Sines and Cosines for Animating Computer Graphics
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You Know about Sines and Cosines from Math, but They are Very
Useful for Animating Computer Graphics

First, We Need to Understand Something about Angles:

VD
97> _ . _ |
If a circle has a radius of 1.0, then we can march around it by simply
A changing the angle that we call 6.
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First, We Need to Understand Something about Angles

One of the things we notice is that each angle 8 has a unique X
and Y that goes with it.

Urnsa
|
These are different for each 0.
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First, We Need to Understand Something about Angles

Fortunately, centuries ago, people developed tables of _
those X and Y values as functions of 6. COS H _X

AN . B
9, ** —
They called the X values cosines and the Y values sines. sin 6 Y
0 UIQ These are abbreviated cos and sin.
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How People used to Lookup Sines and Cosines — Yuch!

Fortunately We Now Have Calculators and Computers
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First, We Need to Understand Something about Angles

X
If we were to double the radius of the circle, all of COS 9 _ E
the X’s and Y’s would also double.
Urnsa
So, really the cos and sin are ratios of X and Y to Y
Oregonstate  the circle Radius sin @ = —
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First, We Need to Understand Something about Angles

= R % cos @
= R*sin@

So, if we know the circle Radius, and we cos @ =
march through a bunch of 8 angles, we can
determine all of the X’s and Y’s that we

need to draw a circle. ]
A4 sinf@ =
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Thus, We Could Create Our Very Own Circle-Drawing Function

Circle center Circle radius

\ /

/

numsegs is the number of line segments
making up the circumference of the circle.

void \ /

Circle(float xc, float yg) float r, int numsegs )

{
float dang @
0 N

float ang = 0.;
glBegin( GL_TRIANGL
glVertex3f( xc, yc, 0. );

(float)numsegs;

for(inti=0; i <= numse
{
float x = xc + r * cosf(ang))
float y = yc + r * sinf(ang);
glVertex3f( x,y, 0.);

numsegs=20 gives a nice circle.

5 gives a pentagon.
8 gives an octagon.
4 gives you a square. Etc.

211 is how many radians are in a full circle

The C/C++ sin( ) and cos( ) functions use
double-precision floating point.

N
ang += dang; GL_TRII\\/I:IGLE_FAN
} v.
Vi
glEnd(); Vo
} 3 .
Orego\rll State
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The C/C++ sinf( ) and cosf( ) functions use
single-precision floating point, and are faster.
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Why 2.*PI ?
e —

float dané 2.f'F_PI Dﬂoat)numsegs;
v

We humans commonly measure angles in degrees, but science and computers like
to measure them in something else called radians.

There are 360° in a complete circle.
There are 21T radians in a complete circle.

The built-in cosf( ) and sinf( ) functions expect angles to be given in radians.

To convert between the two:
float rad =deg * ( F_PI/180.f);
float deg =rad * ( 180.f/F_PI );

e
glRotatef( ) and gluPerspective( ) are the only two programming
= functions | can think of that use degrees. All others use radians!
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Circles and Pentagons and Octagons, Oh My!

10

glColor3f( 1., 0., Q
Circle( 1.1, 3.1, 1.
glColor3f( 0., 1., @
Circle( 2.1, 2.f, 1 @
glColor3f( 0., 0., '
Circle( 3.1, 1.f, @

(e
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11
Easy as TT:
M _Plvs. F_PI

The math.h include file has a definition of 77 that looks like this:

#define M PI 3.14159265358979323846
Which will work just fine for whatever you need it for.

But, Visual Studio goes a little crazy complaining about mixing doubles (which is what

M_Plis in) and floats (which is probably what you use most often). So, your sample
code has these lines in it:

#define F PI ((float) (M_PI))* n
#define F 2 PI ((float) (2.£*F PI))*— 2T
#define F_PI 2 ((float) (F_PI/2.f)) & 1'[/2

| use the F_ version a lot because it keeps VS quiet. You can use either.

gor
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12
And, there is no reason the X and Y radii need to be the same...

void
Ellipse( float xc, float y¢, float rx, float ry,int numsegs )
{

float dang = 2.f * F_PIl/ (float)numsegs;
float ang = 0.;

glBegin( GL_TRIANGLE_FAN );
glVertex3f( xc, yc, 0. );

for(inti = 0; i <= numsegs; i++)
{
float x = xc cosf(ang);
floaty = yc sinf(ang);
glVertex3f( x, Y, 0. );
ang += dang;

}

glEnd();

}

=g
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13

There is also no reason we can’t gradually change the radius ...

void
Spiral( float xc, float yc
{

float ang = 0.;

for(inti = 0; i <= numsegs; i++)

float r0, float r1,)int numsegs,

float dang = (float)numturns * 2.f * F_PI / (float)numsegs;

glBegin( GL_LINE_STRIP );

{

t newrad = (1.-t)*r0 + t*r1;

float x = xc + newrad
float y = yc + newrad
glVertex3f( x, y, 0. );
ang += dang;

}
glEnd();

Or}

oat t = (float)i / (float)numsegs; //0.-1.
ffiimea erpolate from r0 to r1

* cosf(ang);
* sinf(ang);
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What's this code all about?

