Geometric Modeling for Computer Graphics

What do we mean by "Modeling"?

How we model geometry depends on what we would like to use the geometry for:

- Looking at its appearance
- Will we need to interact with its shape?
- How does it interact with its environment?
- How does it interact with other objects?
- What is its surface area and volume?
- Will it need to be 3D-printed?
- Etc.

L-Systems as a Special Way to Model 3D Geometry

Introduced and developed in 1968 by Aristid Lindenmayer, L-systems are a way to apply grammar rules for generating fractal (self-similar) geometric shapes. For example, take the string:

```
"FF+[+F-F-F][-F+F+F]"
```

But the real fun comes when you call that string recursively. For every F, replicate that string but with smaller geometry:

```
"F → FF+[+F-F-F][-F+F+F]"
```
L-Systems as a Special Way to Model 3D Geometry

And, of course we can introduce more grammar to swing it into 3D

“F → FF+[+F<-F>-F]-[-F+^F+vF]”

+ rotate + about Z
- rotate - about Z
< rotate + about Y
> rotate – about Y
v rotate + about X
^ rotate – about X

Explicitly Listing Geometry and Topology

Models can consist of thousands of vertices and faces – we need some way to list them efficiently

This is called a Mesh.
If it’s in nice neat rows like this, it is called a Regular Mesh.
If it’s not, it is called an Irregular Mesh, or oftentimes called a Triangular Irregular Network, or TIN.
Mesh Vertices Can Be Edited

Original Pulling on a single Vertex Pulling on a Vertex with Proportional Editing Turned On

Meshes Can Be Sculpted

Original “Clay Thumb” Sculpting Sculpting Can Produce Extra Mesh Vertices

Remember Venn Diagrams (2D Boolean Operators) from High School?

Two Overlapping Shapes Union: A \cup B

Intersectio:n A \cap B Difference: A - B

Well, Welcome to Venn Diagrams in 3D

Two Overlapping Solids Union: A \cup B

Intersection: A \cap B Difference: A - B

This is often called Constructive Solid Geometry, or CSG
Geometric Modeling Using 3D Boolean Operators on Meshes

Two Overlapping Solids
Union: A ∪ B
Intersection: A ∩ B
Difference: A - B

Procedural Geometric Modeling Using TinkerCad/Codeblocks

Another Way to Model:
Curve Sculpting – Bézier Curve Sculpting

\[P(t) = (1 - t)^3P_0 + 3(1 - t)^2tP_1 + 3t^2(1 - t)P_2 + t^3P_3 \]

0 ≤ t ≤ 1.

where \(P \) represents \(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \)
t goes from 0.0 to 1.0 in whatever increment you’d like

\[0.0 \leq t \leq 1.0. \]

You draw the curve as a series of lines

`GL_LINE_STRIP` is a good topology for this

Curve Sculpting – Bézier Curve Sculpting Example

Moving a single control point moves its entire curve

A Small Amount of Input Change Results in a Large Amount of Output Change
Another way to Model:
Curve Sculpting – Catmull-Rom Curve Sculpting

The Catmull-Rom curve consists of any number of points. The first point influences how the curve starts. The last point influences how the curve ends. The overall curve goes smoothly through all other points.

To draw the curve, grab points 0, 1, 2, and 3, call them P_0, P_1, P_2, and P_3, and loop through the following equation, varying t from 0. to 1. in an increment of your own choosing:

$$P(t) = 0.5 \times [2 \times P_1 + t \times (P_2 - P_1) + t^2(2 \times P_2 - 5 \times P_1 + 4 P_0 - P_3) + t^3(P_2 - 3P_1 + 3P_0 - P_0)]$$

where P represents $\begin{pmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{pmatrix}$

For each set of 4 points, this equation just draws the line between the second and third points. That's why you keep having to use subsequent sets of 4 points.

To draw the curve, grab points 0, 1, 2, and 3, call them P_0, P_1, P_2, and P_3, and loop through the equation, varying t from 0. to 1. in an increment of your own choosing.

