
mjb – August 30, 2024

1

Computer Graphics

Enhancing Computer Graphics Effects by Writing Shaders

Shaders.pptx

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Mike Bailey

mjb@cs.oregonstate.edu

mjb – August 30, 2024

2

Computer Graphics

How Many Computers do you see in this Photo? One?

mjb – August 30, 2024

3

Computer Graphics

No, There Are Two Computers Here

Buried within a single chassis, we are tempted to
think there is just one computer here.

But there are really two computers here, a CPU and a GPU. So far, you
have been "programming" the GPU by telling OpenGL how to do it for us.
This is about to change!

mjb – August 30, 2024

4

Computer Graphics

No, There Are Two Computers Here

We are now going to get into a way-cool part of this class where
you get to program the GPU yourself. This is called Shaders.

Let's think about it. If you set out to program an external computer,
here is what you would need:

1. A programming language
2. A compiler for that language to create an executable
3. A way to see the compiler's error messages
4. A way to download the executable onto the external computer
5. A way to run that executable on the external computer
6. A way to get information into the executable

This sounds like a lot, but it won't turn out to be that big a deal.
Trust me!

mjb – August 30, 2024

5

Computer Graphics

Model
Transformation

Viewing
Transformation

Projection
Transformation

Viewport
Transform

Homogeneous
Division

Fragment
Processing,

Texturing
Raster

Ops

Rasterization

Framebuffer

ECWC

MC

CC NDC

SC

SC

Vertices,
Normal Vectors,

Texture Coordinates

glRotatef
glTranslatef

glScalef

RGBA pixels

gluLookAt gluPerspective

Fragments

Vertices

RGBA pixels

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen (Window, Pixel) Coordinates

The Basic Computer Graphics Pipeline, OpenGL-style

FragmentsPixels

mjb – August 30, 2024

6

Computer Graphics

The Basic Computer Graphics Pipeline, OpenGL-style
Vertices,

Normal Vectors,
Texture Coordinates

MC

FragmentsPixels

Vertex Shader

Fragment Shader

Model
Transformation

Viewing
Transformation

Projection
Transformation

ECWC

glRotatef
glTranslatef

glScalef

gluLookAt gluPerspective

Homogeneous
Division

CC

Viewport
Transform

Fragment
Processing,

Texturing

Rasterization

NDC

SC

Fragments

Vertices

SC

Raster
OpsFramebuffer

RGBA pixels RGBA pixels

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen (Window, Pixel) Coordinates

mjb – August 30, 2024

7

Computer Graphics

The Basic Computer Graphics Pipeline, OpenGL-style
Vertices,

Normal Vectors,
Texture Coordinates

MC

FragmentsPixels

Vertex Shader

Fragment Shader

Homogeneous
Division

CC

Viewport
Transform

Rasterization

NDC

SC

Fragments

Vertices

SC

Raster
OpsFramebuffer

RGBA pixels RGBA pixelsMC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen (Window, Pixel) Coordinates

mjb – August 30, 2024

8

Computer Graphics

Our Shaders’ View of the Basic Computer Graphics Pipeline

= Fixed Function (non-you-programmable)

= You-Programmable

There are actually four more GLSL shader types we won’t be
covering here. In CS 457/557, we will cover all of them.

mjb – August 30, 2024

9

Computer Graphics

We Like to Draw the Diagram with One Vertex Shader and One Fragment Shader,
but CG Hardware Achieves Much of its Speed by Handling Hundreds or Thousands of

Vertices and Fragments at the Same Time

We talk more about the specifics of GPU parallelism in CS 475/575.

Vertices

Fragments

mjb – August 30, 2024

10

Computer Graphics

A Reminder of what a Rasterizer does

There is a piece of hardware called the Rasterizer. Its job is to interpolate a
line or polygon, defined by vertices, into a collection of fragments. Think of it as
filling in squares on graph paper.

Rasterizers interpolate built-in variables, such as the (x,y) position where the
pixel will live and the pixel’s z-coordinate. They also interpolate the normal
vector (nx,ny,nz) and the texture coordinates (s,t). They can also interpolate
user-defined variables as well.

A fragment is a “pixel-to-be”. In computer graphics, “pixel” is defined as having
its full RGBA already computed and is headed to be stored in the framebuffer. A
fragment does not yet have a computed RGBA, but all of the information needed
to compute the RGBA is available.

