
1

mjb – August 30, 2024

1

Computer Graphics

Rendering

Rendering.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – August 30, 2024

2

Computer Graphics

Rendering

Rendering is the process of creating an image of a geometric model.
There are questions you need to ask:

• For what purpose am I doing this?

• How realistic do I need this image to be?

• How much compute time do I have to create this image?

• Do I need to take lighting into account?

• Does the illumination need to be Global or will Local do?

• Do I need to create shadows?

• Do I need to create reflections and refractions?

• How good do the reflections and refractions need to be?

mjb – August 30, 2024

3

Computer Graphics

𝑩 𝑷, 𝒅𝟎, 𝝀 = 𝑬(𝑷, 𝒅𝟎, 𝝀)+∫ 𝑩 𝑷, 𝒅𝒊, 𝝀 𝒇(𝝀, 𝒅𝒊, 𝒅𝟎𝜴
)(𝒅𝒊 ȉ 𝒏ෝ)𝒅𝜴

P

Ω
di

P

d0

The Rendering Equation

This is the true rendering situation. Essentially, it is an energy balance:

In English, this says that the Light Shining from a point P =
Light emitted by that point + Reflectivity * Σ(Light arriving from all other points)

But, this is time-consuming to solve “exactly”.
So, we need to know how much of an approximation we need

Light arriving at Point P from everywhere Light departing from Point P in the direction
that we are viewing the scene from

mjb – August 30, 2024

4

Computer Graphics

Local vs. Global Illumination

Local

Global

If the appearance of an object is only affected
by its own characteristics and the
characteristics of the light sources, then you
have Local Illumination.

If the appearance of an object is also affected
by the appearances of other objects, then you
have Global Illumination.

mjb – August 30, 2024

5

Computer Graphics

Local Illumination at Work

“If the appearance of an object is only affected
by its own characteristics and the characteristics
of the light sources, then you have Local
Illumination.”

OpenGL rendering uses Local Illumination

mjb – August 30, 2024

6

Computer Graphics

Global Illumination at Work

http://www.swardson.com/unm/tutorials/mentalRay3/

• The left wall is green.
• The right wall is red.
• The back wall is white.
• The ceiling is blue with a light source in the middle of it.
• The objects sitting on the floor are white.

“If the appearance of an object is also affected by
the appearances of other objects, then you have
Global Illumination.”

2

mjb – August 30, 2024

7

Computer Graphics

How Graphics Hardware Renders: Start with the Object, Works Towards the Pixels

• This is the kind of rendering you get on a graphics card (e.g., OpenGL).

• You have been doing this all along.

• Start with the geometry and project it onto the pixels.

mjb – August 30, 2024

8

Computer Graphics

Why do things in front look like they are really in front?

Solution #1: Sort your polygons in 3D by depth and draw them back-to-front.

In this case 1-2-3-4-5-6 becomes 5-6-2-4-1-3.

This is called the Painter’s Algorithm. It sucked to have to do things this way.

34

5

6

2

1

Your application might draw this cube’s polygons in 1-2-3-4-5-6 order,
but 1, 3, and 4 still need to look like they were drawn last:

mjb – August 30, 2024

9

Computer Graphics

Why do things in front look like they are really in front?

Solution #2: Add an extension to the framebuffer to store
the depth of each pixel. This is called a Depth-buffer or
Z-buffer (or Zed-buffer in other parts of the world). Only
allow pixel stores when the depth of the incoming pixel is
closer to the viewer than the pixel that is already in that
spot in the framebuffer.

34

5
6

2

1

Your application might draw this cube’s polygons in 1-2-3-4-5-6 order,
but 1, 3, and 4 still need to look like they were drawn last:

mjb – August 30, 2024

10

Computer Graphics

Incoming RGBZ

Existing RGBZ in
the Framebuffer

Compare

Zincoming closer to the
viewer than Zexisting?

Allow RGBZincoming to
overwrite RGBZexisting

Yes

No

Do nothing

Depth Buffer Logic

mjb – August 30, 2024

11

Computer Graphics

Why do things in front look like they are really in front?

With Depth Buffer Without Depth Buffer
mjb – August 30, 2024

12

Computer Graphics

Ray-Tracing: Start at the Pixels, Work Towards the Objects

Splat!

The pixel is painted the color of
the nearest object that is hit

Fire a “bullet” from the eye
through a virtual pixel

3

mjb – August 30, 2024

13

Computer Graphics

In a Ray-Tracing, each Ray (“bullet”) typically hits a lot of Things –
You Need to Find All the Hits, then Find the Nearest Hit and work from There

mjb – August 30, 2024

14

Computer Graphics

Ray-Tracing

It’s also straightforward to see if the closest intersection point lies in a shadow:

Fire another bullet from the point towards each light source. If
the ray hits anything, then the point does not receive that light.

mjb – August 30, 2024

15

Computer Graphics

It’s also straightforward to handle reflection

Fire another bullet that represents the bounce from the
reflection. Paint the pixel the color that this ray sees.

