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Figure 1: Five complex RGB and CMYK documents GPU-rendered by Illustrator CC; all rendered with “GPU Preview” enabled.

Abstract

We describe our successful initiative to accelerate Adobe Illustra-
tor with the graphics hardware pipeline of modern GPUs. Relying
on OpenGL 4.4 plus recent OpenGL extensions for advanced blend
modes and first-class GPU-accelerated path rendering, we acceler-
ate the Adobe Graphics Model (AGM) layer responsible for ren-
dering sophisticated Illustrator scenes. Illustrator documents ren-
der in either an RGB or CMYK color mode. While GPUs are de-
signed and optimized for RGB rendering, we orchestrate OpenGL
rendering of vector content in the proper CMYK color space and
accommodate the 5+ color components required. We support both
non-isolated and isolated transparency groups, knockout, patterns,
and arbitrary path clipping. We harness GPU tessellation to shade
paths smoothly with gradient meshes. We do all this and render
complex Illustrator scenes 2 to 6x faster than CPU rendering at Full
HD resolutions; and 5 to 16x faster at Ultra HD resolutions.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics Editors;

Keywords: Illustrator, path rendering, vector graphics, OpenGL

1 Introduction

Designers and artists worldwide rely on Adobe Illustrator to design
and edit resolution-independent 2D artwork and typographic con-
tent. Illustrator was Adobe’s very first application when released
over 27 years ago.

Prior to our work, no version utilized graphics hardware to accel-
erate Illustrator’s rendering. All rendering was performed entirely
by the CPU. This situation is in stark contrast to the now ubiq-
uitous GPU-acceleration of 3D graphics rendering in Computer-
Aided Design, Animation, and Modeling applications. So while
other graphical content creation applications readily benefit from
the past 15 years of improvements in GPU functionality and per-
formance, Illustrator could neither benefit from nor scale with the
tremendous strides in GPU functionality and performance. Our
work remedies this situation as Figure 1 shows.

The starting point for our work is OpenGL 4.4 [Khronos Group
2014] and the GPU-accelerated “stencil, then cover” path render-
ing functionality described in [Kilgard and Bolz 2012]. While the
NV path rendering OpenGL extension [Kilgard 2012] pro-
vides very fast and resolution-independent rendering of first-class
path objects just as we need, Illustrator’s rendering model requires
much more than merely rendering paths. We had to develop our
own strategies to handle features of Illustrator that, while depen-
dent on path rendering, require considerably more sophisticated or-
chestration of the GPU. We focus on the GPU-based techniques we
developed and productized to accomplish full GPU-acceleration of
Illustrator.

Adobe originally developed Illustrator as a vector graphics editor
for PostScript [Adobe Systems 1985] which implements the imag-
ing model described by [Warnock and Wyatt 1982]. Illustrator to-
day depends on the Portable Document Format (PDF) standard for
its underlying rendering capabilities as described by the ISO 32000
standard [Adobe Systems 2008]. The evolution of PostScript to
PDF introduced a number of sophisticated graphics capabilities for
dealing with printer color spaces, compositing, and photorealistic
artistic shading. These capabilities developed in parallel with but
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isolated from contemporaneous hardware-oriented improvements
in interactive 3D graphics. PDF and Illustrator incorporated fea-
tures and solutions relevant to the print industry such as subtractive
color spaces, typography, and rasterization of 2D spline-based con-
tent targeting print engines with extremely high pixel density. How-
ever GPU hardware designers essentially ignored such concerns—
instead focusing on interactive 3D graphics.

For example, GPUs specialize at rendering RGB colors—typically
with alpha, so RGBA—for display on emissive RGB monitors. In-
deed the framebuffer, texture, and memory subsystems of GPUs are
tailored specifically for handling 4-component RGBA colors. How-
ever Illustrator users target printed color output and expect accurate
color reproduction so the default document color mode in Illustra-
tor is CMYK, a color space intended for printed content. Illustrator
also does support RGB documents but CMYK matters more to pro-
fessional users.

Rather than just 4 color components as GPUs are designed to handle
well, CMYK involves at least 5 components (the process ink colors
cyan, magenta, yellow, and black + alpha) and then additional spot
colors assigned to specific custom inks. Simply converting CMYK
colors to RGB and rendering in an RGB color space is not the same
as rendering into a proper CMYK color space as Figure 5 shows.
Among the differences, CMYK is a subtractive color space while
RGB is an additive color space so color arithmetic such as blend-
ing must account for this difference. When a GPU’s data paths are
so specialized for processing RGBA values with exactly 4 compo-
nents, handling 5 or more components in a manner consistent with
PDF requirements and at reasonable efficiency requires novel treat-
ment.

1.1 Motivation

Our work to GPU-accelerate Illustrator has the obvious goal of im-
proving the rendering speed and interactivity to improve user pro-
ductivity. Illustrator documents can become extremely complex
and so poor rendering performance can frustrate a designer’s cre-
ativity.

We also considered display technology trends, particularly increas-
ing screen resolutions and pixel densities. So-called 4K resolutions
such as Ultra HD at 3840x2160 are particularly interesting to us.
CPU performance scaling for rendering in Illustrator has clearly
not been adequate to keep up with the increasing number of pixels
needing to be rendered. Recent 5K Ultra HD (5120x2880) displays
make this more pressing.

While our focus has been fully accelerating existing features of the
PDF rendering model, we anticipate our transition of Illustrator’s
rendering to the GPU allows us to accelerate graphics operations,
known as effects in Illustrator, that are handled “above” the PDF
rendering model currently. Gaussian blurs and image warps are
obvious examples of effects the GPU could significantly accelerate.

1.2 Contributions and Outline

Our key contributions are:

• Novel repurposing of the GPU’s multiple RGBA render
buffers for NChannel color space rendering of CMYK process
colors and additional spot colors with full blending support.

• GPU algorithms to composite both isolated and non-isolated
transparency groups properly.

• Tessellating gradient meshes to shade paths via GPU hard-
ware tessellation.

• Harnessing “stencil, then cover” path rendering to support ar-
bitrary path clipping, pattern shading, and knockout groups.

• Rendering complex vector scenes with the GPU many times
faster than comparable multi-core CPU rendering.

These contributions are broadly applicable beyond Illustrator and
benefit any GPU-accelerated software system that utilizes PDF,
SVG, or similar printing, web, or vector graphics standards. We
anticipate web browsers, other 2D digital content creation applica-
tions, document previewers, and even printers will use our contri-
butions to accelerate existing standards for resolution-independent
2D vector graphics.

Furthermore we expect GPU-acceleration of Illustrator to motivate
graphics hardware architects to focus on specific optimizations for
this important rendering model. Likewise research in GPU-based
techniques for vector graphics becomes substantially easier to pro-
ductize.

Section 2 outlines relevant prior work. Section 3 provides useful
background for Illustrator’s software architecture relevant to ren-
dering. Section 4 discusses GPU support for blend modes, a pre-
requisite for our contributions. Sections 5 to 7 describe the pri-
mary techniques we developed to GPU-accelerate Illustrator fully.
Section 8 compares and contrasts our GPU-acceleration to Illustra-
tor’s existing CPU renderer. Section 9 presents our performance
improvements. Section 10 concludes with a call for standardization
and discussion of future plans.

1.3 Status

The June 2014 release of Adobe Illustrator CC first incorporated
our GPU-acceleration efforts. Adobe reports over 3.4 million Cre-
ative Cloud subscribers as of December 2014. A substantial frac-
tion of these subscribers use Illustrator. The complete contributions
we discuss are refinements beyond the initial release. In particular,
the 2015 version introduces CMYK (Section 5) and tessellation-
based gradient meshes (Section 7.2).

2 Related Work

The PDF specification [Adobe Systems 2008] describes in detail the
rendering model Illustrator implements. Kilgard and Bolz [2012]
provides a good review of GPU-acceleration approaches for path
rendering and is the crucial underlying functionality upon which
our work relies.

Our interest in rendering complex vector graphics scenes is sim-
ilar to the random-access vector texture approach of [Nehab and
Hoppe 2008] and its refinement by [Leben 2010]. However Illustra-
tor’s raison d’être is arbitrary editing of vector graphics scenes in a
very general setting (permitting CMYK color spaces, blend modes,
transparency groups, etc.) so the need to re-encode the scene’s vec-
tor texture whenever the scene is manipulated is unappealing.

