
1

mjb – September 19, 2023

1

Computer Graphics

Texture Mapping

TextureMapping.pptx

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License

Mike Bailey

mjb@cs.oregonstate.edu

mjb – September 19, 2023

2

Computer Graphics

+ =

The Basic Idea: Wrap an Image Around a Piece of Geometry

In software, this is a very slow process. In hardware, this is very fast. The development of
texture-mapping hardware was one of the most significant events in the history of computer
graphics. This is really what finally enabled game development on a realistic scale.

mjb – September 19, 2023

3

Computer Graphics

The Basic Ideas

To prevent confusion, the texture image pixels are not called pixels. A pixel is a dot in the final
screen image. A dot in the texture image is called a texture element, or texel.

Similarly, to avoid terminology confusion, a texture image’s width and height dimensions are not
called X and Y. They are called S and T.

A texture image is not indexed by its actual resolution coordinates. Instead, it is indexed by a
coordinate system that is resolution-independent. The left side is always S=0., the right side is S=1.,
the bottom is T=0., and the top is T=1.

Thus, you do not need to be aware of the texture’s resolution when you are specifying coordinates
that point into it. Think of S and T as a measure of what fraction of the way you are into the texture.

T=1.

S=0.

T=0.

S=1.

T S

mjb – September 19, 2023

4

Computer Graphics

The Basic Ideas

Texture mapping is a computer graphics operation in which a separate image, referred to
as the texture, is stretched onto a piece of 3D geometry and follows it however it is
transformed. This image is also known as a texture map. This can be most any image.

mjb – September 19, 2023

5

Computer Graphics

The Basic Ideas

The mapping between the geometry of the 3D object and the S and T of the texture image works like this:

T=1.

S=0.

T=0.

S=1.

(X0, Y0, Z0, S0,T0)

(X1, Y1, Z1, S1,T1)(X3, Y3, Z3, S3,T3)

(X4, Y4, Z4, S4,T4)

(X2, Y2, Z2, S2,T2)

Interpolated (S,T) = (.78, .67)

(.78, .67) in S and T = (199.68, 171.52) in texels (199.68, 171.52)

172

171

199 200

You specify an (s,t) pair at each vertex, along with the vertex coordinate. At the same time
that OpenGL is interpolating the coordinates, colors, etc. inside the polygon, it is also
interpolating the (s,t) coordinates. Then, when OpenGL goes to draw each pixel, it uses that
pixel’s interpolated (s,t) to lookup a color in the texture image.

mjb – September 19, 2023

6

Computer Graphics

Enable texture mapping:
glEnable(GL_TEXTURE_2D);

Draw your polygons, specifying s and t at each vertex:

glBegin(GL_TRIANGLES);
glTexCoord2f(s0, t0);
glNormal3f(nx0, ny0, nz0);
glVertex3f(x0, y0, z0);

glTexCoord2f(s1, t1);
glNormal3f(nx1, ny1, nz1);
glVertex3f(x1, y1, z1);

. . .
glEnd();

(If this geometry is static, i.e., will never change, it is a good idea to put this all into a display list.)

Disable texture mapping:
glDisable(GL_TEXTURE_2D);

Using a Texture: Assign an (s,t) to each vertex

1 2

3 4

5 6

2

mjb – September 19, 2023

7

Computer Graphics

glTexCoord2f(s0, t0);

The easiest way to figure out what s and t are at a particular vertex is to figure out what
fraction across the object the vertex is living at. For a plane, this is pretty easy:

(x,y,z)

𝒔 =
𝒙 − 𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙 − 𝑿𝒎𝒊𝒏
𝒕 =

𝒚 − 𝒀𝒎𝒊𝒏

𝒀𝒎𝒂𝒙 − 𝒀𝒎𝒊𝒏

Using a Texture: How do you know what (s,t) to assign to each vertex?

mjb – September 19, 2023

8

Computer Graphics

glTexCoord2f(s0, t0);

Or, for a sphere, you do the same thing you did
for the plane, only the interpolated variables
are angular (spherical) coordinates instead of
linear coordinates

𝒔 =
𝚯 − (−𝝅)

𝟐𝝅
𝒕 =

𝚽 − (−
𝝅
𝟐

)

𝝅

𝜣

𝜱

Using a Texture: How do you know what (s,t) to assign to each vertex?

