
1

mjb – August 27, 2024

1

Computer Graphics
Vulkan.pptx

Mike Bailey

mjb@cs.oregonstate.edu
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License

You can learn more at: http://cs.oregonstate.edu/~mjb/vulkan

mjb – August 27, 2024

2

Computer Graphics

Who is the Real Vulkan?

Do you notice the difference? It’s subtle! 

2

mjb – August 27, 2024

3

Computer Graphics

The Khronos Group, Inc. is a non-profit member-funded industry consortium, focused on the
creation of open standard, royalty-free application programming interfaces (APIs) for authoring
and accelerated playback of dynamic media on a wide variety of platforms and devices.
Khronos members may contribute to the development of Khronos API specifications, vote at
various stages before public deployment, and accelerate delivery of their platforms and
applications through early access to specification drafts and conformance tests.

Who is the Khronos Group?

mjb – August 27, 2024

4

Computer Graphics

Playing “Where’s Waldo” with Khronos Membership

3

mjb – August 27, 2024

5

Computer Graphics

Who’s Been Specifically Working on Vulkan?

mjb – August 27, 2024

6

Computer Graphics

Vulkan

• Largely derived from AMD’s Mantle API

• Also heavily influenced by Apple’s Metal API and Microsoft’s DirectX 12

• There is no fixed-function ever – it is all shaders-based

• Fortunately, the shader language Vulkan uses is GLSL with a few modifications

• Goal: much less driver complexity and overhead than OpenGL has

• Goal: much less user hand-holding

• Goal: able to do multithreaded graphics

• Goal: able to run on desktops and mobile devices

4

mjb – August 27, 2024

7

Computer Graphics

VkBufferCreateInfo vbci;
vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = VK_USAGE_UNIFORM_BUFFER_BIT;
vbci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vbci.queueFamilyIndexCount = 0;
vbci.pQueueFamilyIndices = nullptr;

VK_RESULT result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements vmr;

result = vkGetBufferMemoryRequirements(LogicalDevice, Buffer, OUT &vmr); // fills vmr

VkMemoryAllocateInfo vmai;
vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypeIndex = 0;

result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &MatrixBufferMemoryHandle
);

result = vkBindBufferMemory(LogicalDevice, Buffer, IN MatrixBufferMemoryHandle, 0);

Vulkan Code has a Distinct “Style” of Setting Information in structs

and then Passing that Information as a pointer-to-the-struct

mjb – August 27, 2024

8

Computer Graphics

Vulkan Command Buffers

• Graphics commands are sent to command buffers

• Think OpenCL…

• E.g., vkCmdDoSomething(cmdBuffer, …);

• You can have as many simultaneous Command Buffers as you want

• Buffers are flushed when the application wants them flushed

• Each command buffer can be filled from a different thread (i.e., filling is thread-safe)

CPU Thread

CPU Thread

CPU Thread

CPU Thread

buffer

buffer

buffer

buffer

5

mjb – August 27, 2024

9

Computer Graphics

Vulkan Graphics Pipelines

• In OpenGL, your graphics “pipeline state” is whatever combination you most recently set: color,
transformations, textures, shaders, etc.

• In OpenGL, changing the state is relatively time-consuming.

• Vulkan forces you to set all your state at once into a “pipeline state object” (PSO) and then
invoke the entire PSO whenever you want to use that state combination.

• Potentially, you could have thousands of these pre-prepared states – if there are N things to
set, there could be N! possible combinations.

• Think of each pipeline state as being unchangeable.

• I thought the game companies were going to hate this, but they didn’t.

mjb – August 27, 2024

10

Computer Graphics

VkGraphicsPipelineCreateInfo

Shader stages
VertexInput State

InputAssembly State
Tesselation State

Viewport State
Rasterization State
MultiSample State
DepthStencil State
ColorBlend State
Dynamic State
Pipeline layout
RenderPass

basePipelineHandle
basePipelineIndex

VkPipelineShaderStageCreateInfo

VkPipelineVertexInputStateCreateInfo

VkVertexInputBindingDescription

VkViewportStateCreateInfo Viewport
x, y, w, h,
minDepth,
maxDepth

offset
extent

Scissor
VkPipelineRasterizationStateCreateInfo

cullMode
polygonMode

frontFace
lineWidth

VkSpecializationInfo

which stage (VERTEX, etc.)

VkShaderModule

VkPipelineInputAssemblyStateCreateInfo

Topology

VkVertexInputAttributeDescription

binding
stride

inputRate location
binding
format
offset

VkPipelineDepthStencilStateCreateInfo

VkPipelineColorBlendStateCreateInfo
depthTestEnable
depthWriteEnable
depthCompareOp
stencilTestEnable

stencilOpStateFront
stencilOpStateBack

blendEnable
srcColorBlendFactor
dstColorBlendFactor

colorBlendOp
srcAlphaBlendFactor
dstAlphaBlendFactor

alphaBlendOp
colorWriteMask

VkPipelineColorBlendAttachmentState

Vulkan: Creating a Pipeline

VkPipelineDynamicStateCreateInfo

vkCreateGraphicsPipeline()