Vector textures are also unappealing because we must support all of
Illustrator’s rich feature set but a vector texture scheme effectively
centralizes support for the scene’s entire rendering requirements.
This means the fragment shader used to decode the vector tex-
ture approach must be prepared to incorporate every possible vector
graphics feature in the scene. The advantage of random-access de-
coding when rendering from a vector texture, while interesting, is
not particularly relevant to Illustrator.

Recent work by [Ganacim et al. 2014] has significantly ad-
vanced the vector texture approach by using CUDA to implement
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massively-parallel vector graphics on the GPU rather than the con-
ventional graphics pipeline. Section 9.3 compares their reported
performance to ours so we defer more discussion until then.

2.1 Alternative Vector Graphics Editors

While there are many alternative path-based vector graphics editors,
such as Inkscape [Kirsanov 2009] and CorelDRAW [Bouton 2012],
no existing vector graphics editor significantly exploits graphics
hardware acceleration to the best of our knowledge.

While not a conventional path-based editor, the Mischief applica-
tion [61 Solutions Inc. 2013] for scalable drawing, sketching, and
painting is GPU-accelerated. Mischief takes an Adaptive Distance
Field (ADF) approach [Frisken and Perry 2006]. ADFs represent
shape implicitly rather than the explicit path-based approach used
by Illustrator and PDF to represent shape. A hybridization of Mis-
chief’s implicit approach and our explicit approach may be possible
given the commonality of GPU-acceleration.

2.2 Smooth Shading

The PDF standard provides several shading operators for continu-
ous color. Linear and radial gradients are very familiar to 2D dig-
ital artists and are a standard way for integrating continuous color
into vector graphics content. For example, the SVG standard [SVG
Working Group 2011a] supports both linear and radial gradients.
Our GPU-acceleration efforts accelerate both linear and radial gra-
dients using straightforward cover shaders as described in [Kilgard
and Bolz 2012].

Illustrator’s gradient mesh tool provides a way to shade paths us-
ing a mesh of Coons patches to assign and edit continuous color
within a path [Adobe Systems 2008; Coons 1967]. Skilled artists
use gradient meshes to create editable photorealistic resolution-
independent artwork, often sampling colors for the mesh control
points from photographs.

A different approach to assigning smooth color to vector graphics
artwork called diffusion curves [Orzan et al. 2013; Sun et al. 2012;
Ilbery et al. 2013] relies on partitioning 2D space with vector-based
primitives and letting color naturally “diffuse” through the scene to
a steady-state that respects the partitions. The color diffusion pro-
cess is computationally intensive and well-suited for the massively
parallel nature of the GPU. Our immediate interest is accelerating
Illustrator’s existing gradient mesh functionality though we antici-
pate our transition to the GPU facilitates the adoption of more intu-
itive gradient methods otherwise too expensive for the CPU.

3 Illustrator Rendering Architecture

The software architecture of Illustrator comprises several interop-
erable modules shown in Figure 2 that have evolved over decades.

Our paper focuses on the Rendering Subsystem for rasterizing vec-
tor content at arbitrary resolutions so any further detail about other
modules is beyond our scope. Despite the complexity of Illustrator
overall, our GPU-acceleration effort required modifying only the
Rendering Subsystem and its subcomponents.

An Illustrator artwork (analogous to a 3D scene graph but for vector
graphics) comprises multiple art objects (Bézier-based path, text,
image, mesh, etc.), each attributed with a collection of appearances
(fill and stroke with solid color, pattern, gradient, etc.) and effects
on these appearances (blur, feather, shadow, etc.). When stacked
in Z-order, these art objects interact with each other to produce
rich content. This interaction (or composition) is based in the PDF
specification. Illustrator also provides several high level primitives

GPU
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Adobe Illustrator

Vector 
Engine

Text   
Editor

Rendering 
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Plugin 
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..…
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Graphics Model 

(AGM)

Adobe Color 
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Figure 2: Organization of major rendering-related modules within
Illustrator.

Figure 3: How high-level artwork with effects applied (left) for
a treble clef scene (center) reduces to a tree of PDF constructs
(right).

that are not supported directly in the PDF specification but are re-
ducible to PDF constructs. An example is an Illustrator path with
both fill and stroke applied, which is reduced to two paths—a path
with stroke placed on top of a path with fill. Figure 3 shows an-
other example where an art object with OffsetPath and OuterGlow
effects is reduced to a group comprising three compound paths and
an image.

In service to the Rendering Subsystem, the Adobe Graphics Model
(AGM) layer provides a pipeline for rendering PDF compliant art-
work using the CPU and now—with our work—the GPU. For man-
aging the color output by a target device, AGM uses Adobe Color
Engine (ACE) which implements color conversions between dif-
ferent profiles on the GPU using GLSL shaders. ACE profile
management handles many different target devices (monitor, mo-
bile devices, printer, etc.) to ensure accurate color reproduction.
Font support is implemented via CoolType that provides program-
ming interfaces for retrieving font and glyph information (including
glyph outlines) from system fonts. Figure 2 shows the relation-
ship of AGM, ACE, CoolType and OpenGL. Our acceleration ef-
fort focused essentially entirely on accelerating AGM so we rely on
higher level graphics primitives to be reduced to the PDF rendering
model.
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Color BurnMultiply Screen Overlay Soft Light Hard Light Color DodgeNormal 50%

LuminosityLighten Difference Exclusion Hue Saturation ColorDarken

Figure 4: Example of all sixteen blend modes showing the inter-
action between a blob with an opacity gradient interacting with an
overlapping rectangle with 90% opacity.

4 Blend Modes

Illustrator version 9 introduced a palette of sixteen blend modes.
These blend modes were subsequently incorporated into the PDF
standard’s transparency model [Adobe Systems 2000].

4.1 GPU Blend Mode Support

Of these modes only two (Normal and Screen) are sufficiently sim-
ple that they can be implemented with conventional OpenGL fixed-
function blending. Several of the advanced PDF blend modes
require intermediate numeric range exceeding the clamped [0,1]
range used in fixed-function GPU blending. Some of the modes
require simple “if/then/else” conditions, division, and square root
operations. To a hardware designer or anyone else first encounter-
ing these modes, they may seem ad hoc and arbitrary, but Hard-
Light, ColorDodge, and the rest are firmly established in the vo-
cabulary and training of digital artists [Valentine 2012]. Figure 4
demonstrates their various effects.

In anticipation of Adobe’s requirements for blend mode sup-
port, NVIDIA developed the OpenGL NV blend equation -
advanced extension [Brown 2013] for advanced blending. It pro-
vides all the blend modes needed by Illustrator, PDF, and SVG
[SVG Working Group 2011b]. The first-class coherent form of
the extension is implemented via hardware support in Tegra K1
and Maxwell GPUs. For older GPUs without hardware support for
the coherent form, the advanced blending functionality is exposed
through an incoherent form of the extension. For the incoherent
form, drivers are expected to implement the advanced blending as
a driver-generated epilogue to the application’s fragment shader.
The incoherent form requires the application to use blend barrier
commands to ensure proper blend ordering to guard against read-
modify-write hazards. A special exception is made for NV path -
rendering operations, since “stencil, then cover” path rendering
naturally lends itself to proper blending.

Khronos subsequently standardized OpenGL advanced blend-
ing functionality with the KHR blend equation advanced
[Brown 2014] extension, also with coherent and incoherent forms.
AGM uses either OpenGL extension as available.

4.2 Premultiplied Alpha

One point of interest for GPU blending is how colors are repre-
sented. Colors stored in GPU framebuffers and textures must to
be stored in pre-multiplied alpha form [Smith 1995] for correct
blending (including blend modes) and texture filtering. In con-
trast, the CPU-based AGM renderer stores color values with non-
premultiplied alpha consistent with the PDF specification.

Figure 5: An artistic CMYK Illustrator document (left, correct)
properly rendered in its intended CMYK color space; naı̈ve RGB
rendering (right-side, wrong) of same scene by converting all inputs
to RGB . Magnified portion show obvious gross color shifts.