Ray-Tracing

mjb – August 30, 2024

16

Computer Graphics

It’s also straightforward to handle refraction

Fire another bullet that represents the bend from the
refraction. Paint the pixel the color that this ray sees.

Ray-Tracing

mjb – August 30, 2024

17

Computer Graphics

The Physics of Refraction

Material Index of
Refraction

Vacuum 1.00000

Air 1.00029

Ice 1.309

Water 1.333

Plexiglass 1.49

Glass 1.60

Diamond 2.42

http://en.wikipedia.org/wiki/Refractive_index

θA

θB

Snell’s Law of Refraction:

sin

sin
B A

A B

Material B

Material A

mjb – August 30, 2024

18

Computer Graphics

Refraction in Action

© 2023, Grimmy, Inc.

4

mjb – August 30, 2024

19

Computer Graphics

An Example of How to Determine a Ray-Shape Intersection

𝑥 = 𝐸௫ + 𝑡(𝑃௫ − 𝐸௫)
𝑦 = 𝐸௬ + 𝑡(𝑃௬ − 𝐸௬)
𝑧 = 𝐸௭ + 𝑡(𝑃௭ − 𝐸௭)

(𝑥 − 𝑥)ଶ+(𝑦 − 𝑦)ଶ+(𝑧 − 𝑧)ଶ= 𝑅ଶ

t =
ି± మିସ

ଶ

𝐴𝑡ଶ + 𝐵𝑡 + 𝐶 = 0

Eye

2a. Substitute 3. Collect terms

4. Solve using the
dreaded high school
Quadratic Formula

1. Both t’s are complex: ray missed the sphere
2. Both t’s are real and identical: ray is tangent

to the sphere
3. Both t’s are real and different: ray goes

through the sphere

Three cases of possible solutions:

𝑡 > 1.
1. The Ray Equation

2b. … into the Sphere Equation and expand

Pixel

mjb – August 30, 2024

20

Computer Graphics

Eye

Pixel

1. Both t’s are complex: ray missed the sphere
2. Both t’s are real and identical: ray is tangent

to the sphere
3. Both t’s are real and different: ray goes

through the sphere

Three cases of possible solutions:

1.

2.

3.

An Example of How to Determine a Ray-Shape Intersection

mjb – August 30, 2024

21

Computer Graphics

IronCAD Ray-Tracing Example

Refraction

Reflection

mjb – August 30, 2024

22

Computer Graphics

Blender Ray-Tracing Examples

RefractionReflection

mjb – August 30, 2024

23

Computer Graphics

More Ray-tracing Examples

Quake 4 Ray-Tracing Project

mjb – August 30, 2024

24

Computer Graphics

More Ray-Tracing Examples

IBM

5

mjb – August 30, 2024

25

Computer Graphics

More Ray-Tracing Examples

Bunkspeed
mjb – August 30, 2024

26

Computer Graphics

Subsurface scattering

Original rendering

• Subsurface Scattering mathematically models light bouncing around
within an object before coming back out.

• This is a good way to render skin, wax, milk, paraffin, etc.

Subsurface Scattering

mjb – August 30, 2024

27

Computer Graphics

+

=

+

Ambient

Diffuse

Specular

The Three Elements of
OpenGL Lighting

The biggest problem with the Ambient-Diffuse-Specular way
of computing lighting is that we are trying to match an
appearance, not necessarily follow the laws of physics.

For example, using A-D-S, you can easily create a scene
where the amount of light shining from the objects exceeds
the amount of light that the light source is supplying!

This brings us to Physically-Based Rendering (PBR).

mjb – August 30, 2024

28

Computer Graphics

Radiosity

Based on the idea that all surfaces gather light
intensity from all other surfaces

i i i i i j j j i
j

B A E A B A F

The fundamental radiosity equation is an energy
balance that says:

“The light energy leaving surface i equals the amount
of light energy generated by surface i plus surface i’s
reflectivity times the amount of light energy arriving
from all other surfaces”

This is a good approximation to the Rendering Equation

mjb – August 30, 2024

29

Computer Graphics

i i i i i j j j i
j

B A E A B A F
is the light energy intensity shining from surface element i

is the area of surface element i

is the internally-generated light energy intensity for surface element i

is surface element i’s reflectivity

is referred to as the Shape Factor, and describes what percent of the
energy leaving surface element j arrives at surface element i

iB

iA

iE

i

j iF

The Radiosity Equation

mjb – August 30, 2024

30

Computer Graphics

The Radiosity Shape Factor

2

cos cos
(,)

(,)
j

i j
j i j i

Ai A

F visibility di dj dA dA
Dist di dj

6

mjb – August 30, 2024

31

Computer Graphics

I know what you’re thinking:
It seems to you that the light just keeps propagating and you never actually get an answer?

y = 3x + 5

x = y - 7

-3x + y = 5
x - y = -7

Not really – it is simply N equations, N unknowns – you solve for the unique solution

To many people, radiosity seems like this:

“x produces y, then y produces x,
then x produces y, then …”

x = 1
y = 8

Use x to get y

Then use y to get x

mjb – August 30, 2024

32

Computer Graphics

The Radiosity Matrix Equation

1 1 1 1 1 2 1 1 1 1

2 2 1 2 2 2 2 2 2 2

1 2

1

1

1

N

N

N N N N N N N N N

F F F B E

F F F B E

F F F B E

i i i i i j j j i
j

B A E A B A F

Expand for each surface element, and re-arrange
to solve for the surface intensities, the B’s:

This is a lot of equations!

