
mjb – January 24, 2024

1

Computer Graphics

Noise !

noise.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – January 24, 2024

2

Computer Graphics

A Problem

One of the early criticisms of Computer Graphics is that it was too good, that is,
everything was too perfect. Spheres were too perfectly round. And so on.

Computer Graphics needed a way to add imperfections. It seemed like random
numbers could be used here. But pure random numbers are rather jarring:

and that's not what we want. What we want is randomness, but controlled
randomness. In Computer Graphics, this became known as Noise.

mjb – January 24, 2024

3

Computer Graphics

Noise:

• Noise can be 1D, 2D, or 3D

• Noise output is a function of input value(s)

• Typically, those input values are where you are on the object, but they don't have to be

• Noise ranges from -1. to +1. or from 0. to 1.

• Noise might look random, but it really isn’t

• Noise has Coherency (i.e., if you change the input value to the noise function a little, the
output value will only change a little)

• Noise has Repeatability (i.e., if you supply the same inputs, the noise function will
always give you back the same output)

• Noise is Continuous (i.e., it’s smooth with no jarring jumps)

mjb – January 24, 2024

4

Computer Graphics

Positional Noise

Idea: Pick a random number at the whole-number input values and
then fit a piecewise smooth curve through those points.

The problem is that, due to the uncertainty of random numbers, you might get a
very good plus-or-minus distribution, or a not-so-good plus-or-minus distribution.

mjb – January 24, 2024

5

Computer Graphics

Gradient Noise

Idea: Place points at the mid-line at the whole-number input values and use
random numbers to pick gradients (slopes) there, and then fit a piecewise
smooth curve through those points with those slopes.

No matter what, you will get a very good plus-or-minus distribution.

mjb – January 24, 2024

6

Computer Graphics

Quintic (5th order) Interpolation Creates More Continuity Than Cubic

Cubic: C1 continuity at the whole-number values Quintic: C2 continuity at the whole-number values

mjb – January 24, 2024

7

Computer Graphics

0 1 0 1 0 10 1 0 1 0 1
()

N N G G C C
N t N N G G C CC C C C C C

3 4 5

0
1 10 15 6

N
t t tC

3 4 5
01

10 15 6 1 NN
t t t CC

3 4 5

0
6 8 3

G
t t t tC

3 4 5

1
4 7 3

G
t t tC

2 3 4 5

0

1 3 3 1

2 2 2 2C
t t t tC

3 4 5

1

1 1

2 2C
t t tC

2 3

0
1 3 2

N
t tC

2 3
01

3 2 1 NN
t t CC

2 3

0
2

G
t t tC

2 3

1G
t tC

0
0

CC

1
0

CC

Coefficients for Cubic and Quintic Forms

Cubic Quintic

Noise values Gradients Curvatures

mjb – January 24, 2024

8

Computer Graphics

Noise Octaves

1 Octave 4 Octaves

Idea: Add multiple noise waves, each one twice the
frequency and half the amplitude of the previous one

mjb – January 24, 2024

9

Computer Graphics

Image Representation of 2D Noise

1 Octave

4 Octaves

mjb – January 24, 2024

10

Computer Graphics

3D Surface Representation of 2D Noise

4 Octaves

mjb – January 24, 2024

11

Computer Graphics

1 Octave

3D Volume Rendering of 3D Noise

L
o

w
 -

--
--

--
M

id
 -

--
--

-
H

ig
h

B
lu

e
 -

--
--

-
G

re
e

n
 -

--
--

-
R

e
d

Has continuity in X, Y, and Z

mjb – January 24, 2024

12

Computer Graphics

1 Octave

4 Octaves

Volume Isosurfaces of 3D Noise

S* = Mid-value

The low half of the noise values are on one side
of the surface, the high half are on the other

mjb – January 24, 2024

13

Computer Graphics

Examples

Deciding when to Discard for Erosion

Color Blending for CloudsColor Blending for Marble

mjb – January 24, 2024

14

Computer Graphics

Turbulence

1 Octave 4 Octaves

Normal

Turbulent

Idea: Take the absolute value of the noise about the centerline, giving the noise a “sharper” appearance
and creating “creases”. Warning: this is not the same use of the term as fluid “turbulence”.

mjb – January 24, 2024

15

Computer Graphics

Turbulence Example
Normal

Turbulent

mjb – January 24, 2024

16

Computer Graphics

Remember Noise Octaves? What if we create a lookup
table of noise octaves and hide it in a texture?

