

	Setting a Per-Face Surface Normal V	/ector in OpenGL	5
	glMatrixMode(GL_MODELVIEW); glTranslatef(tx, ty, tz); glRotatef(degrees, ax, ay, az); glScalef(sx, sy, sz);		
	glNormal3f(nx, ny, nz);⊷	Per-face normal is set <i>before</i> the face is drawn	
*	glColor3f(r, g, b); glBegin(GL_TRIANGLES); glVertex3f(x0, y0, z0); glVertex3f(x1, y1, z1); glVertex3f(x2, y2, z2); glEnd();		
Oregon State University Computer Graphics		- din	August 22, 20

OpenGL Surface Normal Vectors Need to be Unitized by Someone		10
	glTranslatef(tx, ty, tz); glRotatef(degrees, ax, ay, az); glScalef(sx, sy, sz);	
	glNormal3f(nx, ny, nz);	
OpenGL expec	ts the normal vector to be a <i>unit vector</i> , that is: $nx^2 + ny^2 + nz^2 = 1$	
If it is not, you o	can force OpenGL to do the unitizing for you with:	
<mark>glEnable(</mark> G	L_NORMALIZE);	
Oregon State		
University Computer Graphics		mb – August 22, 2024

The OpenGL "built-in" Lighting Model		2	
	1. Ambient = a constant	Accounts for light bouncing "everywhere"	
2. Diffuse = I*cosΘ		Accounts for the angle between the incoming light and the surface normal	
	3. Specular = I*cos⁵∳	Accounts for the angle between the "perfect reflector" and the eye. The exponent, ${f S}$, accounts for surface shininess	
	Note that $\cos\Theta$ is just the dot product between unit vectors L and n		
Note that coso is just the dot product between unit vectors R and E			
Oregon State University Computer Graphic	25	mþ - August 22.	,2024

	Setting the Light Characteristics	29
	glEnable(GL_LIGHTING);	
	gIEnable(GL_LIGHT0);	
	glLightModelfv(GL_LIGHT_MODEL_AMBIENT, MulArray3(.2, WHITE)); glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);	
	glLightfv(GL_LIGHT0, GL_AMBIENT, Array3(0., 0., 0.)); glLightfv(GL_LIGHT0, GL_DIFFUSE, LightColor);	
	glLightv(GL_LiGHT0, GL_Dirrose, LightColor);	
You can have multiple lights, nominally 0-7	glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.); glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.);	
ingrite, field in any of t	glLightf (GL_LIGHTD, GL_QUADRATIC_ATTENUATION, 0.);	
	// this is here because we are going to do object (and thus normal) scaling:	
63	glEnable(GL_NORMALIZE);	
Oregon State University Computer Graphics	ation = $\frac{1}{C + Ld + Qd^2}$ where <i>d</i> is the distance from the light to the point being	lit
comparer orapines	-	njb – August 22, 2024

		32	
Setting the Light Position			
	glLoadIdentity(); at the moment the glLghtfv(, GL_POSITION, .	The light position gets transformed by the ModelView matrix at the moment the giLghtfv(, GL_POSITION,) function is encountered. It is <i>really important</i> to remember this!	
	// 1. if we do this, then the light will be wrt the scene at XLIGHT, YLIGHT, ZLIGHT:		
	glLightfv(GL_LIGHT0, GL_POSITION, Array3(XLIGHT, YLIGHT, ZLIGHT));		
	// translate the object into the viewing volume:		
	gluLookAt(XEYE, YEYE, ZEYE, 0., 0., 0., 0., 1., 0.);		
	// 2. if we do this, then the light will be wrt the eye at XLIGHT, YLIGHT, ZLIGHT:		
Oregon State University	// glLightfv(GL_LIGHT0, GL_POSITION, Array3(XLIGHT, YLIGHT, ZLIGHT));		
Computer Graphic	8	mjb – August 22, 2024	

35 This is useful to be able specify a parallel light source by placing the light source position at infinity. The point (1,2,3,1) represents the 3D point (1,2,3) The point (1,2,3,5) represents the 3D point (2,4,6) The point (1,2,3,0) represents the point (100,200,300) So, (1,2,3,0) represents a point at infinity, along the ray from the origin through (1,2,3). Points-at-infinity are used for parallel light sources (and some shadow algorithms) Example of using a parallel light source (and some shadow algorithms)

-41

