You know about sines and cosines from math, but they are very useful for animating computer graphics.

First, we need to understand something about angles:

If a circle has a radius of 1.0, then we can march around it by simply changing the angle that we call θ.

One of the things we notice is that each angle θ has a unique X and Y that go with it. These are different for each θ.

Fortunately, centuries ago, people developed tables of those X and Y values as functions of θ. They called the X values cosines and the Y values sines. These are abbreviated \cos and \sin.

If we were to double the radius of the circle, all of the X's and Y's would also double.

So, really the \cos and \sin are ratios of X and Y to the circle radius.

$$\cos \theta = \frac{X}{R}$$

$$\sin \theta = \frac{Y}{R}$$
First, We Need to Understand Something about Angles

\[\theta \]

So, if we know the circle's radius, and we march through a bunch of \(\theta \) angles, we can determine all of the \(X \)'s and \(Y \)'s that we need to draw a circle.

\[X = R \cos \theta \]
\[Y = R \sin \theta \]

Thus, We Could Create Our Very Own Circle-Drawing Function

```c
void Circle( float xc, float yc, float r, int numsegs ) {
    float dang = 2.f*F_PI / (float)numsegs;
    float ang = 0.;
    glBegin( GL_TRIANGLE_FAN );
    glVertex3f( xc, yc, 0. );
    for( int i = 0; i <= numsegs; i++) {
        float x = xc + r * cosf(ang);
        float y = yc + r * sinf(ang);
        glVertex3f( x, y, 0. );
        ang += dang;
    }
    glEnd( );
}
```

Why \(2 \cdot \pi \) ?

We humans commonly measure angles in degrees, but science and computers like to measure them in something else called radians.

There are 360° in a complete circle.
There are \(2 \pi \) radians in a complete circle.

The built-in cosf() and sinf() functions expect angles to be given in radians.

To convert between the two:

\[\text{rad} = \text{deg} \times (\frac{\text{F_PI}}{180.f}); \]
\[\text{deg} = \text{rad} \times \left(\frac{180.f}{\text{F_PI}}\right) \]

glRotatef() and gluPerspective() are the only two programming functions I can think of that use degrees. All others use radians!

Circles and Pentagons and Octagons, Oh My!

```c
void Ellipse( float xc, float yc, float rx, float ry, int numsegs ) {
    float dang = 2.f*F_PI / (float)numsegs;
    float ang = 0.;
    glBegin( GL_TRIANGLE_FAN );
    glVertex3f( xc, yc, 0. );
    for( int i = 0; i <= numsegs; i++) {
        float x = xc + rx * cosf(ang);
        float y = yc + ry * sinf(ang);
        glVertex3f( x, y, 0. );
        ang += dang;
    }
    glEnd( );
}
```

And, there is no reason the X and Y radii need to be the same...
There is also no reason we can't gradually change the radius …

```c
void Spiral(float xc, float yc, float r0, float r1, int numsegs, int numturns)
{
    float dang = (float)numturns * 2.f * F_PI / (float)numsegs;
    float ang = 0.;
    glBegin(GL_LINE_STRIP);
    for(int i = 0; i <= numsegs; i++)
    {
        float t = (float)i / (float)numsegs; // 0.-1.
        float newrad = (1.-t)*r0 + t*r1; // linearly interpolate from r0 to r1
        float x = xc + newrad * cosf(ang);
        float y = yc + newrad * sinf(ang);
        glVertex3f(x, y, 0.);
        ang += dang;
    }
    glEnd();
}
```

Parametric Linear Interpolation (Blending)

What's this code all about?

In computer graphics, we do a lot of linear interpolation between two input values. Here is a good way to do that:

1. Setup a float variable, t, such that it ranges from 0. to 1. The line `float t = (float)i / (float)numsegs;` does this.
2. Step through as many t values as you want interpolation steps. The line `for(int i = 0; i <= numsegs; i++)` does this.
3. For each t, multiply one input value by $(1.-t)$ and multiply the other input value by t and add them together. The line `float newrad = (1.-t)*r0 + t*r1;` does this.

We Can Also Use This Same Idea to Arrange Things in a Circle and Linearly Blend Their Colors

```c
int numobjects = 10;
float radius = 2.f;
float xc = 3.f;
float yc = 3.f;
int numsegs = 20;
float t = 0.5.f;
float dang = 2.f*F_PI / (float)(numobjects - 1);
float ang = 0.;
for(int i = 0; i < numobjects; i++)
{
    float x = xc + radius * cosf(ang);
    float y = yc + radius * sinf(ang);
    float t = (float)i / (float)numsegs; // 0.-1.
    float red = t; // ramp up
    float blue = 1.f - t; // ramp down
    glColor3f(red, 0., blue);
    Circle(x, y, r, numsegs);
    ang += dang;
}
```

By Understanding what the Sine Function Looks Like, We Can Also Use it to Control Animations Based on Time

In your sample.cpp file, we have some code that looks like this:

```c
float Time; // global variable intended to lie between [0.,1.)
const int MS_PER_CYCLE = 10000; // 10000 milliseconds = 10 seconds
// in Animate( ):
int ms = glutGet(GLUT_ELAPSED_TIME);
ms %= MS_PER_CYCLE; // makes the value of ms between 0 and MS_PER_CYCLE-1
Time = (float)ms / (float)MS_PER_CYCLE; // makes the value of Time between 0. and slightly less than 1.
```

The sine function goes from -1. to +1., and does it very smoothly

$$y = \sin(2\pi \times T\text{ime})$$

By Understanding what the Sine Function Looks Like, We Can Also Use it to Control Animations Based on Time

Sine functions produce a smoother set of motions than linear functions do (that's why we use them):

- Sine function
- Linear function

Linear function tries to produce infinite acceleration at these two locations
Oscillating Motion

Let's say you want a block to oscillate back and forth in x:

This code would cause it to do that:

```c
// in Display()
float x = X*sin(F*(2.*pi*Time))

... glTranslatef( x, 0., 0. );
glCallList( BlockList );
```

Rocking Motion

Let's say you want a block to rock back and forth:

This code would cause it to do that:

```c
// in Display()
float theta = 45.f * sin(F*(2.*pi*Time))

... glRotatef( theta, 0., 0., 1. );
glCallList( BlockList );
```