- =

mjb – August 30, 2024

33

Computer Graphics

Radiosity Examples

Cornell University Cornell University

mjb – August 30, 2024

34

Computer Graphics

Radiosity Examples

AutodeskAR Toolkit

mjb – August 30, 2024

35

Computer Graphics

Path Tracing: When light hits a surface, it bounces in particular ways
depending on the angle and the material

n

This distribution of bounced light rays is called the
Bidirectional Reflectance Distribution Function, or BRDF.

For a given material, the BRDF behavior of a light ray is a function of 4
variables: the 2 spherical coordinates of the incoming ray and the 2
spherical coordinates of the outgoing ray.

The outgoing light energy in the outgoing BRDF’s is always less than or
equal to the amount of light that shines in.

mjb – August 30, 2024

36

Computer Graphics

Usually it is easier to trace from the eye

n

7

mjb – August 30, 2024

37

Computer Graphics

Path Tracing

Somewhat like ray-tracing, somewhat like radiosity where light can
bounce around the scene but this has more sophisticated effects.

mjb – August 30, 2024

38

Computer Graphics

Path Tracing

mjb – August 30, 2024

39

Computer Graphics

Path Tracing

mjb – August 30, 2024

40

Computer Graphics

Path Tracing

mjb – August 30, 2024

41

Computer Graphics

Path Tracing

Clearly this is capable of spawning an infinite
number of rays. How do we handle this?

Monte Carlo simulation to the rescue!

𝐿𝑖𝑔ℎ𝑡𝐺𝑎𝑡ℎ𝑒𝑟𝑒𝑑 =
∑ 𝑅𝑒𝑠𝑢𝑙𝑡𝑂𝑓𝑅𝑎𝑦𝑠𝐶𝑎𝑠𝑡𝐼𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛ேିଵ

𝑁

Each time a ray hits a surface, use the equation at
that point. Continue until:

1. Nothing is hit
2. A light is hit
3. Some maximum number of bounces are found

Recurse by applying this equation for all ray hits (yikes!)

mjb – August 30, 2024

42

Computer Graphics

Physically-Based Rendering using the Blender Cycles Renderer

Reflection

Soft Shadows

Refraction

Area Light Source

Caustics

8

mjb – August 30, 2024

43

Computer Graphics

Physically-Based Rendering using the Blender Cycles Renderer

Reflection

Soft Shadows

Refraction

Area Light Source

Caustics

mjb – August 30, 2024

44

Computer Graphics

Image by Grace Todd

Interesting Mix of Surface Properties: Mmmmm, Gummies!

mjb – August 30, 2024

45

Computer Graphics

Hardware Ray-Tracing

1920x1080 pixels rendered in 2.68 seconds using
Blender on an Nvidia RTX A6000

mjb – August 30, 2024

46

Computer Graphics
Image by Josiah Blaisdell

Soft Shadows
Refraction

Another Physically-Based Rendering Example

Reflection

mjb – August 30, 2024

47

Computer Graphics

An Neat Global Illumination-ish Trick:
Screen Space Ambient Occlusion (SSAO)

Kitware

mjb – August 30, 2024

48

Computer Graphics

An Neat Global Illumination-ish Trick:
Screen Space Ambient Occlusion (SSAO)

“Render” these normals into a
software framebuffer.

Now, look for places in the
framebuffer where there is a
discontinuity in the normal.

Make that part of the scene darker.

This part of the scene should be darker
because it is harder for ambient light to
get down between objects.

9

mjb – August 30, 2024

49

Computer Graphics

A Neat Global Illumination-ish Trick:
Screen Space Ambient Occlusion (SSAO)

Kitware

mjb – August 30, 2024

50

Computer Graphics

A Neat Global Illumination-ish Trick:
Screen Space Ambient Occlusion (SSAO)

Kitware

mjb – August 30, 2024

51

Computer Graphics

Something New:
Neural Radiance Fields -- NeRFs

What if you want to know what an object looks like no matter where other light is coming from and no matter
where you view it from? You could go through the whole rendering thing from every viewing angle…

…but that would be time consuming and would preclude any sort of real-time scene manipulation.

In the NeRFs technique, you precompute, for every incoming light direction how much
of that ends up in every outgoing viewing direction. Then, when interacting with the
scene, you don't need to do any actual "rendering". You just track the radiance outputs
from an object and use those as inputs to other objects and use those precomputed
values to see what comes out of that object.

How can we lookup that information quickly?

mjb – August 30, 2024

52

Computer Graphics

NeRFs: Machine Learning to the Rescue!

For each object, you train a neural network …

…on the pre-rendered data so that a radiance input to that object can quickly be
turned into a radiance output from that object

This is very new technique, but something worth keeping an eye on!