5 CMYK Support

Illustrator artwork is typically authored in the CMYK color space—
optionally with spot color components—to best facilitate high-
quality color printing. Illustrator uses AGM to render CMYK doc-
uments to a true CMYK framebuffer. This means the color compo-
nents in the rendered framebuffer correspond to actual CMYK pro-
cess colors plus any spot colors so blending and other color math
operates on and maintains the components independently.

What the artists sees “on screen” when editing a CMYK document
is a color conversion from CMYK plus any spot colors to RGB.
Importantly this conversion happens on the final CMYK rendering
result; the conversion may even emulate the specific color profile
of a particular print device using ACE. Converting CMYK render-
ing results to a print device’s CMYK color profile results in better
color fidelity and gives an artist better access to the printer’s full
color gamut including spot color inks. Importantly spot color com-
ponents stay segregated from process colors.

While it is possible to force the conversion of all CMYK color in-
puts to RGB and render in the GPU’s conventional RGB mode,
Figure 5 shows the inadequacy of rendering CMYK content with
this approach; notice the obvious color shifts.

Now we explain our approach to orchestrate CMYK rendering with
multiple RGBA color buffers. The technique we present works not
just for Illustrator but any GPU application that requires CMYK
rendering semantics.

There are two problems we must address:

1. CMYK is a subtractive color space so conventional GPU
blending modes do not blend appropriately for CMYK.

2. At a minimum, CMYK rendering needs 5 framebuffer
components—plus additional components for any spot colors.

5.1 CMYK Blend Modes and Color Math

Adobe’s technical note introducing transparency to PDF [Adobe
Systems 2000] explains how blending in a subtractive color space
requires special handling:
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Figure 6: RGBA blending works normally (left); CMYK’s subtrac-
tive color space must complement colors components on input and
output of blending (right).

When performing blending operations in subtractive color spaces, we
assume that the color component values are complemented before the
blend mode function is applied and that the results of the function are
then complemented before being used. By complemented we mean that
a color component value c is replaced with 1− c.

An example helps appreciate why: Consider a black ink at 90% of
its full application (so a dark black). Now consider how to get 40%
of the apparent brightness of that ink. Intuitively 40% brightness
should be an even darker black. Naı̈vely multiplying 0.9 by 0.4, as
appropriate for additive color components, is 36% but less black ink
is clearly incorrect. Adjusting the blending math for the subtractive
nature of black ink, 1 − ((1 − 0.9) × (1 − 0.4)) = 94% results in
more black ink and the darker black we intuitively expect.

Figure 6 illustrates how RGB and CMYK color values must be
treated for a blend mode to operate correctly. Conventional fixed-
function GPU blending lacks the ability to complement inputs and
outputs to fixed-function blending.

The blend mode extensions described in Section 4 assume an ad-
ditive color space. Naı̈vely adapting these blend modes to operate
correctly for a subtractive color space such as CMYK would mean
adding a complement to each input color component and, likewise,
a complement to each output color component. We avoid the naı̈ve
approach because

1. Additive blend modes avoid input & output color component
complements so involve fewer operation and are therefore
more efficient.

This is particularly important for legacy hardware that pre-
dates hardware blend mode support. For such hardware, per-
forming additional input & output complements for CMYK
rendering would force expensive shader emulation even for
the default Normal blend mode that otherwise can be per-
formed with fast standard hardware blending.

2. Not just blending math requires this adjustment—all color
math such as in a shader or texture filtering must follow the
rule.

Our solution stores CMYK color components always in comple-
mented form on the GPU. Figure 7 illustrates this approach. In-
coming CMYK colors, no matter what the source, must be com-
plemented. Alpha values are not complemented and simply stored
normally as alpha is always additive.

1−C 1−M 1−Y 1−K A

blend

mode

1−C 1−M 1−Y A

complemented source color

C M Y K A

shader input color

C M Y K A

logical destination color

1−x

color component

complement

1−x

color component

complement

R G B A

display color

multisample resolve + 

CMYK color space

to display RGB

color space

complemented destination color

1−K

Figure 7: Conventional GPU blending works for CMYK when
color components (but not alpha) are stored as complemented val-
ues.

The implications of this are far reaching and demand rigorous con-
sistency. Any CMYK or RGB color inputs must be converted to
complemented CMYK. For example, when color channels are log-
ically “cleared to zero,” that really means clearing to one (but alpha
components still clear to zero). By storing complemented CMYK
colors in the framebuffer and in textures, existing hardware tex-
ture accesses to such resources including texture filtering operate
properly. Likewise programmable shaders are simpler and faster by
skipping the requirement to complement input and output colors by
performing color math on complemented subtractive color values.

Importantly our solution means the blend modes provided by the
blend equation advanced extensions operate in subtractive CMYK
color mode with exactly the same blending math as additive RGB
color mode.

Only when rendered results are ready to be displayed or read back
to system memory should the complemented color components be
reversed to uncomplemented CMYK. Often color profiles are ap-
plied when displaying or reading back rendering results so the nec-
essary complement can be folded into a more complex conversion
thereby avoiding an explicit complement. The bottom right two
steps in Figure 7 show this.

5.2 Representing an NChannel Framebuffer on a GPU

When we speak of Illustrator’s CMYK color mode, we mean a sub-
tractive color spaces supporting the 4 standard print process colors
(CMYK), alpha, and possibly some fixed number of spot colors.
PDF supports a variety of color spaces with different properties and
degrees of sophistication. The most general of these is the NChan-
nel color space so we use the term NChannel to refer to a general
multi-component color space.

5.2.1 Multiple Color Buffers

GPUs lack native support for color buffer configurations with more
than 4 components. However modern GPUs also support multiple
(typically eight) color buffers to which a single fragment shader can
output a distinct RGBA value to each color buffer. Each color buffer
is independently blended with its respective RGBA output value.

We orchestrate multiple color buffers to “construct” an NChannel
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Figure 8: How NChannel color components in a CMYK color
space with spot colors are converted to a GPU-resident version.

framebuffer with CMYKA components plus any additional spot
color components. Figure 8 illustrates how we take a CMYKA
input color with five spot color components and convert this 10-
component vector into a GPU-amenable representation by spanning
three RGBA color buffers. We can span additional color buffers to
support more spot colors but we always require at least two RGBA
color buffers for CMYKA.

Figure 8 shows we replicate the alpha (A) component in the al-
pha of each RGBA color buffer. This is done because blend mode
equations for color values require access to the alpha component.
As GPU blending performs each color buffer blending operation
separately, replication of alpha ensures every three color compo-
nents of the NChannel color spanning multiple RGBA buffers has
an accessible alpha value. We deliberately replicate alpha this way
and ensure all alpha blending is identically configured so the alpha
values of each RGBA color buffer for any specific color sample
maintain the same alpha value. This invariant must be maintained
for correct operation.

5.2.2 Memory Requirements

Our approach wastes some storage. Every additional RGBA buffer
adds an additional replicated alpha component. We also waste stor-
age if the actual CMYK color mode configuration has fewer spot
colors than our multiple RGBA color buffers provide. For exam-
ple, CMYKA with zero spot colors means the G and B components
of the second color buffer are wasted—assuming R is used to store
K. The unfortunate implication is that a document in CMYK color
mode without spot colors requires double the framebuffer memory
as an RGBA document.

This waste is substantial when coupled with Illustrator’s reliance
on 8x multisampling for antialiasing. When also accounting for the
stencil buffer requirements, representing CMYK at 8x on today’s
GPUs requires 96 bytes of storage per pixel.1 Each gigabyte of
memory roughly corresponds to representing 5.5 million CMYKA
pixels this way. The waste is ameliorated by the enormous memory
capacity and bandwidth of modern GPUs. Graphics boards with 12
gigabytes of memory are available today and capacities are sure to
increase.

We anticipate GPU hardware innovations will provide less wasteful
memory organizations in future GPUs. In the interim when the
memory burden is just too taxing, settling for 4x antialiasing quality

196 bytes = 8× ( 4 bytes for depth-stencil + 8 bytes for CMYKA)

easily halves the memory requirements at the cost of diminished
rendering quality.

5.2.3 Fragment Shader and Blending Implementation Details

Once we have orchestrated multiple color buffers to store NChannel
color values, our fragment shaders must adapt to outputting color
values appropriately. This means making sure alpha is replicated
in each output color buffer alpha component and each process and
spot color is routed to its appropriate component in the correct color
buffer.

GPU color blending should be configured the same across all the
framebuffer components.

