
1

mjb – September 2, 2024
Computer Graphics

1

Using the Stencil Buffer

stencilbuffer.pptx

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License

Mike Bailey
mjb@cs.oregonstate.edu

mjb – September 2, 2024
Computer Graphics

2
The Framebuffers

Front

Stencil

Update

Refresh

Depth

Back

1. While drawing into the Back Buffer, you can write values into the Stencil Buffer at
the same time.

2. While drawing into the Back Buffer, you can do arithmetic on values in the Stencil
Buffer at the same time.

3. While drawing into the Back Buffer, the Stencil Buffer can be used to write-protect
certain parts of the Back Buffer.

Here’s what the Stencil Buffer can do for you:

1

2

2

mjb – September 2, 2024
Computer Graphics

3

S

R

B

G

Z

You Can Think of the Stencil Buffer as a
Separate Framebuffer, or, You Can Think of it as being Per-Pixel

Both are correct, but I like
thinking of it "per-pixel" better.

mjb – September 2, 2024
Computer Graphics

4

glStencilFunc(func, ref, mask)

This specifies the comparison test that is to be done per-pixel.

func can be any of GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL

ref is an integer reference value that is used to test the pixel's existing stencil
value against using the chosen func

mask is set to 1 in all these examples

The stencil test produces a true or false value at each pixel where drawing is
to be done.

The Stencil Buffer is Tested Per-Pixel, Very Much Like the Depth Buffer Is

if(ref <func> Sexisting is true)
{

Allow the color write to the existing pixel to take place;
Modify the pixel's existing stencil value depending on what the glStencilOp says to do;

}

3

4

3

mjb – September 2, 2024
Computer Graphics

5

glStencilOp(sfail, zfail, zpass)

This specifies how a pixel's stencil value is modified when a fragment passes or
fails the stencil test depending on what combinations of true and false the stencil
test and the depth buffer test produce. If the stencil test fails, then sfail happens. If
the stencil test succeeds, then either zfail or zpass happen depending on if the
depth-buffer test failed or succeeded.

The three values can be any of:
GL_KEEP Retain the existing stencil value
GL_ZERO Set the stencil value to zero
GL_REPLACE Replace the stencil value with ref from the Stencil Func
GL_INCR Increment the stencil value, with clamping
GL_INCR_WRAP Increment the stencil value, without clamping
GL_DECR Decrement the stencil value, with clamping
GL_DECR_WRAP Decrement the stencil value, without clamping
GL_INVERT Bitwise toggle the stencil bits: 0's  1's, 1's  0's

This Tells You What to Do with the true or false Value from the Stencil Test

if(ref <func> Sexisting is true)
{

Allow the color write to the existing pixel to take place;
Modify the pixel's existing stencil value depending on what the glStencilOp says to do;

}

mjb – September 2, 2024
Computer Graphics

6

// at the top of the program:

const int STENCILBIT = 1;
const int DEFAULT_STENCIL = 0;
const float BIGX = 2.;
const float BIGY = BIGX;
const float CLOSEZ = -1.;
float Xlens, Ylens;
float Box = 0.40f;

// in InitGraphics():

glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH | GLUT_STENCIL);

glClearColor(BACKGROUND_COLOR);
glClearStencil(DEFAULT_STENCIL);

// in Display():
. . .
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
. . .
glEnable(GL_STENCIL_TEST);
. . .

Setting Up the Stencil Buffer

5

6

4

mjb – September 2, 2024
Computer Graphics

7
Using the Stencil Buffer to Create a Magic Lens

mjb – September 2, 2024
Computer Graphics

8
Using the Stencil Buffer to Create a Magic Lens

1. Clear the SB = 0
2. Enable the SB
3. Write protect the color buffer and depth buffer
4. Draw a filled square, while setting SB = 1
5. Write-enable the color buffer and depth buffer
6. Draw the solids wherever SB == 0
7. Draw the wireframes wherever SB == 1
8. Disable the SB

7

8

5

mjb – September 2, 2024
Computer Graphics

9

// in MouseMotion():

if(ActiveButton & MIDDLE)
{

if(Stencil == LENS)
{

int w = glutGet(GLUT_WINDOW_WIDTH);
int h = glutGet(GLUT_WINDOW_HEIGHT);
Xlens = 2.*(float)x/(float)w - 1.;
Ylens = -2.*(float)y/(float)h + 1.;