The OsuSphere code does it like this:

s = (lng + M_PI) / (2.*M_PI);

t = (lat + M_PI/2.) / M_PI;

mjb – September 19, 2023

9

Computer Graphics

glTexCoord2f(s0, t0);

Using a Texture: How do you know what (s,t) to assign to each vertex?

Uh-oh. Now what? Here’s where it gets tougher…,

𝒔 = ? 𝒕 = ?

mjb – September 19, 2023

10

Computer Graphics

You really are at the mercy of whoever did the modeling and assigned the s,t coordinates…

Natural

Not-so natural

mjb – September 19, 2023

11

Computer Graphics

Be careful where s abruptly transitions from 1. back to 0.

s
s

Unless you are careful, you will see a
discontinuity in the texture image

mjb – September 19, 2023

12

Computer Graphics

unsigned char *BmpToTexture(char *, int *, int *);
•••
int width, height;
unsigned char *texture = BmpToTexture("filename.bmp", &width, &height);

This function is found in your sample code.

Note: BmpToTexture should be called once, and must be used at the end of InitGraphics().

Do not call BmpToTexture from the Display() function.
Do not call BmpToTexture from the Display() function.
Do not call BmpToTexture from the Display() function.
Do not call BmpToTexture from the Display() function.

Reading a Texture from a BMP File

7 8

9 10

11 12

3

mjb – September 19, 2023

13

Computer Graphics

Define the texture wrapping parameters. This will control what happens when a texture coordinate
is greater than 1.0 or less than 0.0:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrap);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrap);

where wrap is:

GL_REPEAT specifies that this pattern will repeat (i.e., wrap-around) if transformed texture
coordinates less than 0.0 or greater than 1.0 are encountered.

GL_CLAMP specifies that the pattern will “stick” to the value at 0.0 or 1.0.

Texture Wrapping

mjb – September 19, 2023

14

Computer Graphics

Define the texture filter parameters. This will control what happens when a texture is scaled up or
down.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);

where filter is:

GL_NEAREST specifies that point sampling is to be used when the texture map needs to be
magnified or minified.

GL_LINEAR specifies that bilinear interpolation among the four nearest neighbors is to be
used when the texture map needs to be magnified or minified.

Texture Filtering

GL_NEAREST GL_LINEAR

mjb – September 19, 2023

15

Computer Graphics

This tells OpenGL what to do with the texel colors when it gets them:

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode);

There are several modes that can be used. Two of the most useful are:

GL_REPLACE specifies that the 3-component texture will be applied as an opaque image on top of
the polygon, replacing the polygon’s specified color.

GL_MODULATE specifies that the 3-component texture will be applied as piece of colored plastic on
top of the polygon. The polygon’s specified color “shines” through the plastic
texture. This is very useful for applying lighting to textures: paint the polygon white
with lighting and let it shine up through a texture.

Texture Environment

GL_REPLACE GL_MODULATE

mjb – September 19, 2023

16

Computer Graphics

int width, height;
unsigned char *texture = BmpToTexture("filename.bmp", &width, &height);
int level=0, ncomps=3, border=0;
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, level, ncomps, width, height, border, GL_RGB, GL_UNSIGNED_BYTE, texture);

where:
level is used with mip-mapping. Use 0

ncomps number of components in this texture: 3 if using RGB, 4 if using RGBA. Use 3

width width of this texture map, in texels.

height height of this texture map, in texels.

border width of the texture border, in texels. Use 0

texture the name of an array of unsigned characters holding the texel colors.

This function physically transfers the array of texels from the CPU to the GPU and makes it the currently-active texture. You
can get away with specifying this ahead of time only if you are using a single texture. If you are using multiple textures, you
must make each texture current in Display() right before you need it. See the upcoming section about binding texture objects.

Setting up the Texture in InitGraphics()

mjb – September 19, 2023

17

Computer Graphics

In addition to the Projection and ModelView matrices, OpenGL maintains a transformation for texture map
coordinates S and T as well. You use all the same transformation functions you are used to: glRotatef(),
glScalef(), glTranslatef(), but you must first specify the Matrix Mode:

glMatrixMode(GL_TEXTURE);

The only trick to this is to remember that you are transforming the texture coordinates, not the texture image.
Transforming the texture image forward is the same as transforming the texture coordinates backwards:

Texture Transformation

Scale = 1.Scale = 0.5 Scale = 2.

mjb – September 19, 2023

18

Computer Graphics

Texture Transformation

Angle = 0.Angle = -45. Angle = 45.