Array naming the states that can be set dynamically

Settings for which there is an
OpenGL equivalent we talked about

6

mjb – August 27, 2024

11

Computer Graphics

Vulkan GPU Memory

• Your application allocates GPU memory for the objects it needs

• Your application is responsible for making sure that what you put into that memory is
actually in the right format, is the right size, etc.

mjb – August 27, 2024

12

Computer Graphics

Vulkan Synchronization

• Events can be set, polled, and waited for (much like OpenCL)

• Vulkan does not ever synchronize – that’s the application’s (i.e., your) job

7

mjb – August 27, 2024

13

Computer Graphics

Vulkan Shaders

GLSL is the same as before … well, almost – here’s what’s different:

• An implied
#define VULKAN 100

is automatically supplied by the compiler

• You pre-compile your shaders with an external compiler called glslang

• Your shaders get turned into a vendor-independent intermediate form known as SPIR-V

• SPIR-V gets turned into fully-compiled, vendor-specific code at runtime

• The SPIR-V spec has been public for years – new shader languages could be developed

• OpenCL and OpenGL have adopted SPIR-V as well

External
GLSL

Compiler
GLSL Source SPIR-V

Vendor-specific
code

Compiler in
driver

1. Software vendors don’t need to ship their shader source
2. Software can launch faster because half of the compilation has already taken place
3. This guarantees a common front-end syntax
4. This allows for other language front-ends

Advantages:

mjb – August 27, 2024

14

Computer Graphics

SPIR-V

SPIR-V stands for Standard Portable Intermediate Representation – Vulkan. It’s the file format that Vulkan
GLSL shaders get compiled into. The name of that front-end compiler is glslang. At runtime, that file is read
and the driver compiles it the rest of the way into the machine instruction set for that particular graphics card.

SPIR-V started out as something for Vulkan but is now also used with OpenGL and OpenCL. Here is how it
fits into the overall Khronos Ecosystem:

8

mjb – August 27, 2024

15

Computer Graphics
https://www.gamingonlinux.com/2020/12/quake-ii-rtx-adds-support-for-the-official-cross-vendor-vulkan-ray-tracing/page=2/#images-2

Ray-tracing Acceleration is Appearing in Graphics Hardware and
it has been Added to the Vulkan API

mjb – August 27, 2024

16

Computer Graphics
https://www.geeks3d.com/hacklab/20210115/more-vulkan-raytracing-in-geexlab/

Ray-tracing Acceleration is Appearing in Graphics Hardware and
it has been Added to the Vulkan API

9

mjb – August 27, 2024

17

Computer Graphics

The Vulkan Ray Tracing Pipeline Involves Five New Shader Types

• A Ray Generation Shader runs on a 2D grid of threads. It begins the entire ray-tracing operation.

• An Intersection Shader implements ray-primitive intersections.

• An Any Hit Shader is called when the Intersection Shader finds a hit. It decides if that intersection should be accepted or
ignored.

• The Closest Hit Shader is called with the information about the hit that happened closest to the viewer. Typically, lighting is
done here, or firing off new rays to handle shadows, reflections, and refractions.

• A Miss Shader is called when no intersections are found for a given ray. Typically, it just sets its pixel color to the background
color.

Traversing the
Acceleration Structures

Intersection
Shader (rint)

Any Hit
Shader (rahit)

Closest Hit
Shader (rchit)

Ray Generation
Shader (rgen)

Miss Shader
(rmiss)

Any hits found for this ray?

YesNo

trace()

Note: none of this lives in the hardware meant for rasterization
graphics. This is all built on top of the GPU compute functionality.

Unlike the rasterization pipeline, there is no constant
flow from one shader to the next. Rather, particular
shaders are called to respond to particular events.

mjb – August 27, 2024

18

Computer Graphics

Ray-Tracing Acceleration Structures

• A Bottom-level Acceleration Structure (BLAS) reads the vertex data from vertex (and possibly index
VkBuffers) to determine Axis-Aligned Bounding Boxes (AABBs).

• You can also supply your own AABB information to a BLAS.

• A single Top-level Acceleration Structure (TLAS) holds Instances, which are transformations and
pointers to 9potentially) multiple BLASes.

• Each BLAS is essentially used as a Model Coordinate bounding box, while the single TLAS is used
as a World Coordinate bounding box.

Instance

Top Level Acceleration Structure

Bottom Level
Acceleration Structure

Bottom Level
Acceleration Structure

Bottom Level
Acceleration Structure

Instance Instance Instance

10

mjb – August 27, 2024

19

Computer Graphics

So What Do We All Do Now?

• I don’t see Vulkan replacing OpenGL ever

• I see the OSU CS 450/550 class using OpenGL forever

• I see the OSU Vulkan class as always being a one-term standalone course,
not part of another OpenGL-based course

mjb – August 27, 2024

20

Computer Graphics

Application

So What Do We All Do Now?
This is what I think the model of the immediate future is:

http://xkcd.com

Application

You (definitely!)

Application

Game Engine or
3rd Party Application

You (definitely!)

You can learn more at: http://cs.oregonstate.edu/~mjb/vulkan

You (maybe)

Application

You (if you need
max performance)

Application

You (if you need
ray-tracing)

