
mjb – August 30, 2024

1

Computer Graphics

Vertex Buffer Objects

VertexBuffers.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – August 30, 2024

2

Computer Graphics

static GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ -1., 1., -1. },
{ 1., 1., -1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ -1., 1., 1. },
{ 1., 1., 1. }

};

static GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
{ 1., 0., 0. },
{ 0., 1., 0. },
{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0., 1., 1. },
{ 1., 1., 1. },

};

Remember this from the Geometric Modeling Notes?

GLuint CubeTriangleIndices[][3] =
{

{ 0, 2, 3 },
{ 0, 3, 1 },
{ 4, 5, 7 },
{ 4, 7, 6 },
{ 1, 3, 7 },
{ 1, 7, 5 },
{ 0, 4, 6 },
{ 0, 6, 2 },
{ 2, 6, 7 },
{ 2, 7, 3 },
{ 0, 1, 5 }
{ 0, 5, 4 }

};

0 1

32

4 5

76

mjb – August 30, 2024

3

Computer Graphics

Vertex Buffer Objects: The Big Idea

• Store vertex coordinates and vertex attributes on the graphics card.

• Optionally store the connections on the graphics card too.

• Every time you go to redraw, coordinates will be pulled from GPU memory instead of CPU
memory, avoiding a significant amount of bus latency.

mjb – August 30, 2024

4

Computer Graphics

Did any of you ever watch Star Trek: Deep Space Nine?

It was about life aboard a space station. Ships docked at Deep Space Nine to unload cargo
and pick up supplies. When a ship was docked at docking port “A”, for instance, the supply-
loaders didn’t need to know what ship it was. They could just be told, “send these supplies
out docking port A”, and “bring this cargo in from docking port A”.

Surprisingly, this actually has something
to do with computer graphics! 

AB

CD

mjb – August 30, 2024

5

Computer Graphics

The OpenGL Rendering Context

The OpenGL Rendering Context (also called “the state”) contains all the characteristic
information necessary to produce an image from geometry. This includes the current
transformation, color, lighting, textures, where to send the display, etc.

Each window (e.g., glutCreateWindow) has its own rendering context.

vertices,
colors,
normal,
texture

coordinates

vertex connection
indices

mjb – August 30, 2024

6

Computer Graphics

More Background –
“Binding” to the Context

The OpenGL term “binding” refers to “attaching” or “docking” (a metaphor which I find
to be more visually pleasing) an OpenGL object to the Context. You can then assign
characteristics, and they will “flow in” through the Context into the object.

Vertex Buffer Object pointed to by bufA

glBindBuffer(GL_ARRAY_BUFFER, bufA);

glBufferData(GL_ARRAY_BUFFER, numBytes, data, usage);

Ships docked at Deep Space Nine to unload cargo and pick up supplies. When a ship was docked at
docking port “A”, for instance, the supply-loaders didn’t need to know what ship it was. They could just
be told, “send these supplies out docking port A”, and “pick up this cargo from docking port A”.

mjb – August 30, 2024

7

Computer Graphics

More Background –
“Binding” to the Context

When you want to use that Vertex Buffer Object, just bind it again. All of the characteristics
will then be active, just as if you had specified them again. Its contents will “flow out” of the
object into the Context.

Vertex Buffer
Object

glBindBuffer(GL_ARRAY_BUFFER, bufA);

glDrawArrays(GL_TRIANGLES, 0, numVertices);

mjb – August 30, 2024

8

Computer Graphics

More Background –
How do you Create an OpenGL “Buffer Object”?

When creating data structures in C++, objects are pointed to by their addresses.