One irksome detail: The blend equation advanced extensions
are restricted to operate only where outputting to the first color
buffer and requiring all other color buffers disabled (otherwise an
OpenGL error is generated; this reflects a hardware limitation). We
workaround this limitation with multiple “cover” steps. We “sten-
cil” the path once and then perform the path rendering “cover” op-
eration repeatedly, once for each color buffer (binding each color
buffer in turn as the first and only color buffer) and reset the sten-
cil values only on the last color buffer. Our fragment shader must
be aware in this case which logical color buffer it is outputting in
each repeated “cover” step. While expensive, we only require this
workaround for blend modes (typically the less common ones) that
do not correspond to fixed-function GPU blending—so importantly
not the Normal mode.

5.2.4 Reading an NChannel Framebuffer from a Shader

Illustrator occasionally needs to read a framebuffer from a shader.
(see Section 6.1.2 for an example). To enable efficient texture
lookup, we organize the multiple color buffers used to represent
an NChannel buffer as layers of a multisample 2D texture array
(sampler2DMSArray in GLSL shaders). A 2D texture array is
a single OpenGL texture object with a fixed format, width, height,
and number of layers. When multisampled, the number of samples
is also fixed. The texelFetch command in a shader fetches an
RGBA floating-point vector sample from a given 2D location, layer
index, and sample index (effectively a 4-dimensional array access).
Multiple texelFetch fetches, one to each layer, are necessary
from the fragment shader to read all the components of a pixel in
an NChannel framebuffer.

The ARB texture multisample extension [Bolz 2009] intro-
duced support for multisampled 2D texture arrays with OpenGL
3.2 mandating the functionality. Among the advantages of a mul-
tisampled 2D texture array is all the layers belong to a single tex-
ture memory allocation making the layers faster to bind as a unit
and managed as a single large memory allocation. The OpenGL
command glFramebufferTextureLayer allows each layer
of the texture array to be attached to different color buffer of single
framebuffer object.

6 Transparency Groups

In Section 4’s discussion of blend modes, we assumed objects are
simply blended in object stacking order with blend modes direct-
ing the blending. The PDF 1.4 transparency model becomes more
intricate when graphics objects are grouped. Transparency groups,
or simply groups, allow a sequence of consecutive objects to be
collected together and composited to produce a single color and
opacity at each color sample. Groups facilitate independent sub-
scenes to be composited together. Artists also use groups to com-
bine objects for artistic effects such as darkening or lightening re-
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gions. Groups can be nested within other groups to form a tree
of groups. When a group is reduced to a single color and opacity,
the group itself has a blend mode and a per-group opacity used to
composite the group with its backdrop. Transparency groups are
a distinct concept from other mechanisms to group objects such as
groups formed to manage hierarchical transforms or inherited prop-
erties.

6.1 Isolated versus Non-isolated Groups

Groups can be either non-isolated (Illustrator’s default for a new
group) or isolated.2 This distinction is which backdrop is used
when compositing objects in the group. With a non-isolated group,
the backdrop is “inherited” from whatever has already been ren-
dered prior in the object stacking order. This allows a group to
interact with the prior objects “beneath” the group. With an iso-
lated group, the backdrop is fully transparent so it has neither color,
shape, nor opacity. This is sometimes called rendering “on glass”
because there is really nothing for the group to interact with when
the group itself is rendered. The group’s rendering is—as the name
implies—isolated.

Both modes are useful in their proper context. Non-isolated groups
make sense when rendering a group expects to interact with the art-
work beneath it. For example, a non-isolated group makes sense
when an artist wants to use a blend mode such as ColorDodge
or ColorBurn where painting with black or white respectively pre-
serves the backdrop color. Compositing a source object using these
blend modes with an isolated group would not make much sense
because the initial backdrop is fully transparent so there is no color
to preserve.

Isolated groups are more appropriate when the group is considered
a fully resolved piece of artwork you simply want to composite
into the scene. For example, a piece of vector clip art consisting of
objects rendered with the Normal blend mode and that otherwise
has no blending relationship with what’s been rendered so far.

6.1.1 Framebuffer Management for Groups

Of the two types of groups, non-isolated is the more expensive to
implement. Both types of groups conceptually create a transient
framebuffer necessary to resolve the color, shape, and opacity of
the group. We call this a framebuffer instance and we implement
the group’s framebuffer instance with an OpenGL framebuffer ob-
ject (FBO) distinct from the current framebuffer instance. Allocat-
ing and discarding transient FBOs during rendering is inefficient so
we manage a set of framebuffer resources sufficient to handle the
scene’s maximum non-trivial group nesting. Each framebuffer in-
stance needs independent color buffer storage—and CMYK needs
multiple color buffers as Section 5.2 discusses. However all the
framebuffer instances can share a single stencil buffer. This stencil
sharing is useful for maintaining the clip path nesting and conserv-
ing GPU memory usage. Because each FBO used to manage tran-
sient layers is preallocated and may be used to render a group po-
sitioned arbitrarily within the scene’s viewport, each FBO is main-
tained at the same dimensions as the base framebuffer instance (typ-
ically sized to match the maximum window-space view size) and
expects to share a single stencil buffer.

We speak of non-trivial groups because in common cases where
every blend mode within a group is Normal and the group opacity
is fully opaque (and other uncommon group features such as knock-
out are inactive), rendering a group to its own framebuffer instance

2The SVG Compositing specification [SVG Working Group 2011b] has
the same concept but calls the property enable-background where the value
accumulate matches non-isolated and new matches isolated.
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Figure 9: Four steps in rendering a non-isolated group with the
GPU.

is functionally identical to simply rendering the group’s objects in
sequence into the current framebuffer instance. Recognizing trivial
groups and not instantiating a framebuffer instance for them is an
important performance optimization.

But in cases when a non-trivial group is present, we carefully or-
chestrate rendering to a framebuffer instance and when the group is
resolved, compositing the resolved framebuffer layer for the group
back into the previously current framebuffer layer. Because groups
can be nested to form a tree, this process is conceptually recursive
but practically limited by the scene’s maximum non-trivial group
nesting.

From this point on, our discussion deals with non-trivial groups.

6.1.2 Implementing Non-isolated Groups

Figure 9 illustrates the steps to process and resolve a non-isolated
group assuming an RGB color space. Numbered circles down the
figure’s left side indicate the steps 1, 2, 3, and 4 to be discussed in
turn.

Step 1: Establishing a non-isolated group requires copying the
backdrop from the current framebuffer instance to the group’s tran-
sient FBO’s color buffer(s). OpenGL’s glCopyImageSubData
command [Gold and Sellers 2012] copies a rectangular region of
texel color values from one color buffer’s underlying texture ob-
ject to another. When the color buffers are multisampled, the com-
mand copies each pixel’s individual color samples. In the worst

Accelerating Vector Graphics Rendering using the Graphics Hardware Pipeline        •        146:7

ACM Transactions on Graphics, Vol. 34, No. 4, Article 146, Publication Date: August 2015



case, we may have to copy the entire color buffer contents but of-
ten we can bound the window-space bounding box for the objects
within the group (including any nested groups). CMYK has multi-
ple color buffers configured as layers of a texture array but a single
glCopyImageSubData command can copy all the texture array
layers.

An additional single-component (red) color buffer is also required
for the FBO to maintain the non-isolated group’s group alpha and
labeled Ag0 and Agi in the Figure 9. A scissored glClear com-
mand must clear the group alpha color buffer to zero The motiva-
tion for group alpha will be more clear in Step 3.

Step 2: Each element of the group must be rendered in object
stacking order. Any object that is a non-trivial group requires that
nested group to be rendered and resolved. In such cases, the re-
solved color and opacity of the nested group is composited using
the group element’s blend mode and group opacity into this frame-
buffer instance. Elements of trivial groups can simply be rendered
in sequence.

During step 2, in addition to compositing group elements into the
RGB color buffer (or buffers for CMYK), the group opacity buffer
is configured for PDF’s Normal blending (implemented in OpenGL
with the GL ONE,GL ONE MINUS SRC ALPHA blend function).
The fragment shader is responsible to output the alpha of each
group element to this color buffer. The group alpha buffer is used
to keep a distinct running accumulation of alpha but starting from
zero from the alpha component(s) in the other (4-component) color
buffers.