A fragment is turned into an RGBA pixel by the fragment processing operation.

Fragment
Processing,
Texturing,

Per-fragment
Lighting

mjb – August 30, 2024

11

Computer Graphics

A GLSL Vertex Shader Takes Over These Operations:

• Vertex transformations

• Normal Vector transformations

• Computing per-vertex lighting (although, if you are using
shaders anyway, per-fragment lighting looks better)

• Taking per-vertex texture coordinates (s,t) and interpolating
them through the rasterizer into the fragment shader

mjb – August 30, 2024

12

Computer Graphics

A GLSL Fragment Shader Takes Over These Operations:

• Color computation

• Texture lookup

• Blending colors with textures (like GL_REPLACE and GL_MODULATE used to do)

• Discarding fragments

mjb – August 30, 2024

13

Computer Graphics

1. We Need a Programming Language

OpenGL developed a shader language called GLSL: GL Shader Language.

GLSL is very C-ish, so it should look familiar.

mjb – August 30, 2024

14

Computer Graphics

GLSL has Many C-Familiar Data Types, plus Extensions for Graphics:

• Types include int, ivec2, ivec3, ivec4

• Types include float, vec2, vec3, vec4

• Types include bool, bvec2, bvec3, bvec4

• Vector components are accessed with .rgba, .xyzw, or.stpq

• Types include mat4

• Types include sampler1D, sampler2D, sampler3D to access textures

• You can use parallel SIMD operations (doesn’t necessarily get implemented in hardware):
vec4 a = vec4(1., 2., 3., 4.);
vec4 b = vec4(5., 6., 7., 8.);
. . .
vec4 c = a + b;

• Vector components can be “swizzled” (to.abgr = from.rgba)

• Type qualifiers: const, uniform, in, out

• Variables can have “layout qualifiers” to describe how data is stored

• The discard operator is used in fragment shaders to get rid of the current fragment

Computer Graphics uses values in groups of 2, 3, and 4

Computer Graphics uses 4x4 matrices to transform 3D vertices

from

to

mjb – August 30, 2024

15

Computer Graphics

The discard Operator Halts Production of the Current Fragment

if(random_number < 0.5)
discard;

mjb – August 30, 2024

16

Computer Graphics

GLSL also has Some Different Variable Types to Pass Information Around

uniform These are “global” values, assigned into your GLSL program from your
C++ program and left alone for a group of primitives. They are read-only
accessible from all of your shaders. They cannot be written to from a shader.

out / in These are passed out from the vertex shader stage, interpolated in the rasterizer,
and passed in to the fragment shader stage.

mjb – August 30, 2024

17

Computer Graphics

GLSL has Some Built-in Vertex Shader Variables :

vec4 gl_Vertex

vec3 gl_Normal

vec4 gl_Color

vec4 gl_MultiTexCoord0

mat4 gl_ModelViewMatrix

mat4 gl_ProjectionMatrix

mat4 gl_ModelViewProjectionMatrix (= gl_ModelViewMatrix * gl_ProjectionMatrix)

mat3 gl_NormalMatrix (this is the transpose of the inverse of the MV matrix)

vec4 gl_Position

Note: while this all still works, OpenGL now prefers that you pass in all the above
input variables as user-defined in variables. We can talk about this later. For now,
we are going to use the most straightforward approach possible.

Input
built-ins

Output
built-in

mjb – August 30, 2024

18

Computer Graphics

vec4 gl_FragColor
Output
built-in = the RGBA being sent to the framebuffer

Note: while this all still works, OpenGL now prefers that you pass the RGBA out as
a user-defined out variable. We can talk about this later. For now, we are going to
use the most straightforward approach possible.

GLSL has Some Built-in Fragment Shader Variables :

mjb – August 30, 2024

19

Computer Graphics

We haven't forgotten about this.
If you set out to program an external computer, here is what you would need:

1. A programming language

GLSL

2. A compiler for that language to create an executable

The GLSL compiler is pre-built into the OpenGL driver. You’ve already got it.

3. A way to see the compiler's error messages
4. A way to download the executable onto the external computer
5. A way to run that executable on the external computer
6. A way to get information into the executable

We will give you a C++ class to take care of all of this. This is coming up soon.

