
1

mjb – December 21, 2023

1

Computer Graphics

The GLSL API

glslapi.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – December 21, 2023

2

Computer Graphics

The GLSL Shader-Creation Process

mjb – December 21, 2023

3

Computer Graphics

#include "glew.h“

. . .

GLenum err = glewInit();
if(err != GLEW_OK)
{

fprintf(stderr, "glewInit Error\n");
exit(1);

}

fprintf(stderr, "GLEW initialized OK\n");
fprintf(stderr, "Status: Using GLEW %s\n", glewGetString(GLEW_VERSION));

Initializing the GL Extension Wrangler (GLEW)
Do this for Windows and maybe Linux, but not for Macs

http://glew.sourceforge.net

GLEW cannot be initialized until a graphics window is open. Like OpenGL itself,
GLEW’s calls will not work unless it can see a graphics context (i.e., a graphics state).

Do this immediately after
opening the window

mjb – December 21, 2023

4

Computer Graphics

If you are on your own Windows system, you can get Visual Studio 2022 by
going to:

https://azureforeducation.microsoft.com/devtools

Click the blue Sign In button on the right.

Login using your onid@oregonstate.edu username and password.

I recommend you get Visual Studio 2022 Enterprise. Don't get
Express.

Note that vscode is not a compiler. It is a way to interface to your file system.

Once you have Visual Studio, download the class file SampleWindows.zip, unzip
it on your system, and then double-click on the .sln file

Visual Studio Compilation Notes

mjb – December 21, 2023

5

Computer Graphics

Linux Compilation Notes

The typical g++ compile sequence is:

g++ -o sample sample.cpp -lGL -lGLU -lglut -lm

If you are on your own Linux system, compile using g++:

Note that the second character in the 3-character sequence "-lm" is an ell, i.e., a lower-
case L.

This is how you link in the math library.

Note that the second character in the sequences "-lGL", "-lGLU", and "-lglut" is an ell, i.e.,

a lower-case L. This is how you link in the OpenGL libraries.

Download the file SampleLinux.tar, un-tar it on your system
(tar -xvf SampleLinux.tar), and then type make

mjb – December 21, 2023

6

Computer Graphics

Mac Compilation Notes

The typical g++ compile sequence is:

g++ -framework OpenGL -framework GLUT sample.cpp -o sample -Wno-deprecated

If you are on your own Apple Mac system, compile using g++:

Download the file SampleMac.tar, un-tar it on your system
(tar -xvf SampleMac.tar), and then type make

The standard place to put OpenGL include files looks
like this:
#include <GL/gl.h>

Apple changed this to:
#include <OpenGL/gl.h>

This change has been made in your sample code.

2

mjb – December 21, 2023

7

Computer Graphics

#include <stdio.h>
. . .
FILE *fp;
#ifdef WIN32

errno_t err = fopen_s(&fp, filename, "r");
if(err != 0) { . . . }

#else
fp = fopen(filename, "r");
if(fp == NULL) { . . . }

#endif

fseek(fp, 0, SEEK_END); // move to the end of
int numBytes = ftell(fp); // length of file

GLchar * buffer = new GLchar [numBytes+1];

rewind(fp); // same as: “fseek(in, 0, SEEK_SET)”

fread(buffer, 1, numBytes, fp);
fclose(fp);
buffer[numBytes] = ‘\0‘; // the entire file is now in a character string

Reading a Shader source file into a character array

mjb – December 21, 2023

8

Computer Graphics

int status;
int logLength;

GLuint vertShader = glCreateShader(GL_VERTEX_SHADER);

glShaderSource(vertShader, 1, (const GLchar **)&buffer, NULL);
delete [] buffer;
glCompileShader(vertShader);
CheckGlErrors("Vertex Shader 1");

glGetShaderiv(vertShader, GL_COMPILE_STATUS, &status);
if(status == GL_FALSE)
{

fprintf(stderr, “Vertex shader compilation failed.\n”);
glGetShaderiv(vertShader, GL_INFO_LOG_LENGTH, &logLength);
GLchar *log = new GLchar [logLength];
glGetShaderInfoLog(vertShader, logLength, NULL, log);
fprintf(stderr, “\n%s\n”, log);
delete [] log;
exit(1);

}
CheckGlErrors("Vertex Shader 2");

Creating and Compiling a Vertex Shader from that Character Buffer
(Geometry and Fragment files work the same way)

This is the only part of this process that is specific to the type of shader it is

An array of strings

mjb – December 21, 2023

9

Computer Graphics

GLuint shader = glCreateShader(GL_VERTEX_SHADER);

GLuint shader = glCreateShader(GL_GEOMETRY_SHADER);

GLuint shader = glCreateShader(GL_TESS_CONTROL_SHADER);

GLuint shader = glCreateShader(GL_TESS_EVALUATION_SHADER);

GLuint shader = glCreateShader(GL_FRAGMENT_SHADER);

GLuint shader = glCreateShader(GL_COMPUTE_SHADER);

Creating Different Shader Types

Other than this, the rest of the create, compile, link process is the same for each shader type.

