
1

mjb – August 22, 2024

1

Computer Graphics

Computer Graphics Lighting

Lighting.pptx

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License

Mike Bailey

mjb@cs.oregonstate.edu

mjb – August 22, 2024

2

Computer Graphics

Why Do We Care About Lighting?

Lighting “dis-ambiguates” 3D scenes

Without lighting

With lighting

1

2

2

mjb – August 22, 2024

3

Computer Graphics

A surface normal is a vector perpendicular to the surface.

Sometimes surface normals are defined or computed per-face, like this.

Sometimes they are defined or computed per-vertex, like this.

The Surface Normal Vector

P0

P1

P2

P0

P1

P2

mjb – August 22, 2024

4

Computer Graphics

When the triangle is approximating an underlying smooth surface that we know the equation
of, we can get them by knowing what the exact normal of the smooth surface would have
been. A good example is looking at a sphere from the side:

When the triangle is part of an arbitrary polyhedron for which we do not
have an underlying exact equation, we use vector cross products of the
edge vectors to get a vector that is perpendicular to the surface:

n = (P1 - P0) x (P2 – P0)

Where Do Surface Normal Vectors Come From?

vector cross product

The sphere we are
trying to approximate

A triangle we are
using to approximate
the sphere with

Assign the underlying
sphere's exact normal vectors
to the corners of the triangle

3

4

3

mjb – August 22, 2024

5

Computer Graphics

glMatrixMode(GL_MODELVIEW);

glTranslatef(tx, ty, tz);
glRotatef(degrees, ax, ay, az);
glScalef(sx, sy, sz);

glNormal3f(nx, ny, nz);

glColor3f(r, g, b);
glBegin(GL_TRIANGLES);

glVertex3f(x0, y0, z0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);

glEnd();

Setting a Per-Face Surface Normal Vector in OpenGL

Per-face normal is set
before the face is drawn

mjb – August 22, 2024

6

Computer Graphics

glMatrixMode(GL_MODELVIEW);

glTranslatef(tx, ty, tz);
glRotatef(degrees, ax, ay, az);
glScalef(sx, sy, sz);

glColor3f(r, g, b);
glBegin(GL_TRIANGLES);

glNormal3f(nx0, ny0, nz0);
glVertex3f(x0, y0, z0);
glNormal3f(nx1, ny1, nz1);
glVertex3f(x1, y1, z1);
glNormal3f(nx2, ny2, nz2);
glVertex3f(x2, y2, z2);

glEnd();

Setting Per-Vertex Surface Normal Vectors in OpenGL

Per-vertex normal is set
while the face is being drawn

5

6

4

mjb – August 22, 2024

7

Computer Graphics

glMatrixMode(GL_MODELVIEW);

glTranslatef(tx, ty, tz);
glRotatef(degrees, ax, ay, az);
glScalef(sx, sy, sz);

glShadeModel(GL_FLAT);
glNormal3f(nx, ny, nz);

glColor3f(r, g, b);
glBegin(GL_TRIANGLES);

glVertex3f(x0, y0, z0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);

glEnd();

Flat Shading (Per-face)

mjb – August 22, 2024

8

Computer Graphics

glMatrixMode(GL_MODELVIEW);

glTranslatef(tx, ty, tz);
glRotatef(degrees, ax, ay, az);
glScalef(sx, sy, sz);

glShadeModel(GL_SMOOTH);

glColor3f(r, g, b);
glBegin(GL_TRIANGLES);

glNormal3f(nx0, ny0, nz0);
glVertex3f(x0, y0, z0);
glNormal3f(nx1, ny1, nz1);
glVertex3f(x1, y1, z1);
glNormal3f(nx2, ny2, nz2);
glVertex3f(x2, y2, z2);

glEnd();

Smooth Shading (Per-vertex)

7

8

5

mjb – August 22, 2024

9

Computer Graphics

GL_FLAT GL_SMOOTH

mjb – August 22, 2024

10

Computer Graphics

glTranslatef(tx, ty, tz);
glRotatef(degrees, ax, ay, az);
glScalef(sx, sy, sz);

glNormal3f(nx, ny, nz);

OpenGL Surface Normal Vectors Need to be Unitized by Someone

OpenGL expects the normal vector to be a unit vector, that is: nx2 + ny2 + nz2 = 1

If it is not, you can force OpenGL to do the unitizing for you with:

glEnable(GL_NORMALIZE);