.
But, first, let's take a look at what vertex and fragment shader code looks like.

mjb – August 30, 2024

20

Computer Graphics

My Own Variable Naming Convention

Means that the variable …
Beginning

letter(s)

Is a per-vertex in (attribute) from the applicationa

Is a uniform variable from the applicationu

Came from the vertex shaderv

Came from the tessellation control shadertc

Came from the tessellation evaluation shaderte

Came from the geometry shaderg

Came from the fragment shaderf

This isn’t part of “official” GLSL – it is just my way of handling the chaos

With 7 different places that GLSL variables can be created from, I
decided to adopt a naming convention to help me recognize what
program-defined variables came from what sources:

mjb – August 30, 2024

21

Computer Graphics

#version 330 compatibility

void
main()
{

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

#version 330 compatibility

void
main()
{

gl_FragColor = vec4(.5, 1., 0., 1.);
}

A Vertex Shader is automatically called once per vertex:

A Fragment Shader is automatically called once per fragment:

The Minimal Vertex and Fragment Shader

This code assigns a fixed color (r=0.5, g=1.,
b=0.) and alpha (=1.) to each fragment drawn

Not terribly useful yet …

mjb – August 30, 2024

22

Computer Graphics

This pattern example is defined by three uniform variables: uS0, uT0, and uD, all in texture coordinates
(0.-1.). (uS0,uT0) are the center of the pattern. uD is the length of each edge of the pattern. The s and t
boundaries of the pattern are like this:

A Little More Interesting, I:
What if we Want to Color in a Pattern?

(uS0, uT0)

u
D

uD

• uS0, uT0 are the center of the
pattern in (0.-1.) texture coordinates

• uD is the size of the pattern in (0.-1.)
texture coordinates

s
 =

 u
S

0
 -

u
D

/2
.

s
 =

 u
S

0
 +

 u
D

/2
.

t = uT0 - uD/2.

t = uT0 + uD/2.

mjb – August 30, 2024

23

Computer Graphics

#version 330 compatibility

out vec2 vST;

void
main()
{

vST = gl_MultiTexCoord0.st; // a vertex's (s,t) texture coordinates

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

The vertex shader needs to pass the texture coordinates to the rasterizer so that each fragment shader gets it:

A Little More Interesting, II:
Getting the Texture Coordinates from the Vertex Shader to the Fragment Shader

The texture coordinates need to come from the vertex shader
because they were assigned to each vertex to begin with

A Vertex Shader is automatically called once per vertex:

mjb – August 30, 2024

24

Computer Graphics

#version 330 compatibility
uniform float uS0, uT0, uD; // from your program
in vec2 vST; // from the vertex shader, interpolated through the rasterizer

void
main()
{

float s = vST.s; // the s coordinate of where this fragment is
float t = vST.t; // the t coordinate of where this fragment is
vec3 myColor = vec3(1., 0.5, 0.); // default color

if(uS0 - uD/2. <= s && s <= uS0 + uD/2. &&
uT0 - uD/2. <= t && t <= uT0 + uD/2.)

{
myColor = vec3(1., 0., 0.); // new pattern color

}

. . .
gl_FragColor = << myColor with lighting applied >>

}

The fragment shader answers the question: “Am I (the current fragment) inside the pattern or outside it?”

A Little More Interesting, III:
Drawing a Pattern with the Fragment Shader

(uS0, uT0) u
D

uD

A Fragment Shader is automatically called once per fragment:

mjb – August 30, 2024

25

Computer Graphics

if(uS0 - uD/2. <= s && s <= uS0 + uD/2. && uT0 - uD/2. <= t && t <= uT0 + uD/2.)
{

myColor = vec3(1., 0., 0.); // change the pattern color if inside the pattern boundaries
}

The fragment shader answers the question: “Am I (the current fragment) inside the pattern or outside it?”

A Little More Interesting, IV:
Drawing a Pattern with the Fragment Shader

(uS0, uT0)

u
D

uD

• uS0, uT0 are the center of the
pattern in (0.-1.) texture coordinates

• uD is the size of the pattern in (0.-1.)
texture coordinates

u
S

0
 -

u
D

/2
.

u
S

0
 +

 u
D

/2
.

uT0 - uD/2.

uT0 + uD/2. All 4 of these must be true to conclude
this fragment is inside the pattern!

mjb – August 30, 2024

26

Computer Graphics

Zoomed way in

Here’s the cool part: It doesn’t matter (up to
the limits of 32-bit floating-point precision)
how far you zoom in. You still get a crisp
edge. This is an advantage of procedural
(equation-based) textures, as opposed to
image-based textures.