In OpenGL, objects are pointed to by an unsigned integer “handle”. You can assign
a value for this handle yourself (not recommended), or have OpenGL generate one
for you that is guaranteed to be unique. For example:

GLuint bufA;

glGenBuffers(1, &bufA);

How many
“handles” to

generate

The “array” to put
them in

OpenGL then uses these handles to determine the actual GPU memory addresses to use.

mjb – August 30, 2024

9

Computer Graphics

Loading data into the currently-bound Vertex Buffer Object

glBufferData(type, numBytes, data, usage);

type is the type of buffer object this is:

Use GL_ARRAY_BUFFER to store floating point vertices, normals, colors, and texture coordinates

numBytes is the number of bytes to store all together. It’s not the number of numbers, not
the number of coordinates, not the number of vertices, but the number of bytes!

data is the memory address of (i.e., pointer to) the data to be transferred from CPU memory to the
graphics memory. (This is allowed to be NULL, indicating that you will transfer the data over later.)

mjb – August 30, 2024

10

Computer Graphics

usage is a hint as to how the data will be used: GL_xxx_yyy

where xxx can be:
STATIC this buffer will be re-written seldom
DYNAMIC this buffer will be re-written often

and yyy can be:
DRAW this buffer will be used for drawing
READ this buffer will be copied into

glBufferData(type, numBytes, data, usage);

For what we are doing, use GL_STATIC_DRAW

Loading data into the currently-bound Vertex Buffer Object

mjb – August 30, 2024

11

Computer Graphics

Step #1 – Fill the C/C++ Arrays with Drawing Data (vertices, colors, …)

GLfloat Vertices[][3] =
{

{ 1., 2., 3. },
{ 4., 5., 6. },
. . .

};

Step #2 – Transfer the Drawing Data

glGenBuffers(1, &bufA);

glBindBuffer(GL_ARRAY_BUFFER, bufA);

glBufferData(GL_ARRAY_BUFFER, 3*sizeof(GLfloat)*numVertices, Vertices, GL_STATIC_DRAW);

mjb – August 30, 2024

12

Computer Graphics

Step #3 – Activate the Drawing Data Types That You Are Using

glEnableClientState(type);

where type can be any of:

GL_VERTEX_ARRAY
GL_COLOR_ARRAY
GL_NORMAL_ARRAY
GL_TEXTURE_COORD_ARRAY

• Call this as many times as you need to enable all the drawing data types that you are using.

• To deactivate a type, call:

glDisableClientState(type);

mjb – August 30, 2024

13

Computer Graphics

Step #4 – To start the drawing process, bind the Buffer that holds the Drawing Data

glBindBuffer(GL_ARRAY_BUFFER, bufA);

mjb – August 30, 2024

14

Computer Graphics

Step #5 – Then, specify how to get at each Data Type within that Buffer

Information can be stored as packed, like this:

offset is the number of byte offsets from the start of the data array buffer to where the first element of
this part of the data lives

stride is the number of bytes between the same type of data

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Data

Color Data

Information can be stored as interleaved, like this:

Vertex stride

Color stride

Vertex stride

Color stride

Vertex offset

Color offset

Vertex offset

Color offset

mjb – August 30, 2024

15

Computer Graphics

Step #5 – Then, specify how to get at each Data Type within that Buffer

glVertexPointer(size, type, stride, offset);

glColorPointer(size, type, stride, offset);

glNormalPointer(type, stride, offset);

glTexCoordPointer(size, type, stride, offset);

size is the “how many numbers per vertex”, and can be: 2, 3, or 4

GL_SHORT
GL_INT
GL_FLOAT
GL_DOUBLE

type can be:

stride is the byte offset between consecutive entries in the
buffer (0 means tightly packed)

offset is the byte offset from the start of the data array buffer to
where the first element of this part of the data lives.