9

10

6

mjb – August 22, 2024

11

Computer Graphics

The OpenGL “built-in” Lighting Model

L E

n R

P

I

P Point being illuminated
I Light intensity
L Unit vector from point to light
n Unit vector surface normal
R Perfect reflection unit vector
E Unit vector to eye position

mjb – August 22, 2024

12

Computer Graphics

1. Ambient = a constant

2. Diffuse = I*cosΘ

3. Specular = I*cosS

Accounts for light bouncing “everywhere”

Accounts for the angle between the incoming
light and the surface normal

Accounts for the angle between the “perfect reflector” and
the eye. The exponent, S, accounts for surface shininess

Note that cosΘ is just the dot product between unit vectors L and n

Note that cos is just the dot product between unit vectors R and E

The OpenGL “built-in” Lighting Model

11

12

7

mjb – August 22, 2024

13

Computer Graphics

You are all familiar with the Diffuse Lighting effects

mjb – August 22, 2024

14

Computer Graphics

n

Diffuse Lighting actually works because of spreading out the same
amount of light energy across more surface area

Diffuse = I*cosΘ

Θ
L

I
I

13

14

8

mjb – August 22, 2024

15

Computer Graphics

You are all familiar with the Specular Lighting effects

These all have metallic-looking surfaces. What tells you that?

It’s the shiny-reflection spots.

mjb – August 22, 2024

16

Computer Graphics

You are all familiar with the Specular Lighting effects

These are not actually metal. They are wood with special paint that mimics
the metallic reflection highlights. We can mimic the same effects digitally!

15

16

9

mjb – August 22, 2024

17

Computer Graphics

The Specular Lighting equation is a heuristic equation that approximates
reflection from a rough surface

n

S ≈ “shininess”

1/S ≈ “roughness”

Specular = I*cosS

R

E

mjb – August 22, 2024

18

Computer Graphics

+

=

+

Ambient

Diffuse

Specular

The Three Elements of
Built-in OpenGL Lighting

17

18

10

mjb – August 22, 2024

19

Computer Graphics

Types of Light Sources

Spotlight

Point

Directional (Parallel, Sun)

mjb – August 22, 2024

20

Computer Graphics

Lighting Examples

Point Light at the Eye

Point Light at the Origin

19

20

11

mjb – August 22, 2024

21

Computer Graphics

Lighting Examples

Spot Lights

mjb – August 22, 2024

22

Computer Graphics

LR

LG

LB

ER

EG

EB

What the light
can produce

What the eye sees

Colored Lights Shining on Colored Objects

ER = LR * MR

EG = LG * MG

EB = LB * MB

White Light

Green Light

MR

MG

MB
What the material
can reflect

21

22

12

mjb – August 22, 2024

23

Computer Graphics

If there is one light and one material, the following things can
be set independently:

• Global scene ambient red, green, blue
• Light position: x, y, z
• Light ambient red, green, blue
• Light diffuse red, green, blue
• Light specular red, green, blue
• Material reaction to ambient red, green, blue
• Material reaction to diffuse red, green, blue
• Material reaction to specular red, green, blue
• Material specular shininess

This makes for 25 things that can be set for just one light
and one material! While many combinations are possible,
some make more sense than others.

Too Many Lighting Options

mjb – August 22, 2024

24

Computer Graphics

1. Set the ambient light globally using, for example,
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, MulArray3(.3f, WHITE))

i.e., set it to some low intensity of white.

2. Set the light’s ambient component to zero.

3. Set the light’s diffuse and specular components to the full color of the light.

4. Set each material’s ambient and diffuse to the full color of the object.

5. Set each material’s specular component to some fraction of white.

Ways to Simplify Too Many Lighting Options

23

24

13

mjb – August 22, 2024

25

Computer Graphics

const float WHITE[] = { 1.,1.,1.,1. };

// utility to create an array from 3 separate values:

float *
Array3(float a, float b, float c)
{

static float array[4];

array[0] = a;
array[1] = b;
array[2] = c;
array[3] = 1.;
return array;

}

// utility to create an array from a multiplier and an array:

float *
MulArray3(float factor, float array0[3])
{

static float array[4];

array[0] = factor * array0[0];
array[1] = factor * array0[1];
array[2] = factor * array0[2];
array[3] = 1.;
return array;