Parametric Linear Interpolation (Blending)

float t = (float)i / (float)numsegs;
float newrad = (1.-t)*r0 + t*r1;

110.-1.

In computer graphics, we do a lot of linear interpolation between two
input values. Here is a good way to do that:

1. Setup a float variable, ¢, such that it ranges from 0. to 1.
The line float t = (float)i / (float)numsegs; does this.

2. Step through as many £ values as you want interpolation steps.
The line for( inti = 0; i <= numsegs; i++ ) does this.

3. For each t, multiply one input value by (1.-t) and multiply the other input

value by t and add them together.

The line float newrad = (1.-t)*r0 + t*r1; does this.

e
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We Can Also Use This Same Idea to Arrange Things in a Circle

and Linearly Blend Their Colors

int numObjects = 9;
float radius = 2.f;
float xc = 3.f;

float x = xc + radius * cosf(ang);

float y = yc + radius * sinf(ang);

float t = (float)i / (float)(numObjects-1);
float red =t;

float blue = 1.f - t;

glColor3f red, 0., blue );

Circle( x, y, r, numSegs );

ang += dang;

float yc = 3.f;

int numSegs = 20;

float r = 50.f;

float dang = 2.f*F_PI / (float) ( numObjects - 1);
float ang = 0.;

for(inti=0; i < numObjects; i++)

{

/11 0.-1.
Il ramp up
I/l ramp down

15
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By Understanding what the Sine Function Looks Like, °

We Can Also Use it to Control Animations Based on Time

In your sample.cpp file, we have some code that looks like this:

float Time; /[ global variable intended to lie between [0.,1.)

constint MS_PER_CYCLE =10000; // 10000 milliseconds = 10 seconds

/[ in Animate( ):
int ms = glutGet(GLUT_ELAPSED_TIME);
ms %= MS_PER_CYCLE;
/[ makes the value of ms between 0 and MS_PER_CYCLE-1
Time = (float)ms / (float)MS_PER_CYCLE;
/l makes the value of Time between 0. and slightly less than 1.
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By Understanding what the Sine Function Looks Like, Y

We Can Also Use it to Control Animations Based on Time

The sine function goes from -1. to +1., and does it very smoothly

y=sin(2.x  * Time)

(e
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By Understanding what the Sine Function Looks Like, 18

We Can Also Use it to Control Animations Based on Time

Sine functions produce a smoother set of motions than linear functions do
(that's why we use them):

Sine function Linear function

N e

1.0

0.8

0.6

0.4

0.2

) 0.0 »Time

0.0 0.1 0.2 0.3 0.4 0.
-0.2

04 Linear function tries to

(T |06 produce infinite acceleration

at these two locations
_,l._,

-0.8
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Increasing the Amplitude, Increasing the Frequency *

sin(2.x i iTime) in(2. */7T * Time) Si 2.% T * Time))

2.0

15

1.0

0.5

00 ¢ »Time
0.0 0.1 02 Ro3 04 08 | 7 R o |
-0.5
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Increasing the Amplitude, Increasing the Frequency 20

sin(2.x T * Time in(2.* m * Time) si 2 %1+ Time
@2msTime)  (2pin2+ @2 )

»*Time

*Sin(FX(2.x T * Time) )

97...
Changing this number Changing this number

oregonsState  changes the Amplitude changes the Frequency
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Oscillating Motion

Let’'s say you want a block to oscillate back and forth in x:

v

This code would cause it to do that:

// in Display( l:
float x = X*sin(F*(2.x T * Time) )

glTranslatef( x, 0., 0. );
glCallList( BlockList );

e
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Rocking Motion 2

Let’'s say you want a block to rock back and forth:

This code would cause j

//'in Display( ):
float theta = 45.f x sin(F x(2.x w x Time) )

glRotatef( theta, 0.,0.,1.);
glCallList( BlockList );

e
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