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Data

Color Data

vs.

mjb – August 30, 2024

16

Computer Graphics

glVertexPointer(3, GL_FLOAT, 3*sizeof(GLfloat), 0);

glColorPointer(3, GL_FLOAT, 3*sizeof(GLfloat), 3*numVertices*sizeof(GLfloat));

glVertexPointer(3, GL_FLOAT, 6*sizeof(GLfloat), 0);

glColorPointer(3, GL_FLOAT, 6*sizeof(GLfloat), 3*sizeof(GLfloat));

The Data Types in a vertex buffer object can be
stored either as “packed” or “interleaved”

Packed:

Interleaved:

gl*Pointer(size, type, stride, offset);

stride offset

stride offset

mjb – August 30, 2024

17

Computer Graphics

Step #6 – Draw!

glDrawArrays(GL_TRIANGLES, first, numVertices);

Example:

31

2

4

5

0

glDrawArrays(GL_TRIANGLES, 0, 6);

This is how you do it if your vertices can be drawn in consecutive order

Start with vertex #0

Draw 6 vertices

mjb – August 30, 2024

18

Computer Graphics

What if your vertices need to be accessed in random order?

mjb – August 30, 2024

19

Computer Graphics

Cube Example

3

2

1

5

4

7
6

mjb – August 30, 2024

20

Computer Graphics

. . .
glArrayElement(0);
glArrayElement(4);
glArrayElement(6);
glArrayElement(0);
glArrayElement(6);
glArrayElement(2);
glArrayElement(2);
glArrayElement(6);
glArrayElement(7);
glArrayElement(2);
glArrayElement(7);
glArrayElement(3);
glArrayElement(0);
glArrayElement(1);
glArrayElement(5);
glArrayElement(0);
glArrayElement(5);
glArrayElement(4);

glEnd();

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (Gluchar*) 0);
glColorPointer(3, GL_FLOAT, 0, (Gluchar*)

(3*sizeof(GLfloat)*numVertices));
glBegin(GL_TRIANGLES);

glArrayElement(0);
glArrayElement(2);
glArrayElement(3);
glArrayElement(0);
glArrayElement(3);
glArrayElement(1);
glArrayElement(4);
glArrayElement(5);
glArrayElement(7);
glArrayElement(4);
glArrayElement(7);
glArrayElement(6);
glArrayElement(1);
glArrayElement(3);
glArrayElement(7);
glArrayElement(1);
glArrayElement(7);
glArrayElement(5);

. . .

Vertex Data

Color Data

But, this requires that all
these glArrayElement()
calls happen on the CPU
and get transmitted across
the bus to the GPU!

mjb – August 30, 2024

21

Computer Graphics

It would be better if that index array was stored over on the GPU as well

glBindBuffer(GL_ARRAY_BUFFER, bufA);

glBufferData(GL_ARRAY_BUFFER, 3*sizeof(GLfloat)*numVertices, CubeVertices, GL_STATIC_DRAW);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bufB);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLuint)*numIndices, CubeTriangleIndices, GL_STATIC_DRAW);

mjb – August 30, 2024

22

Computer Graphics

glBindBuffer(GL_ARRAY_BUFFER, bufA);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bufB);

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, (Gluchar*) 0);
glColorPointer(3, GL_FLOAT, 0, (Gluchar*) (3*sizeof(GLfloat)*numVertices));

glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, (Gluchar*) 0);

The glDrawElements() call

mjb – August 30, 2024

23

Computer Graphics

float * vertexArray = glMapBuffer(GL_ARRAY_BUFFER, usage);

Writing Data into a Buffer Object,
Treating it as a C/C++ Array of Structures

usage is how the data will be accessed:

GL_READ_ONLY the vertex data will be read from, but not written to
GL_WRITE_ONLY the vertex data will be written to, but not read from
GL_READ_WRITE the vertex data will be read from and written to

glUnMapBuffer(GL_ARRAY_BUFFER);

When you are done, be sure to call:

You can now use vertexArray[] like any other C/C++ floating-point array of structures.

mjb – August 30, 2024

24

Computer Graphics

glMapBuffer Example

struct Point
{

float x, y, z;
float nx, ny, nz;
float r, g, b;
float s, t;

};

. . .