}

The 4th element of the array being set
to 1.0 is there on purpose. The reason
for that is coming up soon!.

mjb – August 22, 2024

26

Computer Graphics

glMaterialfv(GL_BACK, GL_AMBIENT, MulArray3(.4, WHITE));
glMaterialfv(GL_BACK, GL_DIFFUSE, MulArray3(1., WHITE));
glMaterialfv(GL_BACK, GL_SPECULAR, Array3(0., 0., 0.));
glMaterialf (GL_BACK, GL_SHININESS, 5.);
glMaterialfv(GL_BACK, GL_EMISSION, Array3(0., 0., 0.));

glMaterialfv(GL_FRONT, GL_AMBIENT, MulArray3(1., rgb));
glMaterialfv(GL_FRONT, GL_DIFFUSE, MulArray3(1., rgb));
glMaterialfv(GL_FRONT, GL_SPECULAR, MulArray3(.7, WHITE));
glMaterialf (GL_FRONT, GL_SHININESS, 8.);
glMaterialfv(GL_FRONT, GL_EMISSION, Array3(0., 0., 0.));

Setting the Material Characteristics

Characteristics for the
back-facing surfaces

Characteristics for the
front-facing surfaces

glMaterialfv(GL_FRONT_AND_BACK, . . .); You can also set the front and back characteristics
to be the same value at the same time

25

26

14

mjb – August 22, 2024

27

Computer Graphics

How Does OpenGL Define GL_FRONT and GL_BACK?

0

1

2 GL_FRONT

GL_BACK

Vertices are CCW from the point of view of the eye

0

1

2

Vertices are CW from the point of view of the eye

mjb – August 22, 2024

28

Computer Graphics

void
SetMaterial(float r, float g, float b, float shininess)
{

glMaterialfv(GL_BACK, GL_EMISSION, Array3(0., 0., 0.));
glMaterialfv(GL_BACK, GL_AMBIENT, MulArray3(.4f, WHITE));
glMaterialfv(GL_BACK, GL_DIFFUSE, MulArray3(1., WHITE));
glMaterialfv(GL_BACK, GL_SPECULAR, Array3(0., 0., 0.));
glMaterialf (GL_BACK, GL_SHININESS, 2.f);

glMaterialfv(GL_FRONT, GL_EMISSION, Array3(0., 0., 0.));
glMaterialfv(GL_FRONT, GL_AMBIENT, Array3(r, g, b));
glMaterialfv(GL_FRONT, GL_DIFFUSE, Array3(r, g, b));
glMaterialfv(GL_FRONT, GL_SPECULAR, MulArray3(.8f, WHITE));
glMaterialf (GL_FRONT, GL_SHININESS, shininess);

}

A Material-setting Helper Function I Like to Use

Back-facing= gray

Front-facing = (r,g,b)

This code is in your sample code
folder in the file setmaterial.cpp

27

28

15

mjb – August 22, 2024

29

Computer Graphics

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, MulArray3(.2, WHITE));
glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

glLightfv(GL_LIGHT0, GL_AMBIENT, Array3(0., 0., 0.));
glLightfv(GL_LIGHT0, GL_DIFFUSE, LightColor);
glLightfv(GL_LIGHT0, GL_SPECULAR, LightColor);

glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.);
glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.);
glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.);

// this is here because we are going to do object (and thus normal) scaling:

glEnable(GL_NORMALIZE);

Setting the Light Characteristics

You can have multiple
lights, nominally 0-7

Attenuation =
1

𝐶 + 𝐿𝑑 + 𝑄𝑑ଶ
where d is the distance from the light to the point being lit

mjb – August 22, 2024

30

Computer Graphics

Physics tells us that light energy decreases with the inverse square of the distance,
To emulate this, we would set C=0., L=0., Q=1. Streetlights and car headlights are
good uses for this.

Often, we don’t want any attenuation, that is, we want to see everything. In that
case, set C=1., L=0., Q=0.

And sometimes you might want to attenuate linearly. Why? Well, because you can!
In that case, set C=0., L=1., Q=0.

glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.);
glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.);
glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.);

Light Attenuation

Attenuation =
1

𝐶 + 𝐿𝑑 + 𝑄𝑑ଶ
where d is the distance from the light to the point being lit

𝟏

𝒅𝟐

29

30

16

mjb – August 22, 2024

31

Computer Graphics

Should OpenGL Use the Lighting Equations or Use glColor3f?