Then, grab points 1, 2, 3, and 4, call them P_0, P_1, P_2, and P_3, and loop through the same equation.

And so on…

A Small Amount of Input Change Results in a Large Amount of Output Change

The Yellow 6-Point Catmull-Rom Curve

Another way to Model:
Bézier Surface Sculpting

For each set of 4 points, this equation just draws the line between the second and third points. That's why you keep having to use subsequent sets of 4 points.

To draw the curve, grab points 0, 1, 2, and 3, call them P_0, P_1, P_2, and P_3, and loop through the equation, varying t from 0. to 1. in an increment of your own choosing.

Then, grab points 1, 2, 3, and 4, call them P_0, P_1, P_2, and P_3, and loop through the same equation.

Then, grab points 2, 3, 4, and 5, call them P_0, P_1, P_2, and P_3, and loop through the same equation.

And so on…

A Small Amount of Input Change Results in a Large Amount of Output Change
Surface Equations can also be used for Analysis

- Showing Contour Lines
- Showing Curvature

Another Way to Model: Metaball Objects

The cool thing is that, if you move them close enough together, they will "glom" into a single object.

Metaball Objects Can Be Turned into Meshes for Later Editing
Voxelization as a Special Way to Model 3D Geometry

Displacement Textures as a Special Way to Model 3D Geometry

Image Texture

Displacement Texture
(light = high, dark = low)

Vertex-described Object

Displacement Textures (light = high, dark = low)

```cpp
#version 330 compatibility
uniform float uLightX, uLightY, uLightZ;
uniform float uHeightScale;
uniform float uSeaLevel;
uniform sampler2D uDispUnit;
uniform bool uDoElevations;
out vec2 vST;
out vec3 vN; // normal vector
out vec3 vL; // vector from point to light
void main()
{
vec2 st = gl_MultiTexCoord0.st;
vST = st;
vec3 norm = normalize(gl_NormalMatrix * gl_Normal); // normal vector
vec3 LightPos = normalize(vec3(uLightX, uLightY, uLightZ));
vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; // eye coordinate position
vL = LightPos - ECposition.xyz; // vector from the point to the light position
vec3 vert = gl_Vertex.xyz;
if (uDoElevations)
{
float disp = texture(uDispUnit, st).r - uSeaLevel;
disp *= uHeightScale;
vert += normalize(gl_Normal) * disp;
}

gl_Position = gl_ModelViewProjectionMatrix * vec4(vert, 1.);
```
Displacement Textures as a Special Way to Model 3D Geometry

```glsl
#version 330 compatibility
uniform bool uDoBumpMapping;
uniform float uKa, uKd;
uniform float uHeightScale;
uniform float uNormalScale;
uniform sampler2D uColorUnit;
uniform sampler2D uDispUnit;
in vec2 vST;
in vec3 vN;
in vec3 vL;
define DELTA 0.01

void main()
{
vec3 newColor = texture( uColorUnit, vST ).rgb;
gl_FragColor = vec4( newColor, 1. );
if( uDoBumpMapping )
{
  ... // see next slide
}
}
```

Displacements only, no lighting

Displacements + Lighting

Just the image texture

Lighting only, no displacements

Note: as you can imagine, static images do not do this justice. Being able to dynamically rotate the Moon and change the height exaggeration and light position makes a big difference!
The object must be a legal solid. It must have a definite inside and a definite outside. It can't have any missing face pieces.

"Definite inside and outside" is sometimes called "Two-manifold" or "Watertight".

The Simplified Euler's Formula for Legal Solids

\[F - E + V = 2 \]

For a cube, \(6 - 12 + 8 = 2 \)

F \(\) Faces
E \(\) Edges
V \(\) Vertices

The full formula is:

\[F - E + V - L = 2(B - G) \]

F \(\) Faces
E \(\) Edges
V \(\) Vertices
L \(\) Inner Loops (within faces)
B \(\) Bodies
G \(\) Genus (number of through-holes)

Objects cannot pass through other objects. If you want two shapes together, do a Boolean union on them so that they become one complete object.

Overlapped in 3D -- bad

Boolean union -- good