Step 3: Before the resolved color in a non-isolated group can
be composited back to the prior framebuffer instance from before
processing the group, we must “subtract out” the backdrop color
and alpha used to initialize the group’s framebuffer instance by
glCopyImageSubData. Otherwise when the resolved color of
the group is composited back into the prior framebuffer instance
(Step 4), the prior framebuffer instance’s color and alpha would be
accounted for twice.

The PDF specification computes the resolved result of a non-
isolated transparency group with the equations:

C = Cn + (Cn − C0)×
(
α0

αgn
− α0

)
(1)

α = αgn (2)

where C is the resolved group color, Cn is the final color in the
framebuffer instance after all n group elements are composited, C0

and α0 are the backdrop color and alpha respectively from the prior
framebuffer instance, and αgn is the final group alpha from the
single-channel color buffer after all n group elements are compos-
ited.

This equation is written with non-premultiplied alpha but the GPU
represents colors in pre-multiplied alpha form. Combining the
Equations 1 and 2 to find αC simplifies to:

αC = αnCn

(
αgn + (1− αgn)α0

αn

)
− (1− αgn)α0C0 (3)

We recognize the fractional expression in Equation 3 reduces to
unity because αgn + (1−αgn)α0 is αn because the alpha compo-
sition of the final group alpha with the backdrop alpha α0 is simply
αn as alpha compositing is associative.

So Equation 3 simplifies to:

αC = αnCn − (1− αgn)α0C0 (4)

Equation 4 can be realized in OpenGL by rendering a conservative
window-space rectangle matching the rectangle used for the earlier
glCopyImageSubData command with this subtractive blend

glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_ONE, GL_ONE);

and a per-color sample fragment shader that outputs the product of
fetching color values from the prior framebuffer instance to get C0

and one minus the texel αgn fetched from the single-component
group alpha color buffer.

Step 4: Lastly composite the resolved group color αC and opac-
ity α back to the prior framebuffer instance by rendering with per-
sample shading another conservative window-space rectangle, here
applying the blend mode for the group. The logical Steps 3 and 4
can be advantageously combined into a single rendering pass.

6.1.3 Implementing Isolated Groups

Isolated groups are easier. The isolated group rendering process fol-
lows the same general structure as shown in Figure 9 except Step
1 simply clears the group’s framebuffer instance color buffer(s) to
fully transparent. For RGB, this is clearing the color buffer to zero.
For CMYK, this is clearing the RGB components to one and al-
pha component to zero. No glCopyImageSubData command
is necessary.

Since an isolated group does not copy the backdrop from the prior
framebuffer instance, there is also no need to “subtract out” that
backdrop in Step 3 so this step can be skipped.

Steps 2 and 4 operate in the same manner as for non-isolated
groups.

6.2 Knockout

By default, groups composite the elements of the group in their
stacking order and use the prior element’s rendering result as their
backdrop. A group marked for knockout, known as a knockout
group, always uses the group’s initial backdrop. One common use
of knock-out is rendering semi-opaque annotations where the anno-
tations may overlap but double-blending of annotations is undesir-
able so only the last rendered annotation at any given pixel should
blend with the prior framebuffer instance (the backdrop).

“Stencil, then cover” path rendering provides an efficient way to
implement knockout by rendering the elements of the group in re-
verse stacking order. Blend normally during the “cover” step but
mark every updated stencil sample by setting an upper bit in the
stencil buffer for each updated color sample. Then have further
rendering by other elements in the knockout group fail the sten-
cil test if the stencil sample value’s upper bit is set. This ensures
color samples are only updated and blended by the last element in
the group’s stacking order to cover the color sample. When all the
group’s elements have been rendered, draw a conservative cover-
ing rectangle to unmark the stencil values so normal “stencil, then
cover” rendering can proceed.

Note that this approach will not work if any of the immediate ele-
ments of the knockout group are non-isolated-groups. This uncom-
mon case requires the non-isolated group element to use the back-
drop of prior group elements in the stacking order which the reverse
order will not have rendered so an explicit and involved knockout
approach is required.
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7 Shading

Illustrator supports constant color, linear gradients, radial gradients,
and raster shading. These straightforward shading modes are per-
formed by “cover” fragment shaders much as described by [Kilgard
and Bolz 2012] with short shaders. The shaders must be tweaked to
support outputting to NChannel framebuffers but are otherwise not
particularly noteworthy. PDF’s support for patterns and gradient
meshes however present more interesting shading challenges.

7.1 Patterns

A pattern consists of a small graphical figure called a pattern cell,
which is replicated at fixed horizontal and vertical intervals to fill
an area. This process is called tiling the area. The pattern cell
comprises graphical elements (such as paths, text, and images), may
be non-rectangular in shape, and the spacing of tiles can differ from
the dimensions of the cell itself. To draw a pattern, the pattern
cell is drawn as many times as necessary to fill the given area. We
accomplish this in one of two methods:

1. If a pattern object contains a non-isolated group with a blend
mode, the contents of a pattern cell are drawn at each step,
clipped to the tile area.

2. Otherwise, the contents of the pattern cell are drawn once into
a separate texture (which is of the same size as pattern cell),
and this texture is copied at each tile location.

The actual process of clipping to a tile is the same method described
by [Kilgard and Bolz 2012] to clip to an arbitrary path.

7.2 Gradient Meshes

The PDF specification provide several mesh-based shading tech-
niques for vector objects:

• Free-form and lattice-form smooth shaded triangle meshes,

• Coons patch [Coons 1967] meshes, and

• Tensor-product patch meshes.

Triangle meshes are fairly straightforward as the GPU is excellent
at rendering smooth-shaded color triangles. The only caveats are
we stencil test these triangles against the shaded object’s stenciled
region and use a final “cover” step but with color writes disabled to
make sure the stenciled region is reset.

Patch meshes are more challenging than triangle meshes as edges
of the patches are bicubic Bézier segments and the patch may fold
over itself. The naı̈ve approach would expand the patch into a tri-
angle mesh and render in the same manner as the shaded triangle
meshes. This has the disadvantage that a sufficiently tessellated
triangle mesh to approximate each patch in a patch mesh (which
might be hundreds of patches) is expensive for the CPU to generate
and store. Having to CPU-tessellate all the patches undermines the
compactness and editability advantages of Coons patches. More-
over the tessellated triangle meshes would be resolution-dependent
so would not support fast zooming of the scene.

Fortunately modern GPUs support hardware tessellation units
[Schäfer et al. 2014], but the application of this hardware is pri-
marily directed at depth-tested 3D models formed from tessellated
patches.

We harness this same tessellation hardware to render PDF’s Coons
and tensor-product patch meshes, but we identify some limitations

of existing GPU hardware applied to our 2D tessellation task. Hard-
ware tessellation splits the process of rasterizing patches into three
programmable domains:

Vertex shading facilitating the transformation of control points
from object space to other spaces.

Tessellation Control shading accepting an array of control points
(transformed by vertex shading) and outputting a fixed (possi-
bly different) number of control points, uniform patch values,
and level-of-detail parameters to define a patch to evaluate.

Tessellation Evaluation shading evaluating the patch output
from the tessellation control shader at a given (u,v) loca-
tion within the patch as part of a mesh topology generated
by fixed-function hardware.

At first glance, this hardware is readily amenable to tessellation of
our 2D gradient mesh patches. The vertex shader can transform
vertices from object space into window-space. The Tessellation
Control Shader (TCS) subsequently performs a basis change from a
Coons patch to a bicubic Bézier basis for ease of evaluation by the
Tessellation Evaluation Shader (TES); the tensor-product patch is
already a Bézier bicubic. The TCS uses the window-space control
point positions to compute appropriate level-of-detail parameters to
ensure every triangle in the tessellated topology is on the scale of
about 1 to 2 pixels to minimize under or over tessellation. The TES
should evaluate the 2D position at its (u,v) and interpolate a color
based on color values assigned to the corner control points. Still
there are three notable issues to address.