The only trick to this is to remember that you are transforming the texture
coordinates, not the texture image. Transforming the texture image forward is the
same as transforming the texture coordinates backwards:

13 14

15 16

17 18

4

mjb – September 19, 2023

19

Computer Graphics

The OpenGL glTexImage2D function doesn’t just use that texture, it downloads all those bytes from the CPU
to the GPU, every time that call is made! After the download, this texture becomes the “current texture image”.

glTexImage2D(GL_TEXTURE_2D, level, ncomps, width, height, border, GL_RGB, GL_UNSIGNED_BYTE, texture);

If your scene has only one texture, this is easy to manage. Just do it once and forget about it.

But, if you have several textures, all to be used at different times on different objects, it will be important to
maximize the efficiency of how you create, store, and manage those textures. In this case you should bind
texture objects.

Texture objects leave your textures on the graphics card and then re-uses them, which is always going to be
faster than re-loading them. Re-binding a texture object is basically "throwing a switch" in the GPU.

Texture Objects

mjb – September 19, 2023

20

Computer Graphics

int Tex0, Tex1; // global variables
. . .
Then, at the end of InitGraphics() you add:

int width0, height0, width1, height1;
unsigned char * textureArray0 = BmpToTexture("image0.bmp", &width0, &height0);
unsigned char * textureArray1 = BmpToTexture("image1.bmp", &width1, &height1);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(1, &Tex0); // assign binding “handles” to texture objects
glGenTextures(1, &Tex1);
. . .
glBindTexture(GL_TEXTURE_2D, Tex0); // make Tex0 the current texture and store its parameters

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 3, width0, height0, 0, GL_RGB, GL_UNSIGNED_BYTE, textureArray0);

Texture Objects

Create a texture object by generating a texture name and then binding the texture object to the texture data
and texture properties. The first time you execute glBindTexture(), you fill the texture object. Subsequent
times you do this, you are making that texture object current. So, create global Texture IDs like this:

mjb – September 19, 2023

21

Computer Graphics

glBindTexture(GL_TEXTURE_2D, Tex1); // make Tex1 the current texture and store its parameters

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, 3, width1, height1, 0, GL_RGB,GL_UNSIGNED_BYTE, textureArray1);

Then, in Display():

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, Tex0);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glCallList(DL0);

glBindTexture(GL_TEXTURE_2D, Tex1);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glCallList(DL1);

glDisable(GL_TEXTURE_2D);

Texture Objects

mjb – September 19, 2023

22

Computer Graphics

The OpenGL Rendering Context contains all the characteristic information necessary to produce an image from
geometry. This includes the current transformations, colors, lighting, textures, where to send the display, etc.

The OpenGL term “binding” refers to “attaching” or “docking” (a metaphor which I find to be more visually
pleasing) an OpenGL object to the Context. You can then assign characteristics, and they will “flow” through
the Context into the object.

What Does “Binding” Really Mean?

Before
Binding

After
Binding

mjb – September 19, 2023

23

Computer Graphics

Some Great Uses for Texture Mapping you have seen in the Movies

Disney

Disney

Yes, I know, I know, these are older examples, but I
especially like them because, at the time, the CG (and the
textures) became part of the story-telling for the first time.

Disney mjb – September 19, 2023

24

Computer Graphics

Some Great Uses for Texture Mapping you have seen in the Movies More Recently

Disney Disney

Pixar

Disney

Pixar

Disney

19 20

21 22

23 24

5

mjb – September 19, 2023

25

Computer Graphics

Bonus Topic: Procedural Texture Mapping

You can also create a texture from data on-the-fly. In this case, the fragment shader takes a
grid of heights and uses cross-products to produce surface normal vectors for lighting.

While this is “procedural”, the amount of height data is finite, so you can still run out of resolution

Although this looks like an incredible amount of
polygonal scene detail, the geometry for this scene
consists of just a single quadrilateral

We cover this more in the
shaders course: CS 457/557

mjb – September 19, 2023

26

Computer Graphics

“Mandelzoom”:
In this case, the texture is a pure equation, so you never run out of
resolution. (You do run out of floating-point precision, however.)

Bonus Topic: Procedural Texture Mapping

We cover this more in the
shaders course: CS 457/557

z2 + c → z

25 26