Drawing a Pattern on an Object

mjb – August 30, 2024

27

Computer Graphics

It's because, in a sphere, the s coordinate encompasses twice as
much angle (-180° +180°) as the t coordinate does (-90° +90°).
So the same amount of "s" produces twice the distance as the same
amount of "t". If you care, you can fix it like this:

float s = vST.s;
float t = vST.t;
s = 2.*s;

If the Equation Defines a Square, Why Does the Pattern Look Like a Rectangle?

mjb – August 30, 2024

28

Computer Graphics

In per-vertex lighting, like we have done so far, we apply the lighting equation to the
parameters at the vertices and then interpolate the color intensities in the rasterizer. This is
what is built-in to standard OpenGL.

In per-fragment lighting, we will interpolate the parameters through the rasterizer first and
then apply the lighting equation in the fragment shader. To do this, requires shaders.

Per-Vertex Lighting vs. Per-Fragment Lighting

Fragment ShaderRasterizerVertex ShaderLighting Type

Color the fragmentsInterpolate color
intensities

Apply lighting model to
produce color

intensities

Per-vertex

Apply lighting model to
color the fragments

Interpolate the
parameters

Send parameters to
rasterizer

Per-fragment

mjb – August 30, 2024

29

Computer Graphics

Per-vertex Per-fragment

Per-Vertex Lighting vs. Per-Fragment Lighting

mjb – August 30, 2024

30

Computer Graphics

#version 330 compatibility
out vec2 vST; // texture coords
out vec3 vN; // normal vector
out vec3 vL; // vector from point to light
out vec3 vE; // vector from point to eye

const vec3 LIGHTPOSITION = vec3(5., 5., 0.);

void
main()
{

vST = gl_MultiTexCoord0.st;
vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; // eye coordinate position
vN = normalize(gl_NormalMatrix * gl_Normal); // normal vector
vL = LIGHTPOSITION - ECposition.xyz; // vector from the point to the light position
vE = vec3(0., 0., 0.) - ECposition.xyz; // vector from the point to the eye position
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Vertex shader:

Applying Per-Fragment Lighting, I

mjb – August 30, 2024

31

Computer Graphics

Here’s where we figure out
what color this fragment
will be, like before

#version 330 compatibility
uniform float uKa, uKd, uKs; // coefficients of each type of lighting
uniform float uShininess; // specular exponent
in vec2 vST; // texture cords
in vec3 vN; // normal vector
in vec3 vL; // vector from point to light
in vec3 vE; // vector from point to eye
void main()
{

vec3 Normal = normalize(vN);
vec3 Light = normalize(vL);
vec3 Eye = normalize(vE);

vec3 myColor = vec3(1.0, 0.5, 0.0); // default color
vec3 mySpecularColor = vec3(1.0, 1.0, 1.0); // specular highlight color

<< possibly change myColor >>

vec3 ambient = uKa * myColor;
float d = 0.;
float s = 0.
if(dot(Normal,Light) > 0.) // only do specular if the light can see the point
{

d = dot(Normal,Light);
vec3 ref = normalize(reflect(-Light, Normal)); // reflection vector
s = pow(max(dot(Eye,ref),0.), uShininess);

}
vec3 diffuse = uKd * d * myColor;
vec3 specular = uKs * s * mySpecularColor;
gl_FragColor = vec4(ambient + diffuse + specular, 1.);

}

Fragment
shader:

Applying Per-Fragment Lighting, II

Here’s where we apply
lighting to that color

mjb – August 30, 2024

32

Computer Graphics

Applying Per-Fragment Lighting, III

mjb – August 30, 2024

33

Computer Graphics

Per-fragment Lighting is Good, Even Without a Pattern!

Ambient

Diffuse

Specular

All together now!

mjb – August 30, 2024

34

Computer Graphics

First, follow these steps:

Setting up a Shader via the OpenGL API is somewhat Involved:
Here is our C++ Class to Simplify the Shader Setup for You

1. You will see two files that are already in your Sample folder: glslprogram.h and
glslprogram.cpp

2. In your sample.cpp file, un-comment the line:
#include "glslprogram.cpp"

These two files have been reduced to have just the shader features you need for Project #6.