glGenBuffers(1, &pbuffer);
glBindBuffer(GL_ARRAY_BUFFER, pbuffer);
glBufferData(GL_ARRAY_BUFFER, numPoints * sizeof(struct Point), NULL, GL_STATIC_DRAW);
struct Point * parray = (struct Point *) glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
for(int i = 0; i < numPoints; i++)
{

parray[i].x = PointVec[i].x;
parray[i].y = PointVec[i].y;
parray[i].z = PointVec[i].z;
parray[i].nx = PointVec[i].nx;
parray[i].ny = PointVec[i].ny;
parray[i].nz = PointVec[i].nz;
parray[i].r = PointVec[i].r;
parray[i].g = PointVec[i].g;
parray[i].b = PointVec[i].b;
parray[i].s = PointVec[i].s;
parray[i].t = PointVec[i].t;

}
glUnmapBuffer(GL_ARRAY_BUFFER);

mjb – August 30, 2024

25

Computer Graphics

Using our Vertex Buffer Object C++ Class

VB.Init();
VB.glBegin(GL_TRIANGLES); // can be any of the OpenGL topologies
for(int i = 0; i < 12; i++)
{

for(int j = 0; j < 3; j++)
{

int k = CubeTriangleIndices[i][j];
VB.glColor3fv(CubeColors[k]);
VB.glVertex3fv(CubeVertices[k]);

}
}
VB.glEnd();

VertexBufferObject VB ;

VB.Draw();

Declaring a Global:

Filling:

Drawing:
This is available from our Class Resources page

mjb – August 30, 2024

26

Computer Graphics

Vertex Buffer Object Class Methods

void CollapseCommonVertices(bool);

void Draw();

void DrawInstanced(numInstances);

void glBegin(topology);

void glColor3f(r, g, b);
void glColor3fv(rgb[3]);

void glEnd();

true means to not replicate common vertices in the internal vertex table.
This is good if all uses of a particular vertex will have the same normal,
color, and texture coordinates, like this – instead of like this.

Draw the primitive. If this is the first time Draw() is being called, it will
setup all the proper buffer objects, etc. If it is a subsequent call, then it
will just initiate the drawing.

Begin the definition of a primitive.

Specify a vertex’s color.

Terminate the definition of a primitive.

Same as Draw(), but will draw multiple instances. Must be using
shaders to make this worthwhile.

mjb – August 30, 2024

27

Computer Graphics

Vertex Buffer Object Class Methods

void glNormal3f(nx, ny, nz);
void glNormal3fv(nxyz[3]);

void glTexCoord2f(s, t);
void glTexCoord2fv(st[2]);

void glVertex3f(x, y, z);
void glVertex3fv(xyz[3]);

void Print(char *text, FILE *);

void RestartPrimitive();

Specify a vertex’s texture coordinates.

Specify a vertex’s coordinates.

Prints the vertex, normal, color, texture coordinate, and connection
element information to a file, along with some preliminary text. If the file
pointer is not given, standard error (i.e., the console) is used.

Causes the primitive to be restarted. This is useful when doing triangle strips
or quad strips and you want to start another one without getting out of the
current one. By doing it this way, all of the strips’ vertices will end up in the
same table, and you only need to have one VertexBufferObject class going.

Specify a vertex’s normal.

mjb – August 30, 2024

28

Computer Graphics

Notes

• If you want to print the contents of your data structure to a file (for debugging or curiosity), do this:
FILE *fp = fopen("debuggingfile.txt", "w");
if(fp == NULL)
{

fprintf(stderr, “Cannot create file ‘debuggingfile.txt’\n”);
}
else
{

VB.Print("My Vertex Buffer :", fp);
fclose(fp);

}

• You can call the glBegin method more than once. Each call will wipe out your original display
information and start over from scratch. This is useful if you are interactively editing geometry, such as
sculpting a curve.

mjb – August 30, 2024

29

Computer Graphics

A Caveat

Be judicious about collapsing common vertices! The good news is that it saves space and it might
increase speed some (by having to transform fewer vertices). But, the bad news is that it takes
much longer to create large meshes. Here’s why.

