Sines and Cosines for Animating Computer Graphics

(e

Oregon State
University
Computer Graphics

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

SinesAndCosines.pptx

mjb — September 26, 2023

You Know about Sines and Cosines from Math, but They are Very
Useful for Animating Computer Graphics

First, We Need to Understand Something about Angles:

VD
97> _ . _ |
If a circle has a radius of 1.0, then we can march around it by simply
A changing the angle that we call 6.
Oregon State

University

Computer Graphics
mjb — September 26, 2023

First, We Need to Understand Something about Angles

One of the things we notice is that each angle 8 has a unique X
and Y that goes with it.

Urnsa
|
These are different for each 0.

Oregon State
University

Computer Graphics
mjb — September 26, 2023

First, We Need to Understand Something about Angles

Fortunately, centuries ago, people developed tables of _
those X and Y values as functions of 6. COS H _X

AN . B
9, ** —
They called the X values cosines and the Y values sines. sin 6 Y
0 UIQ These are abbreviated cos and sin.
regon State

University

Computer Graphics
mjb — September 26, 2023

How People used to Lookup Sines and Cosines — Yuch!

Fortunately We Now Have Calculators and Computers

0.730 6385

9
9355 3594
9335374!

6% 850 5%

363
263 120 | 19
ga6y 243 | 11 85

So

3 187
9263 3615 1186
186

186

o | s

i

5263 934 1185
9364 0730

39 | giaty 4soi | 11
3 |eatason z
53617173

9:363 8359 %
3% [52641914

95
9593 7856 9265 2564
99927317 3: 965

' ig 5:265 7289

9993 7362 8.268 8470
4 | 5993 7333 | 39 | 9iaeg odso |

| 0737 Bas

0737707 |
737 5880

.737 4700 | 40 lisg

40
739038 | 55
10
)
50

o737 3511
07373323 | 20
| 0737 i135 | 10
07365937 | o
o736 asen | 5o |37 (3
07367573 | 4o
07366335 | 30
0.7365199 | 30
| o738 4013 | 10
G

ﬂ:ﬂﬂ:‘-

5=
£

4 113
7362827 | o 36| s
7361601 | sa |36 [3l
07360455 | 4o FE
0.735 9270 ='i

ok =
l‘”

o g - 31| ©[92613140
HHERED Fid 10 | 936 a3s
0,738 chy K 20 | 9.261 5409 | 1134

1e3g | 29260 |

70 o |
3 | 2992 a3 | 39 | 337 140s

1
19 | 2252310

9.992 6153
11 BS

ety

9453 a3

558 ¢
%

130 | 22

so1so06 | 39 [SZER A e
08 vecs | TR | o

] s 1
| 9270 4284 .
e 9 ,Jvm;"; 11ty | 372957
33 | 32706817 ::g: o720 334
93707786

Lol
s

Oregon State
University
Computer Graphics

61 9.952 8175 9.203 3015 30
‘3: :'.:26:;; 1148 [9,992 8136 | 32 | 9.363 4801 ::gg 0.736 5199 | 20
50 | 9.256 4085 :::g 9.992 5098 :?;9 92635987 | | 1eg | 07364013 | 10 i
° 653 9.992 8059 9.263 7173 0.7362827 | o :
» 10 33262353 1147 | 0.093 8021 | 38 | 9.263 8359 "gg 0.736 1641 | 50 36 3| a1
20 | 9.256 7526 ::zg 9.993 7982 | 39 [9.263 9545 | [1oC [0.736 0ass [40 p
256 9.992 7943 9.264 0730 0.735 9270 | 10 HE
i: ;:;G::Zg "‘g 9.992 790% 38 9.1641614 ”2" 0.5353036 io 2:::
50 | 9357.0965 | [14¢ | 9.9927866 | 33 | 92643099 | 113 | 0.735 6901 | 10 i
26| o| 92572110 9.992 7827 9.264 4283 07355717 | ol35]
10 | 9357 3255 | 1145 [9.902 7788 | 39 | 9.264 5467 | 1184 | 0735 4533 | 50 2
20 [93574400 | 1142 | 6.9937750 | 31 9264 8651 [114 | 0735 3349 | 40
30 | 9357 5545 9.992 7711 9.264 7834 0.735 2166 | 30 1169
40 [92576689 | 1144 [0.992 7672 (39 [9.364 9017 | 1183) 0535 0083 | 20 | | e
50 | 9257 7833 “x 9.992 7634 gg 9265 0200 | 1123 | 0.734 9800 | 10 NS
26| o|9as78977 | .0 | 99937595 93651382 [. 07348618 | o34 | 4 &t
10 | 92580120 | 1 | 9.992 7556 [39 [9.265 2564 | 1102 | 0.734 7436 | 50
20 [9258 1263 | 143 | 9.9927517 gg 9265 3746 | 1107 [0.734 6354 | 40 3| B
Mom i
30 93582406 |) [99927478 | 1o [92654927 | . | 07345073 [30 pireds
40 | 9.258 3548 t14a | 9993 7440 gg 9.265 6108 ::8’ 0.734 3892 | 20
¥ s: 935:4:90 1 9-99274:1 3o | 92657280 [1ot | 0734 2711 | 10
9.258 3832 9.992 7362 9.265 8470 0.7341530 | ©|33
1093586973 | 147 | 99927323 | 39 | 9.265 9650 | 1180 | 0.535 03¢0 | <o 88
{ 1 t
-L- I =
1 7
ST By |
".'\|\,'\?"|M‘,|\|l‘\ll\fl b _ o5 i Ell'il
2o ot = LERET Tadvgnl
X g 4 ; i1
—I F] --:-l-ﬂl—-'—l-lrrl---l..u....h
|- | 1
LL3 I:Il LR ELLIACLITTT
& :
FI TERF| Vi
*oLLe | 111
o IS —SEPETTr 26, 2023