1 Octave 4 Octaves

mjb – January 24, 2024

17

Computer Graphics

Term LimitsTerm RangeTermComponent

0.0000 → 1.00000.5 ± .5000nv.r0

0.2500 → 0.75000.5 ± .2500nv.g1

0.3750 → 0.62500.5 ± .1250nv.b2

0.4375→ 0.56250.5 ± .0625nv.a3

~ 1.0 → 3.02.0 ± ~ 1.0sum

~ 0.0 → 2.01.0 ± ~ 1.0sum – 1

~ 0.0 → 1.00.5 ± ~ 0.5(sum – 1) / 2

~ -1.0 → 1.00.0 ± ~ 1.0(sum – 2)

The glman tool automatically creates a 3D noise texture and places it into Texture Unit 3. Your shaders can
access it through the pre-created uniform variable called Noise3. You just declare it in your shader as:

uniform sampler3D Noise3;
. . .
vec4 nv = texture(Noise3, uNoiseFreq * vMCposition);

The “noise vector” texture nv is a vec4 whose components have separate meanings. The .r component is
the low frequency noise. The .g component is twice the frequency and half the amplitude of the .r component,
and so on for the .b and .a components. Each component is centered around the middle value of .5

A Noise Texture in Glman

mjb – January 24, 2024

18

Computer Graphics

So, if you would like to have a four-octave noise function that ranges from 0. to 1, then
do this:

float n = nv.r + nv.g + nv.b + nv.a; // range is 1. 3.
n = (n - 1.) / 2.; // range is now 0. 1.

If you would like to have a four-octave noise function that ranges from -1 to 1, then do
this instead:

float n = nv.r + nv.g + nv.b + nv.a; // range is 1. 3.
n = (n - 2.); // range is now -1. 1.

By default, the glman 3D noise texture has dimensions 64 × 64 × 64. You can change
this by putting a command in your GLIB file of the form

Noise3D 128

to get dimension 128 × 128 × 128 , or choose whatever resolution you want (up to around
400 × 400 × 400).

A Noise Texture in Glman

mjb – January 24, 2024

19

Computer Graphics

A Noise Texture in Glman

The first time glman runs, it creates noise textures for you, it will take a few seconds. But
glman then writes them to a local file, so that the next time this texture is needed, it is read
from the file, which is a lot faster.

Getting a noise value from a 2D quantity (such as vST) works the same way as a 3D
noise texture, except you get at it with:

uniform sampler3D Noise3;
...
vec4 nv = texture(Noise3, uNoiseFreq * vec3(vST,0.));
float n = nv.r + nv.g + nv.b + nv.a; // range is 1. 3.
n = (n - 1.) / 2.; // range is now 0. 1.

Here we promote vST to be a vec3 so that it can use a 2D slice of the 3D noise texture.

mjb – January 24, 2024

20

Computer Graphics

GLuint Noise3; // a global
GLSLProgram Pattern; // a global
. . .
// in InitGraphics:

glGenTextures(1, &Noise3);
int nums, numt, nump;
unsigned char * texture = ReadTexture3D("noise3d.064.tex", &nums, &numt, &nump);
If(texture == NULL) { … }

glBindTexture(GL_TEXTURE_3D, Noise3);
glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT);
glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, nums, numt, nump, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texture);

Pattern.Init();
bool valid = Pattern.Create(“pattern.vert", “pattern.frag");
if (!valid)
. . .

A 3D Noise Texture in Your C/C++ Program

The easiest way to read a noise texture into your C/C++ program is to get one of the noise
textures from glman and know how to read it in. These pages will tell you how.

Dimensions3D

mjb – January 24, 2024

21

Computer Graphics

unsigned char *
ReadTexture3D(char *filename, int *width, int *height, int *depth)
{

FILE *fp = fopen(filename, "rb");
if(fp == NULL)

return NULL;

int nums, numt, nump;
fread(&nums, 4, 1, fp);
fread(&numt, 4, 1, fp);
fread(&nump, 4, 1, fp);
fprintf(stderr, “Texture size = %d x %d x %d\n”, nums, numt, nump);

*width = nums;
*height = numt;
*depth = nump;

unsigned char * texture = new unsigned char[4 * nums * numt * nump];

fread(texture, 4 * nums * numt * nump, 1, fp);
fclose(fp);
return texture;

}

A 3D Noise Texture in Your C/C++ Program

mjb – January 24, 2024

22

Computer Graphics

void
Display()
{

. . .

glActiveTexture(GL_TEXTURE3); // set to use texture unit 3
glBindTexture(GL_TEXTURE_3D, Noise3);

Pattern.Use();
Pattern.SetUniformVariable("Noise3", 3);
. . .
<< Draw something >>
. . .
Pattern.UnUse;

A Noise Texture in Your C++ Program

mjb – January 24, 2024

23

Computer Graphics

Have actual input values
of where we are right now

Add Noise to the actual
input values to produce
new “fake” input values

Have an equation that relates some
input value (x,y,z or u,v) to output

values (color, height)

Use those new “fake” input
values in the original equation

How to Use Noise

Idea: The graphics system will display
“here”, using display parameters as if
you were “over there”.