Say you have a 1,000 x 1,000 point triangle mesh, drawn as 999 triangle strips, all in the same
VertexBufferObject class (which you can do using the RestartPrimitive method) .

When you draw the Sth triangle strip, half of those points are coincident with points in the S-1st strip.
But, to find those 1,000 coincident points, it must search through 1000*S points first. There is no
way to tell it to only look at the last 1,000 points. Even though the search is only O(log2N), where N
is the number of points kept so far, it still adds up to a lot of time over the course of the entire mesh.

It starts out fast, but slows down as the number of points being held increases.

If you did have a 1,000 x 1,000 mesh, it might be better to not collapse vertices at all. Or, a
compromise might be to collapse vertices, but break this mesh up into 50 VertexBufferObjects, each
of size 20 x 1,000.

Just a thought…

mjb – August 30, 2024

30

Computer Graphics

Define 8 points Define 8 colors
X Y Z R G B

-1.00 -1.00 -1.00 0.00 0.00 0.00
-1.00 1.00 -1.00 0.00 1.00 0.00
1.00 1.00 -1.00 1.00 1.00 0.00
1.00 -1.00 -1.00 1.00 0.00 0.00

-1.00 -1.00 1.00 0.00 0.00 1.00
1.00 -1.00 1.00 1.00 0.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00

-1.00 1.00 1.00 0.00 1.00 1.00

Draw 36 array indices:
0 2 3
0 3 1
4 5 7
4 7 6
1 3 7
1 7 5
0 4 6
0 6 2
2 6 7
2 7 3
0 1 5
0 5 4

Drawing the Cube With Collapsing Identical Vertices

mjb – August 30, 2024

31

Computer Graphics

Define 36 vertices and 36 colors
X Y Z R G B

-1. -1. -1. 0. 0. 0.
.

Drawing the Cube Without Collapsing Identical Vertices

0 1

32

4 5

76

mjb – August 30, 2024

32

Computer Graphics

Using Vertex Buffers with Shaders

in vec3 aVertex;
in vec3 aColor;

out vec3 vColor;

void
main()
{

vColor = aColor;
gl_Position = gl_ModelViewProjectionMatrix * vec4(aVertex, 1.);

}

Let’s also say that, at some time, we want to supply the colors from a
Vertex Buffer Object as well, but for right now, the color will be uniform.

Let’s say that we have the following vertex shader and we want to
supply the vertices from a Vertex Buffer Object.

mjb – August 30, 2024

33

Computer Graphics

Using Vertex Buffers with Shaders

glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

GLuint vertexLocation = glGetAttribLocation(program, “aVertex”);
GLuint colorLocation = glGetAttribLocation(program, “aColor”);

glVertexAttribPointer(vertexLocation, 3, GL_FLOAT, GL_FALSE, 0, (GLuchar *)0);
glEnableVertexAttribArray(vertexLocation); // dynamic attribute

glVertexAttrib3f(colorLocation, r, g, b); // static attribute
glVertexAttribArray(colorLocation);

glDrawArrays(GL_TRIANGLES, 0, 3*numTris);

We’re assuming here that
• we already have the shader program setup in program
• we already have the vertices in the vertexBuffer

mjb – August 30, 2024

34

Computer Graphics

Using Vertex Buffers with the Shaders C++ Class

glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

Pattern.SetVertexAttributePointer3fv(“aVertex”, (GLfloat *)0);
Pattern.EnableVertexAttribArray(“aVertex”); // dynamic attribute

Pattern.SetVertexAttributeVariable(“aColor”, r, g, b); // static attribute
Pattern.EnableVertexAttribArray(“aColor”);

glDrawArrays(GL_TRIANGLES, 0, 3*numTris);

We’re assuming here that
• we already have the vertices in the vertexBuffer
• we have already created a C++ GLSLProgram class object called Pattern