First, We Need to Understand Something about Angles

X
If we were to double the radius of the circle, all of COS 9 _ E
the X’s and Y’s would also double.
Urnsa
So, really the cos and sin are ratios of X and Y to Y
Oregonstate the circle Radius sin @ = —
University R

Computer Graphics
mjb — September 26, 2023

First, We Need to Understand Something about Angles

= R % cos @
= R*sin@

So, if we know the circle Radius, and we cos @ =
march through a bunch of 8 angles, we can
determine all of the X’s and Y’s that we

need to draw a circle.]
A4 sinf@ =
Oregon State
University
Computer Graphics

=vll e M= V] S

Draw to this point

mjb — September 26, 2023

Thus, We Could Create Our Very Own Circle-Drawing Function

Circle center Circle radius

\ /

/

numsegs is the number of line segments
making up the circumference of the circle.

void \ /

Circle(float xc, float yg) float r, int numsegs)

{
float dang @
0 N

float ang = 0.;
glBegin(GL_TRIANGL
glVertex3f(xc, yc, 0.);

(float)numsegs;

for(inti=0; i <= numse
{
float x = xc + r * cosf(ang))
float y = yc + r * sinf(ang);
glVertex3f(x,y, 0.);

numsegs=20 gives a nice circle.

5 gives a pentagon.
8 gives an octagon.
4 gives you a square. Etc.

211 is how many radians are in a full circle

The C/C++ sin() and cos() functions use
double-precision floating point.

N
ang += dang; GL_TRII\\/I:IGLE_FAN
} v.
Vi
glEnd(); Vo
} 3 .
Orego\rll State

University

Computer Graphics

The C/C++ sinf() and cosf() functions use
single-precision floating point, and are faster.

mjb — September 26, 2023

Why 2.*PI ?
e —

float dané 2.f'F_PI Dﬂoat)numsegs;
v

We humans commonly measure angles in degrees, but science and computers like
to measure them in something else called radians.

There are 360° in a complete circle.
There are 21T radians in a complete circle.

The built-in cosf() and sinf() functions expect angles to be given in radians.

To convert between the two:
float rad =deg * (F_PI/180.f);
float deg =rad * (180.f/F_PI);

e
glRotatef() and gluPerspective() are the only two programming
= functions | can think of that use degrees. All others use radians!
Oregon State

University
Computer Graphics
mjb — September 26, 2023

Circles and Pentagons and Octagons, Oh My!

10

glColor3f(1., 0., Q
Circle(1.1, 3.1, 1.
glColor3f(0., 1., @
Circle(2.1, 2.f, 1 @
glColor3f(0., 0., '
Circle(3.1, 1.f, @

(e

Oregon State
University
Computer Graphics

mjb — September 26, 2023

11
Easy as TT:
M _Plvs. F_PI

The math.h include file has a definition of 77 that looks like this:

#define M PI 3.14159265358979323846
Which will work just fine for whatever you need it for.

But, Visual Studio goes a little crazy complaining about mixing doubles (which is what

M_Plis in) and floats (which is probably what you use most often). So, your sample
code has these lines in it:

#define F PI ((float) (M_PI))* n
#define F 2 PI ((float) (2.£*F PI))*— 2T
#define F_PI 2 ((float) (F_PI/2.f)) & 1'[/2

| use the F_ version a lot because it keeps VS quiet. You can use either.

gor

Oregon State
University
Computer Graphics
mjb — September 26, 2023

12
And, there is no reason the X and Y radii need to be the same...

void
Ellipse(float xc, float y¢, float rx, float ry,int numsegs)
{

float dang = 2.f * F_PIl/ (float)numsegs;
float ang = 0.;

glBegin(GL_TRIANGLE_FAN);
glVertex3f(xc, yc, 0.);

for(inti = 0; i <= numsegs; i++)
{
float x = xc cosf(ang);
floaty = yc sinf(ang);
glVertex3f(x, Y, 0.);
ang += dang;

}

glEnd();

}

=g

Oregon State
University
Computer Graphics
mjb — September 26, 2023

13

There is also no reason we can’t gradually change the radius ...

void
Spiral(float xc, float yc
{

float ang = 0.;

for(inti = 0; i <= numsegs; i++)

float r0, float r1,)int numsegs,

float dang = (float)numturns * 2.f * F_PI / (float)numsegs;

glBegin(GL_LINE_STRIP);

{

t newrad = (1.-t)*r0 + t*r1;

float x = xc + newrad
float y = yc + newrad
glVertex3f(x, y, 0.);
ang += dang;

}
glEnd();

Or}

oat t = (float)i / (float)numsegs; //0.-1.
ffiimea erpolate from r0 to r1

* cosf(ang);
* sinf(ang);

Unciversity
Computer Graphics

mjb — September 26, 2023

What's this code all about?

