailey
mjb@cs.oregonstate.edu

Newton's Method for Solving a Nonlinear Equation

Scenario: You have an equation \(y(x) = 0 \), that is, there is a certain \(x \) value that makes the function equal to zero. But, the equation is too messy to solve directly. You do have an initial guess of the correct value of \(x \). It is close, but it is wrong.

For example, solve this equation for \(x \):

\[
y(x) = \cos^3 x + \log_{10} x = 0
\]

Starting with an initial guess of \(x = 6 \)

You can take the \(x \) you have, \(x_{\text{have}} \), and plug it into the equation to produce \(y_{\text{have}} \) and thus see how close you are to \(y = 0 \). But now what?

From calculus, we know that:

\[
\frac{dy}{dx} \approx \Delta y \quad \text{or} \quad \frac{dy}{dx} \Delta x = \Delta y
\]

So that:

\[
\frac{dy}{dx} \Delta x = \Delta y = y_{\text{new}} - y_{\text{have}} = 0 - y_{\text{have}}
\]

which gives us:

\[
\Delta x = \frac{-y_{\text{have}}}{\frac{dy}{dx}}
\]

We will use that to find the next value of \(x \) to try, and then repeat the process:

\[
x_{\text{have}} = x_{\text{have}} + \Delta x = x_{\text{have}} + \frac{-y_{\text{have}}}{\frac{dy}{dx}}
\]

\[
y_{\text{have}} = y(x_{\text{have}})
\]
Here's what is really going on

\[y = \cos^2 x + \log_{10} x = 0 \]
\[\frac{dy}{dx} = -3\sin x \cos^2 x + \frac{1}{x \ln(10)} \]

<table>
<thead>
<tr>
<th>(x_{\text{next}})</th>
<th>(y_{\text{next}})</th>
<th>(\Delta y)</th>
<th>(\Delta x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.00000</td>
<td>1.66328</td>
<td>0.84648</td>
<td>4.03196</td>
</tr>
<tr>
<td>4.03196</td>
<td>0.35651</td>
<td>1.03069</td>
<td>3.68607</td>
</tr>
<tr>
<td>3.68607</td>
<td>-0.05934</td>
<td>1.25483</td>
<td>3.73336</td>
</tr>
<tr>
<td>3.73336</td>
<td>0.00040</td>
<td>1.26907</td>
<td>3.73304</td>
</tr>
<tr>
<td>3.73304</td>
<td>0.00000</td>
<td>1.26903</td>
<td>3.73304</td>
</tr>
</tbody>
</table>

What would have happened if we had started with \(x = 2.75 \)?

\[x = 2.75000 \]
\[y = -0.35033 \]
\[\Delta y = -0.82027 \]
\[\Delta x = 2.32291 \]

<table>
<thead>
<tr>
<th>(x_{\text{next}})</th>
<th>(y_{\text{next}})</th>
<th>(\Delta y)</th>
<th>(\Delta x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75000</td>
<td>-0.35033</td>
<td>-0.82027</td>
<td>2.32291</td>
</tr>
<tr>
<td>2.32291</td>
<td>0.04716</td>
<td>-0.83564</td>
<td>2.37936</td>
</tr>
<tr>
<td>2.37936</td>
<td>-0.01913</td>
<td>-0.80125</td>
<td>2.37721</td>
</tr>
<tr>
<td>2.37721</td>
<td>0.00000</td>
<td>-0.89907</td>
<td>2.37721</td>
</tr>
</tbody>
</table>
What would have happened if we had started with $x=0.55$?

A Collision Detection Example

Let’s say we have a nonlinear surface. How close is the point $(3,1)$ to that surface?

Using our friend, the dot product:

$$(P_x - Q_x, P_y - Q_y) \cdot \text{slope} = 0$$

where the vector slope is:

$$\text{slope} = (dx, dy) = (1, \frac{dy}{dx}) = (1, \frac{d\sin x}{dx}) = (1, \cos x)$$

substituting for Q_x, Q_y, and the slope:

$$f(x) = (P_x - x, P_y - \sin x) \cdot (1, \cos x) = 0$$

and expanding:

$$f(x) = (P_x - x) + \cos x \cdot (P_y - \sin x) = 0$$

Note that in this case, we are solving $f(x) = 0$, not $y(x) = 0$!
A Collision Detection Problem Example

\[f(x) = (P_x - x) + \cos x \ast (P_x - \sin x) = 0 \]

<table>
<thead>
<tr>
<th>xhave</th>
<th>yhave</th>
<th>fhave</th>
<th>dfdx</th>
<th>xnext</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>0.84147</td>
<td>2.08665</td>
<td>-1.42352</td>
<td>2.46328</td>
</tr>
<tr>
<td>2.46328</td>
<td>0.52205</td>
<td>0.51778</td>
<td>-0.00088</td>
<td>1.98159</td>
</tr>
<tr>
<td>2.99733</td>
<td>0.52205</td>
<td>0.51778</td>
<td>-0.00001</td>
<td>1.97669</td>
</tr>
<tr>
<td>2.59234</td>
<td>0.52205</td>
<td>0.51778</td>
<td>-0.00000</td>
<td>1.97669</td>
</tr>
<tr>
<td>2.59234</td>
<td>0.52205</td>
<td>0.51778</td>
<td>-0.00000</td>
<td>1.97669</td>
</tr>
<tr>
<td>2.59234</td>
<td>0.52205</td>
<td>0.51778</td>
<td>-0.00000</td>
<td>1.97669</td>
</tr>
</tbody>
</table>

\[\text{dist} = \sqrt{(3 - 2.59234)^2 + (1 - 0.52205)^2} \]

\[\text{dist} = 0.62819 \]