If you are not working on Project #6, but are working on something bigger, I have more
complete versions of glslprogram.h and glslprogram.cpp – just ask me.

mjb – August 30, 2024

35

Computer Graphics

GLSLProgram Pattern; // your VS+FS shader program name

float Time;

#define MS_IN_THE_ANIMATION_CYCLE 10000

Put these in with the Global Variables:

Setting up a Shader via the OpenGL API is somewhat Involved:
Here is our C++ Class to Simplify the Shader Setup for You

mjb – August 30, 2024

36

Computer Graphics

void
Animate()
{

int ms = glutGet(GLUT_ELAPSED_TIME); // milliseconds
ms %= MS_IN_THE_ANIMATION_CYCLE;

Time = (float)ms / (float)MS_IN_THE_ANIMATION_CYCLE; // [0., 1.)
}

Do this in Animate() like you've always done:

Setting up a Shader via the OpenGL API is somewhat Involved:
Here is our C++ Class to Simplify the Shader Setup for You

mjb – August 30, 2024

37

Computer Graphics

Pattern.Init();
bool valid = Pattern.Create("pattern.vert", "pattern.frag");

if(! valid)
{

fprintf(stderr, "Yuch! The shader did not compile.\n");

}
else
{

fprintf(stderr, "Woo-Hoo! The shader compiled.\n");
}

This attempts to load, compile, and link the shader program. If something goes wrong,
Pattern.Create() prints error messages into the console window and returns a value of valid=false.

Do this in InitGraphics() somewhere after where the
window has been created and GLEW has been setup:

We cover the full GLSL API in CS 457/557

In C/C++, the
exclamation
point (!) is
pronounced
"not".

Setting up a Shader via the OpenGL API is somewhat Involved:
Here is our C++ Class to Simplify the Shader Setup for You

2. A compiler for that language to create an executable
3. A way to see the compiler's error messages
4. A way to download the executable onto the external computer

mjb – August 30, 2024

38

Computer Graphics

float s0 = some function of Time
float t0 = some function of Time
float d = some function of Time

. . .
Pattern.Use(); // turns the shader program on

// no more fixed-function – the shader Pattern now handles everything
// but the shader program just sits there idling until you draw something

Pattern.SetUniformVariable("uS0", s0);
Pattern.SetUniformVariable("uT0", t0);
Pattern.SetUniformVariable("uD", d);

glCallList(SphereList); // now the shader program has vertices and fragments to work on

Pattern.UnUse(); // go back to fixed-function OpenGL

Do this in Display():

Setting up a Shader via the OpenGL API is somewhat Involved:
Here is our C++ Class to Simplify the Shader Setup for You

5. A way to run that executable on the external computer

6. A way to get information into the executable

mjb – August 30, 2024

39

Computer Graphics

Setting Up Texturing with Shaders

Graphics chips have functionality on them called Texture Units. Each Texture
Unit is identified by an integer number, typically 0-15, but oftentimes more.

To tell a shader how to get to a specific texture image, assign that texture into a
specific Texture Unit number and then tell your shader what Texture Unit
number to use. Your C/C++ code will look like this:

glActiveTexture(GL_TEXTURE5); // use texture unit 5
glBindTexture(GL_TEXTURE_2D, TexName);

The file gl.h has these lines:
#define GL_TEXTURE0 0x84C0
#define GL_TEXTURE1 0x84C1
#define GL_TEXTURE2 0x84C2
#define GL_TEXTURE3 0x84C3
#define GL_TEXTURE4 0x84C4
#define GL_TEXTURE5 0x84C5
#define GL_TEXTURE6 0x84C6
#define GL_TEXTURE7 0x84C7
#define GL_TEXTURE8 0x84C8
. . .

mjb – August 30, 2024

40

Computer Graphics

// globals:

unsigned char * Texture;
GLuint TexName;
GLSLProgram Pattern;

. . .
// In InitGraphics():

glGenTextures(1, &TexName);
int nums, numt;
Texture = BmpToTexture("filename.bmp", &nums, &numt);
glBindTexture(GL_TEXTURE_2D, TexName);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 3, nums, numt, 0, 3, GL_RGB, GL_UNSIGNED_BYTE, Texture);

Pattern.Init();
bool valid = Pattern.Create("pattern.vert", "pattern.frag");
If(!valid)
{

. . .
}

The Whole Process Looks Like This, I:

mjb – August 30, 2024

41

Computer Graphics

. . .
// In Display():

Pattern.Use();
glActiveTexture(GL_TEXTURE5); // your C++ program specifies that you want the texture to live on texture unit 5
glBindTexture(GL_TEXTURE_2D, TexName);
Pattern.SetUniformVariable("uTexUnit", 5); // tell your shader program to find the texture on texture unit 5

<< draw something >>
Pattern.UnUse();

This is the hardware Texture Unit Number. You can choose anything in the range 0-15.