Parametric Linear Interpolation (Blending)

float t = (float)i / (float)numsegs;
float newrad = (1.-t)*r0 + t*r1;

110.-1.

In computer graphics, we do a lot of linear interpolation between two
input values. Here is a good way to do that:

1. Setup a float variable, ¢, such that it ranges from 0. to 1.
The line float t = (float)i / (float)numsegs; does this.

2. Step through as many £ values as you want interpolation steps.
The line for(inti = 0; i <= numsegs; i++) does this.

3. For each t, multiply one input value by (1.-t) and multiply the other input

value by t and add them together.

The line float newrad = (1.-t)*r0 + t*r1; does this.

e

Oregon State
University
Computer Graphics

14

mjb — September 26, 2023

We Can Also Use This Same Idea to Arrange Things in a Circle

and Linearly Blend Their Colors

int numObjects = 9;
float radius = 2.f;
float xc = 3.f;

float x = xc + radius * cosf(ang);

float y = yc + radius * sinf(ang);

float t = (float)i / (float)(numObjects-1);
float red =t;

float blue = 1.f - t;

glColor3f red, 0., blue);

Circle(x, y, r, numSegs);

ang += dang;

float yc = 3.f;

int numSegs = 20;

float r = 50.f;

float dang = 2.f*F_PI / (float) (numObjects - 1);
float ang = 0.;

for(inti=0; i < numObjects; i++)

{

/11 0.-1.
Il ramp up
I/l ramp down

15

Oregon State
University
Computer Graphics

mjb — September 26, 2023

By Understanding what the Sine Function Looks Like, °

We Can Also Use it to Control Animations Based on Time

In your sample.cpp file, we have some code that looks like this:

float Time; /[global variable intended to lie between [0.,1.)

constint MS_PER_CYCLE =10000; // 10000 milliseconds = 10 seconds

/[in Animate():
int ms = glutGet(GLUT_ELAPSED_TIME);
ms %= MS_PER_CYCLE;
/[makes the value of ms between 0 and MS_PER_CYCLE-1
Time = (float)ms / (float)MS_PER_CYCLE;
/l makes the value of Time between 0. and slightly less than 1.

Oregon State
University

Computer Graphics
mjb — September 26, 2023

By Understanding what the Sine Function Looks Like, Y

We Can Also Use it to Control Animations Based on Time

The sine function goes from -1. to +1., and does it very smoothly

y=sin(2.x * Time)

(e

Oregon State
University
Computer Graphics

mjb — September 26, 2023

By Understanding what the Sine Function Looks Like, 18

We Can Also Use it to Control Animations Based on Time

Sine functions produce a smoother set of motions than linear functions do
(that's why we use them):

Sine function Linear function

N e

1.0

0.8

0.6

0.4

0.2

) 0.0 »Time

0.0 0.1 0.2 0.3 0.4 0.
-0.2

04 Linear function tries to

(T |06 produce infinite acceleration

at these two locations
,l.,

-0.8

Oregon St
Universif -1.0
Computer Grapmircs N—"

mjb — September 26, 2023

Increasing the Amplitude, Increasing the Frequency *

sin(2.x i iTime) in(2. */7T * Time) Si 2.% T * Time))

2.0

15

1.0

0.5

00 ¢ »Time
0.0 0.1 02 Ro3 04 08 | 7 R o |
-0.5

-1.0

1.5

Oregon State
University
Computer Graphics
mjb — September 26, 2023

Increasing the Amplitude, Increasing the Frequency 20

sin(2.x T * Time in(2.* m * Time) si 2 %1+ Time
@2msTime) (2pin2+ @2)

»*Time

*Sin(FX(2.x T * Time))

97...
Changing this number Changing this number

oregonsState changes the Amplitude changes the Frequency
University
Computer Graphics
mjb — September 26, 2023

Oscillating Motion

Let’'s say you want a block to oscillate back and forth in x:

v

This code would cause it to do that:

// in Display(l:
float x = X*sin(F*(2.x T * Time))

glTranslatef(x, 0., 0.);
glCallList(BlockList);

e

Oregon State
University
Computer Graphics

21

mjb — September 26, 2023

Rocking Motion 2

Let’'s say you want a block to rock back and forth:

This code would cause j

//'in Display():
float theta = 45.f x sin(F x(2.x w x Time))

glRotatef(theta, 0.,0.,1.);
glCallList(BlockList);

e

Oregon State
University ' '
Computer Graphics A4 N

mjb — September 26, 2023