Have actual input values
of where we are right now

Add Noise to the actual
input values to produce
new “fake” input values

Have an equation that relates some
input value (x,y,z or s,t) to output

values (color, height)

Use those new “fake” input
values in the original equation

mjb – January 24, 2024

24

Computer Graphics

uniform sampler3D Noise3;
uniform float uNoiseFreq, uNoiseAmp;
in vec3 vMCposition;
. . .
vec4 nv = texture(Noise3, uNoiseFreq * vMCposition);
float n = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
n = n - 2.; // range is now -1. -> 1.
n *= uNoiseAmp;

out vec3 vMCposition;
. . .
vMCposition = gl_Vertex.xyz;

How to Index Noise from 3D Model Coordinates

Model coordinates where this fragment is

How much to amplify the noise effect

We typically do this in Model coordinates so that the pattern sticks to the object.

Now add the noise value, n, to the actual location. Compute the effect
at that “fake” location but apply it at the actual location.

How much to increase the sampling rate

In the vertex shader:

In the fragment shader:

mjb – January 24, 2024

25

Computer Graphics

uniform sampler3D Noise3;
uniform float uNoiseFreq, uNoiseAmp;
in vec2 vST;
. . .
vec4 nv = texture(Noise3, uNoiseFreq * vec3(vST,0.));
float n = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
n = n - 2.; // range is now -1. -> 1.
n *= uNoiseAmp;

out vec2 vST;
. . .
vST = gl_MultiTexCoord0.st;

How to Index Noise from 2D Texture Coordinates

Texture coordinates where this fragment is

How much to amplify the noise effect

We typically do this in Model coordinates so that the pattern sticks to the object.

Now add the noise value, n, to the actual location. Compute the effect
at that “fake” location but apply it at the actual location.

How much to increase the sampling rate

In the vertex shader:

In the fragment shader:

mjb – January 24, 2024

26

Computer Graphics

Elliptical Dots with Tolerance

1.+uTol

1.-uTol

1.

+

float t = smoothstep(1.-uTol, 1.+uTol, d);
vec3 color = mix(ORANGE, WHITE, t);

mjb – January 24, 2024

27

Computer Graphics

Elliptical Dots with Tolerance and Noise

float n = nv.r + nv.g + nv.b + nv.a; // 1. -> 3.
n = n - 2.; // -1. -> 1.
n *= uNoiseAmp;

. . .

float ds = st.s - sc; // wrt ellipse center
float dt = st.t - tc; // wrt ellipse center
float oldDist = sqrt(ds*ds + dt*dt);
float newDist = oldDist + n;
float scale = newDist / oldDist; // this could be < 1., = 1., or > 1.

ds *= scale; // scale by noise factor
ds /= Ar; // ellipse equation
dt *= scale; // scale by noise factor
dt /= Br; // ellipse equation
float d = ds*ds + dt*dt;
float t = smoothstep(1.-uTol, 1.+uTol, d);
vec3 theColor = mix(ORANGE, WHITE, t);
. . .

uNoiseAmp = 0.

uNoiseAmp > 0.

mjb – January 24, 2024

28

Computer Graphics

Elliptical Dots with Tolerance and Noise

mjb – January 24, 2024

29

Computer Graphics

Noise Amplitude

N
o

is
e

F
re

q
u

e
nc

y
N = NoiseAmp * noise(NoiseFreq * PP);

mjb – January 24, 2024

30

Computer Graphics

Color Only

mjb – January 24, 2024

31

Computer Graphics

Displacement
Only

mjb – January 24, 2024

32

Computer Graphics

Color and
Displacement

together

mjb – January 24, 2024

33

Computer Graphics

Displacement Only Surface + DisplacementSurface Only
N

oi
se

N
o

N
o

is
e

mjb – January 24, 2024

34

Computer Graphics

Displacement-mapped Bump-mapped

If You Didn’t Have the Labels, Could You Tell Which of These Two Images
is Displacement-Mapped and Which is Bump-Mapped?