The Whole Process Looks Like This, II:

mjb – August 30, 2024

42

Computer Graphics

#version 330 compatibility
out vec2 vST;

void
main()
{

vST = gl_MultiTexCoord0.st;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

#version 330 compatibility
in vec2 vST;
uniform sampler2D uTexUnit;

void
main()
{

vec3 newcolor = texture(uTexUnit, vST).rgb;
gl_FragColor = vec4(newcolor, 1.);

}

Vertex shader:

Fragment shader:

2D Texturing within the Shaders

Pattern.SetUniformVariable("uTexUnit", 5);

texture() is a built-in texture map lookup function –
it returns a vec4 (RGBA)

Convert the vec4 rgba from the texture()
call to just the vec3 rgb that we need

mjb – August 30, 2024

43

Computer Graphics

2D Texturing within the Shaders

mjb – August 30, 2024

44

Computer Graphics

What if You Want to Use Two Textures in a Shader?
// In Display():

Pattern.Use();
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, TexName0);

glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, TexName1);

Pattern.SetUniformVariable("uTexUnit0", 5);
Pattern.SetUniformVariable("uTexUnit1", 6);

glCallList(…);

Pattern.UnUse();

#version 330 compatibility
in vec2 vST;
uniform sampler2D uTexUnit0;
uniform sampler2D uTexUnit1;

void
main()
{

vec3 newcolor0 = texture(uTexUnit0, vST).rgb;
vec3 newcolor1 = texture(uTexUnit1, vST).rgb;
gl_FragColor = …

}

Fragment shader:

mjb – August 30, 2024

45

Computer Graphics

Why Would You Want to Use More Than One Texture in a Shader?

Once the RGBs have been read from a texture, they are just numbers. You can do any arithmetic you want
with the texture RGBs, other colors, lighting, etc. Here is an example of blending two textures at once:

Daytime

Lights at night

mjb – August 30, 2024

46

Computer Graphics

Visualization by Nick Gebbie

Textures used here:
• Day
• Night
• Heights (bump-mapping)
• Clouds
• Specular highlights

Why Would You Want to Use More Than One Texture in a Shader?

mjb – August 30, 2024

47

Computer Graphics

#version 330 compatibility
out vec3 vColor;

void
main()
{

vec4 pos = gl_Vertex;
vColor = pos.xyz; // set rgb from xyz!
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

#version 330 compatibility
in vec3 vColor;

void
main()
{

gl_FragColor = vec4(vColor, 1.);
}

Vertex shader:

Fragment shader:

Something Goofy: Turning XYZs into RGBs in Model Coordinates

mjb – August 30, 2024

48

Computer Graphics

vColor = gl_Vertex.xyz;

Setting rgb from the Untransformed xyz, I

mjb – August 30, 2024

49

Computer Graphics

#version 330 compatibility
out vec3 vColor;

void
main()
{

vec4 pos = gl_ModelViewMatrix * gl_Vertex;
vColor = pos.xyz; // set rgb from xyz!
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

#version 330 compatibility
in vec3 vColor;

void
main()
{

gl_FragColor = vec4(vColor, 1.);
}

Vertex shader:

Fragment shader:

Turning XYZs into RGBs in Eye (World) Coordinates

mjb – August 30, 2024

50

Computer Graphics

#version 330 compatibility
out vec3 vColor;

void
main()
{

vec4 pos = gl_ModelViewMatrix * gl_Vertex;
vColor = pos.xyz; // set rgb from xyz!
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

What’s Different About These Two?

#version 330 compatibility
out vec3 vColor;

void
main()
{

vec4 pos = gl_Vertex;
vColor = pos.xyz; // set rgb from xyz!
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Set the color from the untransformed (MC) xyz

Set the color from the transformed (WC/EC) xyz:

mjb – August 30, 2024

51

Computer Graphics

vColor = (gl_ModelViewMatrix * gl_Vertex).xyz;

Setting rgb from the Transformed xyz, II

Note: the phrase “.xyz” and the
phrase “.rgb” mean exactly the
same thing: “give me the first 3
numbers from this vec variable”.