}
else
{

Scale += SCLFACT * (float) (dx - dy);
}

}

Moving the Magic Lens with the Middle Mouse Button

x/w ranges from 0. to 1.
y/h ranges from 1. to 0
Xlens and Ylens range from -1. to 1. (NDC)

mjb – September 2, 2024
Computer Graphics

10

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

glStencilFunc(GL_ALWAYS, 1, STENCILBIT);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

glBegin(GL_QUADS);
glVertex2f(Xlens-Box/2., Ylens-Box/2.);
glVertex2f(Xlens+Box/2., Ylens-Box/2.);
glVertex2f(Xlens+Box/2., Ylens+Box/2.);
glVertex2f(Xlens-Box/2., Ylens+Box/2.);

glEnd();

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_TRUE);

Using the Stencil Buffer to Create a Magic Lens

Everywhere we draw, always
replace the stencil value with a 1

Write protect the depth and color buffers

Write-enable the depth and color buffers

Draw a filled-in box

These two identity transformation matrices cause
the drawing to take place in NDC (-1 to 1.), which
is what Xlens, Ylens, and Box are defined in

9

10

6

mjb – September 2, 2024
Computer Graphics

11

<< set the GL_PROJECTION and GL_MODELVIEW matrices as normal >>

glEnable(GL_LIGHTING);
glStencilFunc(GL_EQUAL, 0, STENCILBIT);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glShadeModel(GL_SMOOTH);
for(int i = 0; i < 8; i++)
{

glCallList(SolidLists[i]);
}

glDisable(GL_LIGHTING);
glStencilFunc(GL_EQUAL, 1, STENCILBIT);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glShadeModel(GL_FLAT);
for(int i = 0; i < 8; i++)
{

glCallList(WireLists[i]);
}

<< set the GL_PROJECTION and GL_MODELVIEW matrices to identity again >>

glDisable(GL_LIGHTING);
glShadeModel(GL_FLAT);
glDisable(GL_DEPTH_TEST);
glColor3f(1., 1., 1.);
glBegin(GL_LINE_LOOP);

glVertex2f(Xlens-Box/2., Ylens-Box/2.);
glVertex2f(Xlens+Box/2., Ylens-Box/2.);
glVertex2f(Xlens+Box/2., Ylens+Box/2.);
glVertex2f(Xlens-Box/2., Ylens+Box/2.);

glEnd();
glEnable(GL_DEPTH_TEST);

Draw the solids everywhere
except inside the lens

Draw the wireframes only
inside the lens

Draw the boundary of the lens

Using the Stencil Buffer to Create a Magic Lens

mjb – September 2, 2024
Computer Graphics

12I Once Used the Stencil Buffer to Create a Magic Lens for Volume Data

In this case, the scene inside
the lens was created by
drawing the same object, but
drawing it with its near
clipping plane positioned
partways into the data

11

12

7

mjb – September 2, 2024
Computer Graphics

13Using the Stencil Buffer to Perform Polygon Capping

mjb – September 2, 2024
Computer Graphics

14

1. Clear the SB = 0
2. Enable the SB
3. Draw the polygons, setting SB = ~ SB: 0's  1's, 1's  0's
4. Draw a large gray polygon in front of the entire scene wherever SB != 0
5. Disable the SB

Using the Stencil Buffer to Perform Polygon Capping

13

14

8

mjb – September 2, 2024
Computer Graphics

15

glStencilFunc(GL_ALWAYS, 0, STENCILBIT);
glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
<< draw all objects >>

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glDisable(GL_LIGHTING);
glDisable(GL_LIGHT0);
glStencilFunc(GL_NOTEQUAL, 0, STENCILBIT);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glShadeModel(GL_FLAT);
glColor3f(.5f, .5f, .5f);
glBegin(GL_QUADS);

glVertex3f(-BIGX, -BIGY, CLOSEZ);
glVertex3f(BIGX, -BIGY, CLOSEZ);
glVertex3f(BIGX, BIGY, CLOSEZ);
glVertex3f(-BIGX, BIGY, CLOSEZ);

glEnd();

As we draw the solid objects,
always invert the stencil bits:
0's  1's
1's 0's

Only draw the large gray plane
in front where the SB != 0

Using the Stencil Buffer to Perform Polygon Capping

Because these were all solid objects, they had a front face and a back face drawn. Thus, most of the time,
the SB values got inverted back to 0. If they didn't, that means that the solid object penetrated the near
clipping plane and now needs to be capped.

mjb – September 2, 2024
Computer Graphics

16Using the Stencil Buffer to Draw Better Polygon Outlines

Before After

Z-fighting

15

16

9

mjb – September 2, 2024
Computer Graphics

17

Clear the SB = 0

Enable the SB

for(each polygon)
{

Draw the edges, setting SB = 1
Draw the filled polygon wherever SB != 1
Draw the edges again, setting SB = 0