Resolving Mesh Overlap Render Order First GPU hardware
tessellation does not guarantee the precise triangle rasterization or-
der for a patch. This is justified because 1) 3D models are expected
to be depth-tested to resolve hidden surface occlusion so there is
no mandatory intra-patch triangle ordering (though the order is rea-
sonably expected to be deterministic); and 2) the hardware is more
efficient if it can group vertices into triangles to maximize vertex
reuse. However PDF mandates a particular order:

Patches can sometimes appear to fold over on themselves—for example,
if a boundary curve intersects itself. As the value of parameter u or v
increases in parameter space, the location of the corresponding pixels
in device space may change direction so that new pixels are mapped
onto previous pixels already mapped. If more than one point (u, v) in
parameter space is mapped to the same point in device space, the point
selected shall be the one with the largest value of v. If multiple points
have the same v, the one with the largest value of u shall be selected. If
one patch overlaps another, the patch that appears later in the data stream
shall paint over the earlier one. [Adobe Systems 2008] §8.7.4.5.7

This provides a tidy, well-defined order but does not match
the actual hardware rendering order. To resolve this, a com-
bination of (u,v) and the current patch number (indicated by
gl InvocationID) can be combined into a [0,1] value to use
as a depth value. For example:

gl_Position.z = float(gl_InvocationID*65536
+ int(v*255)*256 + int(u*255))/ 16777215.0;

Larger magnitude depth values are later in the rendering order.
When the gradient mesh is opaque such that double blending is not
a concern, depth buffering with a GL GREATER depth buffer is suf-
ficient to ensure the gradient patch mesh ordering. If that is not the
case, a depth-only rendering pass to resolve the last update to every
color sample followed by a second GL EQUAL depth function pass
to assign interpolated color and blend is necessary.

While we understand it is only the ordering of rasterized trian-
gles within a patch that is implementation-dependent, one or more
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patches may overlap a color sample so depth samples from differ-
ent patches always compare with the latter patch in render order
“winning”.

Prior to rendering any set of patches, a depth clear to zero is neces-
sary to reset the depth buffer. This could be done with a “cover” op-
eration that simply zeros the depth buffer (without modifying other
buffers) or with a scissored depth buffer clear.

Once the render order issues are resolved, color shading is a matter
of bicubic interpolation [Sun et al. 2007] in the TES.

This is a lot of complexity to match the PDF specification’s patch
rendering order. Certainly if the hardware’s tessellation generator
simply guaranteed an order consistent with the PDF specification,
even at the cost of some less optimal hardware efficiency, rendering
PDF gradient meshes would be much more straightforward.

Another option is detecting via CPU preprocessing of the patch
mesh whether or not actual mesh overlaps are present [Randria-
narivony and Brunnett 2004]. When not present, gradient mesh
rendering could be much more straightforward and efficient. In
practice, we know overlaps are rare in real gradient mesh content.

Coarse Level-of-detail Control Graphics hardware tessellation
has a limited maximum level-of-detail for tessellation. When the
level-of-detail is clamped to a hardware limit for tessellation, tes-
sellation artifacts may arise. We monitor the relative size of tes-
sellated patches such that their maximum level-of-detail does not
grossly exceed the scale of two or three pixels in window space.
If this happens, patches need to be subdivided manually to ensure
the patch mesh avoids objectionable tessellation artifacts. Care is
necessary to maintain a water-tight subdivided patch mesh. This is
done by ensuring exactly matching level-of-detail computations on
mutual edges of adjacent patches.

8 Comparing GPU versus CPU Rendering

Our contributions for GPU-acceleration are best understood in con-
trast with Illustrator’s pre-existing CPU rendering approach. All
but a cursory description of Illustrator’s CPU rendering approach is
beyond the scope of this paper. Illustrator’s CPU rendering closely
follows the PDF standard [Adobe Systems 2008]. AGM’s CPU
renderer relies on a robust, expertly-tuned, but reasonably conven-
tional active edge list algorithm [Foley et al. 1990] for rasterizing
arbitrary paths including Bézier segments [Turner 2007]. Table 1
lists the differences between the CPU and GPU approaches in orga-
nizing the framebuffer storage for rendering. Table 2 lists the ways
rendering is different between the CPU and GPU approaches.

9 Performance

We benchmarked our GPU-accelerated rendering mode against
AGM’s CPU-based renderer on six Illustrator documents pictured
in Figure 10. We selected these scenes for their availability, artistic
content, and complexity. Table 3 quantitatively summarizes each
scene’s complexity. We consider these scenes representative of the
kind of complex artwork we wish to encourage by making its au-
thoring more interactive.

9.1 Benchmarking RGB Artwork

Table 4 presents our benchmarking results for RGB color model
rendering. Our benchmarking method executes a script that zooms
and pans over the content to mimic the kind of fast view changes an

(a) WF BambooScene.ai

(b) archerfish.ai (c) Blue Mirror.ai

(d) whale2.ai

(e) Tropical Reef.ai

(f) bigBlend2.ai

Figure 10: Challenging Illustrator artwork for benchmarking.
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Capability CPU GPU
Per-component storage 8-bit fixed-point components 8-bit fixed-point components (same)
Color opacity
representation

Non-premultiplied (straight) alpha Premultiplied §4.2

Per-pixel storage One color value per pixel Multisampling: 8 distinct (hardware compressed)
colors per pixel + 8 stencil samples §5.2.2

CMYK representation CMYK color components stored “as is” Components stored complemented §5.1
CMYK organization N channels + alpha channel allocated as linear

image in system memory
Multiple RGBA buffers, rendered as multiple
render targets §5.2.1

CMYK excess framebuffer
storage

None Color components allocated in multiples of 3, with
alpha duplicated for every 3 color components
§5.2.1,5.2.2

Table 1: Comparison of framebuffer storage and representation in CPU and GPU rendering modes for Illustrator.

Capability CPU GPU
Rendering approach Scan-line rasterization, professionally

optimized
GPU “stencil, then cover” rendering via
NV path rendering

Rendering granularity Cache of sub-image tiles for image reuse Direct rendering to GPU framebuffer
Resolve to displayed color Downsample of high resolution tile samples +

apply color profile via CPU
Multisample downsample, then apply color profile
via GLSL shader

Rendering implementation C++ code directly manipulates pixels with
CPU

CPU orchestrating OpenGL commands using GLSL
shaders; pixel touching by GPU

Parallelism Multi-core CPU rendering, divvying
screen-space tiles among threads

GPU pipeline parallelism; NVIDIA dual-core
OpenGL driver mode

Path control point
transformation

CPU-based math GPU-based vertex shading internal to
NV path rendering

Stroking Conversion of stroked paths to fills NV path rendering stencils stroked paths
directly—approximating cubic Bézier segments as a
sequence of quadratic strokes

Antialiasing mechanism Fractional coverage during scan-line
rasterization

8x multisampling §5.2.2

Blend modes Optimized C++ with MMX and SSE
intrinsics

Conventional GPU blending for Normal and
Screen; KHR blend equation advanced for
advanced PDF blend modes §4

Non-isolated transparency
group

Initialize (system memory) group framebuffer
from lower layer contents; CPU render group
with both non-isolated and isolated alpha;
once group is rendered, composite from group
framebuffer to lower layer after first
subtracting out lower layer contents from
group framebuffer

Allocate renderable GPU color texture(s) for layer
and 1-component “isolated alpha” buffer cleared to
zero; blit lower layer contents to new framebuffer
object color contents; GPU render group with extra
1-component buffer accumulating isolated alpha;
reverse subtract lower layer color from group color
texture(s) based on isolated alpha; composite with
blend mode color texture(s) for layer to lower layer
framebuffer object §6.1.2

Isolated transparency
group

Initialize group framebuffer (system memory)
to clear; GPU render group with single alpha;
once group is rendered, composite with blend
mode from group framebuffer to lower layer

Allocate renderable GPU color texture(s) for layer;
GPU render group; composite with blend mode
color texture(s) for layer to lower layer framebuffer
object §6.1.3

Knockout Tagging pixels as done immediately once
written in a knockout group

Reverse rendering of objects with the layer; unless
combined with non-isolated group when depth
buffering is used §6.2

Path clipping Concurrent scan-line rasterization of clip path Stencil clip path with NV path rendering into
upper bits of the stencil buffer; then stencil draw
path against stencil buffer upper bits §7.1

Gradients CPU shading code in C++ GLSL fragment shaders with 1D texture for filtering
and attribute generation by glPathTexGenNV §7

Gradient mesh
implementation

CPU-based recursive mesh subdivision Direct evaluation of 2D mesh vertex position &
color via GPU programmable tessellator, then
hardware rasterization §7.2

Implementation of
Illustrator Effects (FX)

CPU-based effect plugin code processes layer
image to make new image

Layer image must be read to CPU; CPU-based
effect plugin code processes layer image to make
new image; new image loaded as a texture and
applied as image gradient §3

Table 2: Comparison of rendering approaches in CPU and GPU rendering modes for Illustrator.
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2D Control Clipping Transparent Embedded Native
Scene Paths Points Masks Groups Gradients Images Color Space
WF BambooScene 84,995 618,926 32,367 25,614 126 0 CMYK
whale2 14,403 481,928 14,333 14,313 0 0 RGB
ArcherFish 11,214 203,771 6,777 2,105 1,973 524 RGB
Tropical Reef 1,041 6,698 0 0 291 0 CMYK
BlueMirror 132,138 1,685,979 66,803 66,792 0 0 RGB
bigblend2 9,428 92,645 2,531 1,457 1,096 1 CMYK

Table 3: Scene complexity metrics.