If your code has most recently said:
glEnable(GL_LIGHTING);

OpenGL will use the most recent Lighting values
OpenGL will use the most recent Material values

If your code has most recently said:
glDisable(GL_LIGHTING);

OpenGL will use the most recent glColor3f values

mjb – August 22, 2024

32

Computer Graphics

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// 1. if we do this, then the light will be wrt the scene at XLIGHT, YLIGHT, ZLIGHT:

glLightfv(GL_LIGHT0, GL_POSITION, Array3(XLIGHT, YLIGHT, ZLIGHT));

// translate the object into the viewing volume:

gluLookAt(XEYE, YEYE, ZEYE, 0., 0., 0., 0., 1., 0.);

// 2. if we do this, then the light will be wrt the eye at XLIGHT, YLIGHT, ZLIGHT:

// glLightfv(GL_LIGHT0, GL_POSITION, Array3(XLIGHT, YLIGHT, ZLIGHT));

Setting the Light Position

The light position gets transformed by the ModelView matrix
at the moment the glLghtfv(…, GL_POSITION, …) function
is encountered. It is really important to remember this!

31

32

17

mjb – August 22, 2024

33

Computer Graphics

// perform the rotations and scaling about the origin:

glRotatef(Xrot, 1., 0., 0.);
glRotatef(Yrot, 0., 1., 0.);
glScalef(Scale, Scale, Scale);

// 3. if we do this, then the light will be wrt to the object at XLIGHT, YLIGHT, ZLIGHT:

// glLightfv(GL_LIGHT0, GL_POSITION, Array3(XLIGHT, YLIGHT, ZLIGHT));

// specify the shading model:

glShadeModel(GL_SMOOTH);

// enable lighting:
glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

// draw the objects:
. . .

glDisable(GL_LIGHTING);

You can enable and disable lighting “at all”.
(This toggles between using what the lighting
equations say and what glColor3f() says.)

You can enable and disable each light independently

It is usually good form to disable the lighting after you are
done using it

mjb – August 22, 2024

34

Computer Graphics

float *
Array3(float a, float b, float c)
{

static float array[4];

array[0] = a;
array[1] = b;
array[2] = c;
array[3] = 1.;
return array;

}

Sidebar: Why are Light Positions 4-element arrays where the 4th

element is 1.0? Homogeneous Coordinates!

We usually think of a 3D point as being represented by a triple: (x,y,z).
Using homogeneous coordinates, we add a 4th number: (x,y,z,w)
Graphics systems take (x,y,z,w), perform all transformations, and then divide x, y, and z by w
before using them.

, ,
x y z

X Y Z
w w w

Thus (1,2,3,1) , (2,4,6,2) , (-1,-2,-3,-1) all represent the same 3D point.

33

34

18

mjb – August 22, 2024

35

Computer Graphics

Homogeneous Coordinates let us Represent Points at Infinity

This is useful to be able specify a parallel light source by placing the light source position at infinity.

The point (1,2,3,1) represents the 3D point (1,2,3)

The point (1,2,3,.5) represents the 3D point (2,4,6)

The point (1,2,3,.01) represents the point (100,200,300)

So, (1,2,3,0) represents a point at infinity, along the ray from the origin through (1,2,3).

Points-at-infinity are used for parallel light sources (and some shadow algorithms)

Example of using a
parallel light source

mjb – August 22, 2024

36

Computer Graphics

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, Array3(xdir,ydir,zdir));
Specifies the spotlight-pointing direction. This gets transformed by the current
value of the ModelView matrix.

glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e);
Specifies the spotlight directional intensity. This acts very
much like the exponent in the specular lighting equation.

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, deg);
Specifies the spotlight maximum spread angle. A cutoff
angle of 180° indicates that this is really a point light.