What you can’t do is mix them,
such as “.xgz”

mjb – August 30, 2024

52

Computer Graphics

vColor = gl_Vertex.xyz;

Setting rgb From xyz

vColor = (gl_ModelViewMatrix * gl_Vertex).xyz;

mjb – August 30, 2024

53

Computer Graphics

• You need a graphics system that is OpenGL 2.0 or later. Basically, if you got your graphics system in the last 5
years, you should be OK, unless it came from Apple. In that case, who knows how much OpenGL support it has?
(The most recent OpenGL level is 4.6)

• Update your graphics driver to the most recent version!

• Do the GLEW setup if you are on Windows. It looks like this in the sample code:
GLenum err = glewInit();
if(err != GLEW_OK)
{

fprintf(stderr, "glewInit Error\n");
}
else

fprintf(stderr, "GLEW initialized OK\n");

This must come after you've created a graphics window. (It is this way in the sample code, but I'm saying this
because I know some of you go in and "simplify" my sample code by deleting everything you don't think you need.)

• You use the GLSL C++ class you've been given only after a window has been created and GLEW has been
setup. Only then can you initialize your shader program:

Pattern.Init();
bool valid = Pattern.Create("pattern.vert", "pattern.frag");

Hints on Running Shaders on Your Own System

mjb – August 30, 2024

54

Computer Graphics

A Common Error to Look Out For

Here is a piece of code:

#version 330 compatibility
out vec3 vColor;

void
main()
{

vec4 pos = gl_Vertex;

vec3 vColor = pos.xyz; // set rgb from xyz!
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

It looks like our example from earlier in these notes. It compiles OK. It should work, right?

Wrong! By re-declaring vColor in "vec3 vColor = pos.xyz", you are making a local version of vColor and
writing pos.xyz into that local version, not the out variable! The out version of vColor is never getting written
to, and so the vColor in the fragment shader will have no sensible value.

Don't ever re-declare in, out, or uniform variables!

Trust me, you will do this sometime. It's an easy mistake to make mindlessly. I do it every so often myself.

Abandon hope, all
ye who do this

mjb – August 30, 2024

55

Computer Graphics

• Your shader version number should be 120 (at the top of the .vert and .frag files):
#version 120 compatibility

• Instead of the keywords in and out, use varying

• Your OpenGL includes will need to look like this:
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>

• You don't need to do anything with GLEW

• Your compile sequence will look like this:
g++ -framework OpenGL -framework GLUT sample.cpp -o sample -Wno-deprecated

Differences if You are on a Mac

Unfortunately, Apple froze their GLSL support at version 1.20 – here is how to adapt to that:

mjb – August 30, 2024

56

Computer Graphics

1. Declare the GLSLProgram above the main program (i.e., as a global):

GLSLProgram Pattern;

2. At the end of InitGraphics(), create the shader program and setup your shaders:

Pattern.Init();
bool valid = Pattern.Create("pattern.vert", "pattern.frag");
if(! valid) { . . . }

3. Turn on the shader program in Display(), set shader uniform variables, draw the objects,
then turn off the shader program:

Pattern.Use();

Pattern.SetUniformVariable(...

glCallList(SphereList();

Pattern.UnUse(); // return to the fixed function pipeline

4. When you run your program, be sure to check the console window for shader compilation errors!

Guide to Where to Put Pieces of Your Shader Code, I

mjb – August 30, 2024

57

Computer Graphics

Tips on drawing the object:

• If you want to key off of s and t coordinates in your shaders, the object must have s and t coordinates
(vt) assigned to its vertices – not all OBJ files do!

• If you want to use surface normals in your shaders, the object must have surface normals (vn) assigned
to its vertices – not all OBJ files do!

• Be sure you explicitly assign all of your uniform variables – no error messages occur if you forget to do
this – it just quietly screws up.

• The glutSolidTeapot() has been textured in patches, like a quilt – cute, but weird

• The OsuSphere() function from the texturing project will give you a very good sphere. Use it, not the
GLUT sphere.

Guide to Where to Put Pieces of Your Shader Code, II