}

Disable the SB

Before After

Using the Stencil Buffer to Draw Better Polygon Outlines

mjb – September 2, 2024
Computer Graphics

18Outlining Polygons the Naïve Way Results in Z-Fighting

1. Draw all polygons
2. Draw all edges

Z-fighting

17

18

10

mjb – September 2, 2024
Computer Graphics

19Using the Stencil Buffer to Draw Better Polygon Outlines

mjb – September 2, 2024
Computer Graphics

20

for(int f = 0; f < NumFaces; f++)
{

glStencilFunc(GL_ALWAYS, 1, STENCILBIT);
glStencilOp(GL_REPLACE, GL_ REPLACE, GL_ REPLACE);
glDisable(GL_LIGHTING);
glShadeModel(GL_FLAT);
glColor3f(1., 1., 1.);
glBegin(GL_LINE_LOOP);
for(int v = FirstVertex[f]; v < FirstVertex[f+1]; v++)
{

glVertex3f(Vertices[v].x, Vertices[v].y, Vertices[v].z);
}
glEnd();

glStencilFunc(GL_EQUAL, 0, STENCILBIT);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glEnable(GL_LIGHTING);
glShadeModel(GL_SMOOTH);
glMaterialfv(…);
glBegin(GL_POLYGON);
for(int v = FirstVertex[f]; v < FirstVertex[f+1]; v++)
{

glNormal3f(Normals[v].x, Normals[v].y, Normals[v].z);
glVertex3f(Vertices[v].x, Vertices[v].y, Vertices[v].z);

}
glEnd();

glStencilFunc(GL_ALWAYS, 0, STENCILBIT);
glStencilOp(GL_ REPLACE, GL_ REPLACE, GL_ REPLACE);
glDisable(GL_LIGHTING);
glShadeModel(GL_FLAT);
glColor3f(1., 1., 1.);
glBegin(GL_LINE_LOOP);
for(int v = FirstVertex[f]; v < FirstVertex[f+1]; v++)
{

glVertex3f(Vertices[v].x, Vertices[v].y, Vertices[v].z);
}
glEnd();

}

Put "masking tape" down on
the polygon edges

Paint the polygon, which also
paints the edges

Pull the "masking tape" up and
paint just the polygon edges

Using the Stencil Buffer to Draw Better Polygon Outlines

19

20

11

mjb – September 2, 2024
Computer Graphics

21Using the Stencil Buffer to Perform Hidden Line Removal

mjb – September 2, 2024
Computer Graphics

22Using the Stencil Buffer to Perform Hidden Line Removal

Clear the SB = 0
Enable the SB

for(each polygon)
{

Draw the edges, setting SB = 1
Draw the polygon, unlit and flat shaded, in the background color wherever SB != 1
Draw the edges again, setting SB = 0

}

Disable the SB

21

22

12

mjb – September 2, 2024
Computer Graphics

23

Before

After

After-After

mjb – September 2, 2024
Computer Graphics

24Hidden Line Removal for Pre-Vis for the 2019 Movie Dumbo

23

24

13

mjb – September 2, 2024
Computer Graphics

25Hidden Line Removal in Construction Shows

I've noticed that some of the construction
reality TV shows use hidden line removal like
this, presumably to create a blueprint-ish
effect. This came from the show Good
Bones.

mjb – September 2, 2024
Computer Graphics

26Stencil Buffers can be used to Create Portals

Here we have a room with a teapot in it and a
hole in the Back Wall. You can tell that it is a
hole because the axes obviously go through it.
Clearly there is nothing behind the Back Wall.

But if we look at the scene from within the
room, there is indeed a 3D object (the
orange torii) seen through the hole. The hole
is acting like a "portal" to another 3D space.

25

26

14

mjb – September 2, 2024
Computer Graphics

27Stencil Buffers can be used to Create Portals

Here's the process:

1. Draw the teapot and the axes like normal
2. Turn off writing into the depth and color framebuffers
3. Draw an invisible large square behind the Back Wall setting SB=1
4. Draw an invisible circle on that wall setting SB=0
5. Draw an invisible large square behind the back Wall between there and the viewer setting SB=1
6. Draw the cyan room walls and the orange torii only where SB=0 – this makes the portal

The first large square (SB=1) plus circle (SB=0)
ends up making the Stencil Buffer look like this:

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

27