Macs don’t know about GL_GEOMETRY_SHADER, GL_TESS_CONTROL_SHADER , or
GL_TESS_EVALUATION_SHADER !

mjb – December 21, 2023

10

Computer Graphics

How does that array-of-strings thing work?

GLchar *ArrayOfStrings[3];
ArrayOfStrings[0] = “#define SMOOTH_SHADING”;
ArrayofStrings[1] = “ . . . a commonly-used procedure . . . “;
ArrayofStrings[2] = “ . . . the real vertex shader code . .. “;
glShaderSource(vertShader, 3, ArrayofStrings, NULL);

GLchar *buffer = “ . . . the entire shader code . . . “;
glShaderSource(vertShader, 1, (const GLchar **)&buffer, NULL);

GLchar *buffer[1];
buffer[0] = “ . . . the entire shader code . . . “;
glShaderSource(vertShader, 1, buffer, NULL);

These are two ways to specify a single character string:

mjb – December 21, 2023

11

Computer Graphics

Why use an array of strings as the shader input,
instead of just a single string?

1. You can use the same shader source and insert the appropriate
“#defines” at the beginning

2. You can insert a common header file (≈ a .h file)

3. You can simulate a “#include” to re-use common pieces of code

if(Mode == SmoothShading)
{ . . . }
else if(Mode == PhongShading)
{ . . . }

#ifdef SMOOTH_SHADING
{ . . . }
#endif

#ifdef PHONG_SHADING
{ . . . }
#endif

if-tests vs. preprocessing

mjb – December 21, 2023

12

Computer Graphics

GLuint program = glCreateProgram();

glAttachShader(program, vertShader);

glAttachShader(program, fragShader);

glAttachShader(program, geomShader);

Creating the Program and Attaching the Shaders to It

3

mjb – December 21, 2023

13

Computer Graphics

Linking the Program and Checking its Validity

glLinkProgram(program);
CheckGlErrors("Shader Program 1");
glGetProgramiv(program, GL_LINK_STATUS, &status);
if(status == GL_FALSE)
{

fprintf(stderr, “Link failed.\n”);
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &logLength);
log = new GLchar [logLength];
glGetProgramInfoLog(program, logLength, NULL, log);
fprintf(stderr, “\n%s\n”, log);
delete [] log;
exit(1);

}
CheckGlErrors("Shader Program 2");

glValidateProgram(program);
glGetProgramiv(program, GL_VALIDATE_STATUS, &status);
fprintf(stderr, “Program is %s.\n”, status == GL_FALSE ? “invalid” : “valid”);

mjb – December 21, 2023

14

Computer Graphics

Making the Program Active

Making the Program Inactive
(use the fixed function pipeline instead)

glUseProgram(program);

glUseProgram(0);

mjb – December 21, 2023

15

Computer Graphics

Using Multiple Shader Programs

glUseProgram(program0);
<draw some stuff>

glUseProgram(program1);
<draw some more stuff>

glUseProgram(program2);
<draw some more stuff>

glUseProgram(program3);
<draw some more stuff>

glUseProgram(program4);
<draw some more stuff>

glUseProgram(program5);
<draw some more stuff>

A specified shader program is an “attribute” – it stays in effect until you change it

mjb – December 21, 2023

16

Computer Graphics

float lightLoc[3] = { 0., 100., 0. };

GLint location = glGetUniformLocation(program, “uLightLocation”);

if(location < 0)
fprintf(stderr, “Cannot find Uniform variable ‘uLightLocation’\n”);

else
glUniform3fv(location, 1, lightLoc);

Passing in Uniform (global) Variables

You first need to find the variable’s location in the shader program’s symbol table.

Then you need to fill it.

mjb – December 21, 2023

17

Computer Graphics

Passing in Attribute (per-vertex) Variables

GLint location = glGetAttribLocation(program, “aArray”);

if(location < 0)
{

fprintf(stderr, “Cannot find Attribute variable ‘aArray’\n”);
}
else
{

glBegin(GL_TRIANGLES);
glVertexAttrib2f(location, a0, b0);
glVertex3f(x0, y0, z0);
glVertexAttrib2f(location, a1, b1);
glVertex3f(x1, y1, z1);
glVertexAttrib2f(location, a2, b2);
glVertex3f(x2, y2, z2);

glEnd();
}

You first need to find the variable’s location in the shader program’s symbol table.