Additional Parameters for Spotlights

Three bouncing spotlights

35

36

19

mjb – August 22, 2024

37

Computer Graphics

void
SetPointLight(int ilight, float x, float y, float z, float r, float g, float b)
{

glLightfv(ilight, GL_POSITION, Array3(x, y, z));
glLightf(ilight, GL_SPOT_CUTOFF, 180.f);
glLightfv(ilight, GL_AMBIENT, Array3(0., 0., 0.));
glLightfv(ilight, GL_DIFFUSE, Array3(r, g, b));
glLightfv(ilight, GL_SPECULAR, Array3(r, g, b));
glLightf (ilight, GL_CONSTANT_ATTENUATION, 1.f);
glLightf (ilight, GL_LINEAR_ATTENUATION, 0.f);
glLightf (ilight, GL_QUADRATIC_ATTENUATION, 0.f);
glEnable(ilight);

}

void
SetSpotLight(int ilight, float x, float y, float z, float xdir, float ydir, float zdir, float r, float g, float b)
{

glLightfv(ilight, GL_POSITION, Array3(x, y, z));
glLightfv(ilight, GL_SPOT_DIRECTION, Array3(xdir,ydir,zdir));
glLightf(ilight, GL_SPOT_EXPONENT, 1.f);
glLightf(ilight, GL_SPOT_CUTOFF, 30.f);
glLightfv(ilight, GL_AMBIENT, Array3(0., 0., 0.));
glLightfv(ilight, GL_DIFFUSE, Array3(r, g, b));
glLightfv(ilight, GL_SPECULAR, Array3(r, g, b));
glLightf (ilight, GL_CONSTANT_ATTENUATION, 1.f);
glLightf (ilight, GL_LINEAR_ATTENUATION, 0.f);
glLightf (ilight, GL_QUADRATIC_ATTENUATION, 0.f);
glEnable(ilight);

}

Two Light-setting Helper Functions I Like to Use

ilight would be GL_LIGHT0, for example

This code is in your sample code
folder in the file setlight.cpp

mjb – August 22, 2024

38

Computer Graphics

Sidebar: Note that we are computing the light intensity at each vertex
first, and then interpolating that intensity across the polygon second

That is, you are only using the lighting model at each vertex.

You can do an even better job if you interpolate the normal across the polygon first, and
then compute the light intensity with the lighting model at each fragment second:

Per-vertex Per-fragment

37

38

20

mjb – August 22, 2024

39

Computer Graphics

Per-vertex

Per-fragment

But, for per-fragment, you will need shaders (coming soon!)

mjb – August 22, 2024

40

Computer Graphics

glMatrixMode(GL_MODELVIEW);

glTranslatef(tx, ty, tz);
glRotatef(degrees, ax, ay, az);
glScalef(sx, sy, sz);

glShadeModel(GL_SMOOTH);

glBegin(GL_TRIANGLES);
glColor3f(r0, g0, b0);
glVertex3f(x0, y0, z0);
glColor3f(r1, g1, b1);
glVertex3f(x1, y1, z1);
glColor3f(r2, g2, b2);

 glVertex3f(x2, y2, z2);
glEnd();

Sidebar: Smooth Shading can also interpolate vertex colors,
not just the results of the lighting model

Flat

Smooth

Before, when we talked about per-
vertex normal vectors, we did this:

We can also provide per-vertex
colors to do this:

39

40

21

mjb – August 22, 2024

41

Computer Graphics

This is especially useful when using colors for scientific visualization:

Smooth Shading can also interpolate vertex colors,
not just the results of the lighting model

mjb – August 22, 2024

42

Computer Graphics

Tricky Lighting Situations

Hair

Fur

Feathers

Watch for these in movies!

41

42

22

mjb – August 22, 2024

43

Computer Graphics

Tricky Lighting Situations

Notice the lighting in the fur!

Disney

Sony/Columbia Pictures

mjb – August 22, 2024

44

Computer Graphics

Sidebar: Beware of Mach Banding

Notice how these vertical stripes look “scalloped”, like a Greek
column. But, they are solid-color stripes. What is going on?

43

44

23

mjb – August 22, 2024

45

Computer Graphics

Actual
Intensity Changes

Our Perceived
Intensity Changes

Beware of Mach Banding

Our vision systems can’t handle abrupt changes in intensity.

mjb – August 22, 2024

46

Computer Graphics

Actual
Intensity Changes

Our Perceived
Intensity Changes

Beware of Mach Banding

In fact, our vision systems can’t even handle abrupt changes in the slope of intensity.

Flat shading
Smooth shading

This “white line”
doesn’t really exist –
it is an artifact of our
vision system!

45

46

24

mjb – August 22, 2024

47

Computer Graphics

Actual
Intensity

Perceived
Intensity

Beware of Mach Banding

Think of the Mach Banding problem as being similar to trying to round
second base at a 90º angle.

47