RGB mode Monitor HD
Scene Resolution CPU ms GPU ms Gain
WF Bamboo Full 320 174 3.53x

Scene Ultra 1071 219 5.23x
whale2 Full 336 37 8.41x

Ultra 1015 129 8.02x
ArcherFish Full 259 28 9.04x

Ultra 979 100 9.59x
Tropical Reef Full 64 20 3.36x

Ultra 179 30 6.28x
BlueMirror Full 1209 100 11.39x

Ultra 2971 279 10.98x
bigblend2 Full 828 44 14.38x

Ultra 3211 142 17.54x

Table 4: Average frame time in milliseconds rendering complex art
scenes in RGB document mode (CMYK artwork is forced to RGB) at
varying zooms and panning, comparing the existing CPU rendering
mode to our new GPU-accelerated mode. Gain is the geometric
mean of the speedup of GPU over the CPU mode for corresponding
benchmark frames.

artist would use during interactive inspection of the artwork. Dur-
ing the benchmark, the Illustrator application and document view
are both maximized for the most visible pixels.

Our system configuration is a Windows 7 PC with a Xeon E3-
1240 V2 CPU @ 3.40GHz (4 cores), 8 GB RAM, and NVIDIA
GeForce GTX 780 Ti GPU. AGM’s CPU-based renderer automat-
ically takes advantages of the CPU’s multiple cores for parallel
rendering. NVIDIA’s OpenGL driver is automatically configured
for dual-core operation so the application thread communicates
OpenGL commands to a driver thread so application and driver pro-
cessing operate concurrently. We benchmarked the 64-bit version
of the latest Illustrator. Illustrator always renders with 8x multisam-
pling.

We are particularly interested in how GPU-accelerated Illustrator
can improve the user experience in expectation of the mass-market
adoption of 4K resolution displays so we report frame times using
Full HD resolution (1920x1080) and Ultra HD (3840x2160) mon-
itors. Increasing the display resolution from Full to Ultra HD in-
creases the geometric mean of the relative increase in CPU render
time by 190%; but only 22% for the GPU-accelerated transition.
We note that the CPU rendered Ultra HD frame render times are
on the order of seconds; the GPU-accelerated frame rates are 5+
frames per second (7.9 average) so still within what artists tolerate
as interactive.

9.2 Benchmarking CMYK Artwork

Table 5 presents CMYK benchmarking results for the three “native
CMYK” scenes listed in Table 3. Whereas the benchmarking of

CMYK mode Monitor HD
Scene Resolution CPU ms GPU ms Gain
WF Bamboo Full 392 405 1.34x

Scene Ultra 1520 630 2.37x
Tropical Reef Full 99 22 4.80

Ultra 311 38 9.28x
bigblend2 Full 861 111 6.73x

Ultra 3542 381 10.55x

Table 5: Average frame time in milliseconds rendering complex
CMYK art scenes at varying zooms and panning, comparing the
existing CPU rendering mode to our new GPU-accelerated mode.
Gain is the geometric mean of the speedup of GPU over the CPU
mode for corresponding benchmark frames.

these scenes in Table 4 forced the scenes be converted to RGB,
Table 5 benchmarks these scenes in their native CMYK color space
by rendering with a CMYK framebuffer.

The WF BambooScene scene is included specifically because it
demonstrates rather poor GPU rendering performance, particularly
when rendered in the scene’s native CMYK color space. The
WF BambooScene scene is an example of a scene constructed in
ways that stress GPU rendering with poor results—though the scene
is quite challenging for CPU rendering too! First the scene itself has
a large number of paths, a variety of blend modes, and uses knock-
out. The scene already has a large number of transparency groups,
but many become non-trivial groups when used with non-Normal
blend modes and knock-out. Recall NV blend equation -
advanced limitations that make blend modes overly expensive in
CMYK rendering (Section 5.2.3). Additionally when zoomed out
of the scene, there is a large number of intricate paths placed in-
visibly outside the scene’s framed view (this is not uncommon for
artists to do as a way of stashing fragments of artwork). The ef-
fect is acceptable GPU-acceleration when zoomed into the CMYK
scene but worse-than-CPU-rendering performance when zoomed
out. Performance is good zoomed in because the pathological fea-
tures of the scene get view culled away.

We now look at a more typical scene in detail. Figure 11 graphs the
render time for at a variety of zoom levels for the (native CMYK)
Tropical Reef scene. Illustrator documents are in “real world” di-
mensions so a 100% zoom corresponds to its printed dimensions.
We graph the zoom factor squared (so 1 is a 100% zoom and 4
is a 200% zoom) because this normalizes the screen-space area of
a given scene region. The graph shows the scene rendered in all
eight combinations of CPU/GPU rendering, Full/Ultra HD resolu-
tion, and CMYK/RGB color models over a range of zoom levels.
While the original scene is authored in CMYK, by forcing a conver-
sion to the RGB color mode, we can compare the relative expense
of CMYK relative to RGB rendering.

While the window size in pixels is constant at either Full or Ultra
HD resolution, the render time is not stable at increasing zoom lev-
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Figure 11: Rendering time for Tropical Reef.ai scene, comparing
GPU vs. CPU, Full vs. Ultra HD, and RGB vs. CMYK at over a
large range of zoom factors squared. Dashed vertical lines indicate
the zoom factor when the scene “Fits to Window” for Full and Ultra
HD respectively.

els because many objects can be culled from the scene as the zoom
increases while also small objects become large and hence more ex-
pensive to draw. This factor affects both the CPU and GPU render
times but in different ways we now explore.

The CPU renderer is sensitive to having a large number of ob-
jects, and hence active edges, to process. Also complex shading
and blending is relatively more expensive for the CPU while shad-
ing and blending are quite efficient for the GPU. In contrast while
the CPU’s scan-line rasterizer is quite work-efficient and “cache
friendly” because it operates on just a scan-line at a time, the GPU
renderer is challenged when paths are large in screen space so the
overdraw from the “stencil” step becomes rasterization bound. Lots
of stencil counting that ultimately cancels to zero or generates large
winding number magnitudes create costly rasterization burdens for
the GPU. Likewise expensive quadratic discard shaders for curved
stroked segments become expensive when the stroke width is more
than a fix pixels wide in screen space.

Even so, GPU performance is consistently faster than the CPU
performance but subject to more significant variations at different
zoom levels. To help quantify the relative cost of CMYK render-
ing via the GPU we can compare native CMYK rendering on the
GPU to an RGB-converted version of the Tropical Reef content in
Figure 11. RGB-converted rendering averages 36% (Full HD) to
43% (Ultra HD) faster than CMYK rendering with the CPU. The
GPU averages 6% (Full HD) to 9% (Ultra HD) faster when the
CMYK artwork is converted to RGB but these averages mask sig-
nificant variability. So while the framebuffer memory consumption
for CMYK is at least double the storage for RGB color mode ren-
dering, the observed performance cost is not nearly so bad and is
still much faster than CMYK rendering on the CPU.