Then you need to fill it per-vertex.

mjb – December 21, 2023

18

Computer Graphics

void
CheckGlErrors(const char* caller)
{

unsigned int glerr = glGetError();
if(glerr == GL_NO_ERROR)

return;
fprintf(stderr, "GL Error discovered from caller ‘%s‘: ", caller);
switch(glerr)
{

case GL_INVALID_ENUM:
fprintf(stderr, "Invalid enum.\n");
break;

case GL_INVALID_VALUE:
fprintf(stderr, "Invalid value.\n");
break;

case GL_INVALID_OPERATION:
fprintf(stderr, "Invalid Operation.\n");
break;

case GL_STACK_OVERFLOW:
fprintf(stderr, "Stack overflow.\n");
break;

case GL_STACK_UNDERFLOW:
fprintf(stderr, "Stack underflow.\n");
break;

case GL_OUT_OF_MEMORY:
fprintf(stderr, "Out of memory.\n");
break;

default:
fprintf(stderr, “Unknown OpenGL error: %d (0x%0x)\n”, glerr, glerr);

}
}

Checking for Errors

It’s not a bad idea to do this in all your OpenGL programs, even without shaders!

4

mjb – December 21, 2023

19

Computer Graphics

Writing a C++ Class to Handle Everything is Fairly Straightforward

int Polar = 1;
float K = 3.f;

Hyper.Use();

Hyper.SetUniformVariable(“uPolar", Polar);
Hyper.SetUniformVariable(“uK", K);
glBegin(GL_TRIANGLES);

Hyper.SetAttributeVariable(“aTemperature”, T0);
glVertex3f(x0, y0, z0);
Hyper.SetAttributeVariable(“aTemperature”, T1);
glVertex3f(x1, y1, z1);
Hyper.SetAttributeVariable(“aTemperature”, T2);
glVertex3f(x2, y2, z2);

glEnd();

Hyper.UnUse(); // Hyper.Use(0) also works

In InitGraphics():

Using the shaders program in Display():

This loads, compiles, and links the shader. It prints error messages if something went wrong.

GLSLProgram Hyper;

In the globals:

Hyper.Init();
bool valid = Hyper.Create("hyper.vert", "hyper.geom", "hyper.frag");
if(! valid) { . . . }

mjb – December 21, 2023

20

Computer Graphics

SPIR-V

SPIR-V is a file format that can be used to hold shader code that has been pre-compiled,
but has not yet been turned into machine code. It was created as a way for software
developers to pre-compile their code and then allow the vendor-specific driver to produce
the final binary representation. There are four major advantages in doing things this way:

1. A software developer can more easily wring compiler errors from the code by having an
external compiler that can be run independently from the application.

2. Vendors can still apply their optimization-magic in their device-specific drivers.

3. SPIR-V files can be read at the start of a program and be turned into machine code
faster than the original GLSL files could have been turned into machine code.

4. Software developers can distribute their code without having to reveal the shaders’
source code.

External
GLSL

Compiler
GLSL Source SPIR-V

Vendor-specific
code

Compiler in
driver

mjb – December 21, 2023

21

Computer Graphics

Reading SPIR-V-compiled Shaders

The new glShaderBinary() call replaces both glCreateShader() and glCompilerShader()
FILE *fp;
#ifdef WIN32

errno_t err = fopen_s(&fp, filename, "r");
if(err != 0) { . . . }

#else
fp = fopen(filename, "r");
if(fp == NULL) { . . . }

#endif

fseek(fp, 0, SEEK_END);
int numBytes = ftell(fp); // length of file – guaranteed to be a multiple of 4
GLchar * buffer = new GLchar [numBytes];
rewind(fp); // same as: “fseek(in, 0, SEEK_SET)”
fread(buffer, 1, numBytes, fp);
fclose(fp);

GLuint shaders[2]
glShaderBinary(2, shaders, GL_SHADER_BINARY_FORMAT_SPIR_V, buffer, numbytes);
GLuint program = glCreateProgram();
glAttachShader(program, shaders[0]);
glAttachShader(program, shaders[1]);

mjb – December 21, 2023

22

Computer Graphics

SPIR-V:
Standard Portable Intermediate Representation for Vulkan

glslangValidator shaderFile -G [-H] [-I<dir>] [-S <stage>] -o shaderBinaryFile.spv

Shaderfile extensions:
.vert Vertex
.tesc Tessellation Control
.tese Tessellation Evaluation
.geom Geometry
.frag Fragment
.comp Compute
(Can be overridden by the –S option)

-V Compile for Vulkan
-G Compile for OpenGL
-I Directory(ies) to look in for #includes
-S Specify stage rather than get it from shaderfile extension
-c Print out the maximum sizes of various properties

Windows: glslangValidator.exe
Linux: setenv LD_LIBRARY_PATH /usr/local/common/gcc-6.3.0/lib64/

mjb – December 21, 2023

23

Computer Graphics

Same as C/C++ -- the compiler gives you no nasty messages.

Also, if you care, legal .spv files have a magic number of 0x07230203

So, if you do an od –x on the .spv file, the magic number looks like
this:

0203 0723 . . .

How do you know if SPIR-V compiled successfully?