9.3 Comparison with Recent Work

[Ganacim et al. 2014] provides performance results for a number
of SVG scenes using a massively-parallel vector graphics (MPVG)
system based on CUDA. Table 6 presents a subset of their scenes
most relevant to an Illustrator artist with results from our com-
parable PC configuration. Our rendering performance relies on
NV path rendering but performs markedly better than the
NV path rendering performance reported in their paper. We
attribute this to forcing use of NVIDIA’s dual-core driver and Il-
lustrator’s tuned OpenGL usage and scene traversal. For all but
two of scenes in our table, GPU-accelerated Illustrator is faster
than their published results—the exceptions are a detailed but in-

MPVG MPVG Illustrator
Input Resolution 8x 32x GPU 8x
Car 1024x682 12.86 14.73 2.94

2048x1364 3.09
Drops 1024x1143 14.28 18.59 2.29

2048x2286 6.21
Embrace 1024x1096 15.50 19.38 1.69

2048x2192 3.63
Reschart 1024x625 8.51 11.14 1.92

2048x1250 2.60
Tiger 1024x1055 12.89 17.24 1.48

2048x2110 5.34
Boston 1024x917 37.22 41.81 2.66

2048x1834 5.02
Hawaii 1024x844 26.16 29.48 3.83

2048x1688 8.75
Contour 1024x1024 30.07 30.36 90.53

2048x2048 328.57
Paris 50K 1024x1024 26.82 25.22 65.53

2048x2048 64.23

Table 6: Comparison of SVG content render times (in milliseconds)
reported by [Ganacim et al. 2014] to our work with Illustrator.

efficiently authored (so CPU bound) Paris map and their—arguably
pathological—Contour scene.

MPVG’s strengths are antialiasing quality and an ability to han-
dle what would typically be considered inefficiently structured
scenes—strengths we readily acknowledge. Since Illustrator sup-
ports just 8x multisampling and their reported image resolutions
are rather low, we provide “double resolution” rendering results as
an alternative for their 32x rendering quality.

While MPVG’s rendering quality and novelty of approach is im-
pressive, Illustrator must support the entire PDF rendering model
including CMYK, blend modes, transparency groups, etc. all while
making everything editable.

10 Conclusions

We have succeeded in GPU-accelerating Illustrator despite decades
of being unadvantaged by graphics hardware. Our benchmarking
shows significant speed-ups, particularly at 4K resolution. Our con-
tributions introduce novel techniques for supporting CMYK color
space rendering on existing GPUs, proper transparency group sup-
port including non-isolated groups and knock-out, and mapping
PDF’s gradient mesh shading to GPU tessellation.

10.1 Broader Hardware Support

OpenGL 4.4 is the multi-vendor standard baseline for our GPU-
acceleration effort but Illustrator also requires the NV path -
rendering and KHR blend equation advanced exten-
sions. As a practical matter, today just NVIDIA GPUs (Fermi
generation [Wittenbrink et al. 2011] and beyond) on Windows sup-
port the prerequisite OpenGL functionality. Illustrator supports a
wide range of system configurations so we naturally want these
GPU-acceleration benefits supported more broadly. We are explor-
ing ways to support a broader range of GPUs. Standardization of
NV path rendering would make this much easier.
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10.2 Future Work

Much of the user interface of Illustrator today assumes re-rendering
the scene is slow and expensive. For example, the user interface en-
courages users to isolate a portion of the scene to avoid rendering
the complete scene. Similarly editing often happens by dragging
overlaid “blue lines” rather than a more what-you-see-is-what-you-
get interaction model. We hope the GPU-acceleration we have in-
troduced into Illustrator will facilitate more powerful, intuitive, and
fluid user interfaces for vector graphics editing.

We note a number of inspired research efforts relevant to vector
graphics editing that are either conceived with GPU-acceleration in
mind—such as diffusion curves [Andronikos 2013]—or introduce
vector graphics complexity that overwhelms conventional CPU-
based vector graphics rendering—such as digital micrography [Ma-
harik et al. 2011]. We hope by bringing Illustrator to the GPU, these
techniques will become tractable to support within Illustrator and
thereby be adopted by digital artists.

Our framebuffer memory usage is substantial. We want to incorpo-
rate NVIDIA’s NV framebuffer mixed samples OpenGL
extension [Bolz 2014] that allows an OpenGL framebuffer object to
have fewer color samples than stencil samples (and no depth sam-
ples) to reduce memory usage without reducing the rasterization
quality of path rendering.

We believe graphics hardware architects can improve the support
for print-oriented features—in particular the CMYK color space.
Doing so would greatly reduce the memory bandwidth, memory
footprint, and greatly simplify the complex orchestration of multi-
ple RGBA color buffers required to accomplish CMYK rendering.

Acknowledgments

We thank: David Aronson, Rui Bastros, Jeff Bolz, Rajesh Budhi-
raja, Nathan Carr, Qingqing Deng, Vineet Punjabi, E Ramalingam,
Anubhav Rohatgi, Lekhraj Sharma, Gopinath Srinivasan, Tarun
Beri, and our anonymous reviewers.

References

61 SOLUTIONS INC., 2013. Mischief | Sketching & Drawing &
Painting Software. http://madewithmischief.com/ .

ADOBE SYSTEMS. 1985. PostScript Language Reference Manual,
1st ed. Addison-Wesley Longman Publishing Co., Inc.

ADOBE SYSTEMS, 2000. Transparency in PDF, Technical Note
#5407, May.

ADOBE SYSTEMS. 2008. Document management–Portable docu-
ment format–Part 1: PDF 1.7. Also published as ISO 32000.

ANDRONIKOS, N., 2013. What’s so cool about diffusion curves.

BOLZ, J., 2009. ARB texture multisample extension.

BOLZ, J., 2014. NV framebuffer mixed samples exten-
sion.

BOUTON, G. D. 2012. CorelDRAW X6 The Official Guide.
McGraw-Hill Osborne Media.

BROWN, P., 2013. NV blend equation advanced extension.

BROWN, P., 2014. KHR blend equation advanced exten-
sion.

COONS, S. A. 1967. Surfaces for Computer-aided Design of Space
Forms. Tech. Rep. MIT/LCS/TR-41, MIT, May.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1990. Computer Graphics: Principles and Practice (2nd Ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

FRISKEN, S. F., AND PERRY, R. N. 2006. Designing with distance
fields. In ACM SIGGRAPH 2006 Courses, ACM, New York, NY,
USA, SIGGRAPH ’06, 60–66.

GANACIM, F., LIMA, R. S., DE FIGUEIREDO, L. H., AND NE-
HAB, D. 2014. Massively-parallel vector graphics. ACM Trans-
actions on Graphics (Proceedings of the ACM SIGGRAPH Asia
2014) 36, 6, 229.

GOLD, M., AND SELLERS, G., 2012. ARB copy image exten-
sion.

ILBERY, P., KENDALL, L., CONCOLATO, C., AND MCCOSKER,
M. 2013. Biharmonic diffusion curve images from boundary
elements. ACM Trans. Graph. 32, 6 (Nov.), 219:1–219:12.

KHRONOS GROUP. 2014. The OpenGL Graphics System: A Spec-
ification, Version 4.4 (Compatibility Profile) ed.

KILGARD, M. J., AND BOLZ, J. 2012. GPU-accelerated path
rendering. ACM Trans. Graph. 31, 6 (Nov.), 172:1–172:10.

KILGARD, M., 2012. NV path rendering extension.

KIRSANOV, D. 2009. The Book of Inkscape: The Definitive Guide
to the Free Graphics Editor. No Starch Press.

LEBEN, I. 2010. Random Access Rendering of Animated Vector
Graphics Using GPU. Master’s thesis, RMIT University, Mel-
bourne, Australia.

MAHARIK, R., BESSMELTSEV, M., SHEFFER, A., SHAMIR, A.,
AND CARR, N. 2011. Digital micrography. ACM Trans. Graph.
30, 4 (July), 100:1–100:12.

NEHAB, D., AND HOPPE, H. 2008. Random-access rendering of
general vector graphics. In ACM SIGGRAPH Asia 2008 papers,
SIGGRAPH Asia ’08, 135:1–135:10.

ORZAN, A., BOUSSEAU, A., BARLA, P., WINNEMÖLLER, H.,
THOLLOT, J., AND SALESIN, D. 2013. Diffusion curves: A
vector representation for smooth-shaded images. Commun. ACM
56, 7 (July), 101–108.

RANDRIANARIVONY, M., AND BRUNNETT, G., 2004. Necessary
and sufficient conditions for the regularity of a planar coons map.
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