
ACM Reference Format
Mitchell, N., Cutting, C., Sifakis, E. 2015. GRIDiron: An interactive authoring and cognitive training founda-
tion for reconstructive plastic surgery procedures. ACM Trans. Graph. 34, 4, Article 43 (August 2015), 12
pages. DOI = 10.1145/2766918 http://doi.acm.org/10.1145/2766918.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
SIGGRAPH ‘15 Technical Paper, August 09 – 13, 2015, Los Angeles, CA.
Copyright 2015 ACM 978-1-4503-3331-3/15/08 ... $15.00.
DOI: http://doi.acm.org/10.1145/2766918

GRIDiron: An interactive authoring and cognitive training foundation
for reconstructive plastic surgery procedures

Nathan Mitchell Court Cutting Eftychios Sifakis
University of Wisconsin-Madison New York University University of Wisconsin-Madison

Figure 1: Simulated Dufourmentel-Mouly repair (see [Baker 2014]) for a large gap of excised tissue on the scalp. From top
to bottom, left to right: Rendered stages of procedure, embedding lattice, real time demo on a tablet running in a web browser.

Abstract
We present an interactive simulation framework for author-
ing surgical procedures of soft tissue manipulation using
physics-based simulation to animate the flesh. This interac-
tive authoring tool can be used by clinical educators to craft
three-dimensional illustrations of the intricate maneuvers in-
volved in craniofacial repairs, in contrast to two-dimensional
sketches and still photographs which are the medium used
to describe these procedures in the traditional surgical cur-
riculum. Our virtual environment also allows surgeons-in-
training to develop cognitive skills for craniofacial surgery
by experimenting with different approaches to reconstruc-
tive challenges, adapting stock techniques to flesh regions
with nonstandard shape, and reach preliminary predictions
about the feasibility of a given repair plan. We use a Carte-
sian grid-based embedded discretization of nonlinear elas-
ticity to maximize regularity, and expose opportunities for
aggressive multithreading and SIMD accelerations. Using a
grid-based approach facilitates performance and scalability,
but constrains our ability to capture the topology of thin sur-
gical incisions. We circumvent this restriction by hybridiz-
ing the grid-based discretization with an explicit hexahedral
mesh representation in regions where the embedding mesh
necessitates overlap or nonmanifold connectivity. Finally, we
detail how the front-end of our system can run on lightweight
clients, while the core simulation capability can be hosted on
a dedicated server and delivered as a network service.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional geometry and modeling—[Physically based modeling]

Keywords: Virtual surgery, finite elements, elasticity.

1 Introduction
The art and practice of plastic surgery is intimately tied with
a lifelong learning experience both in establishing theoretical
foundations, such as anatomy and pathology, as well as in
acquiring and sharpening surgical skills. Although the req-
uisite skill set overlaps with that of general surgery at large,
plastic surgery has a distinct focus on the utilization of topol-
ogy change as a treatment mechanism. Fortunately, a few
opportunities exist for surgeons to acquire and develop these
skills outside of the operating room. Some options involve
operating on physical proxies, such as phantom materials,
cadavers or animal tissues. Alternatively, computer tech-
nology can be leveraged to provide a non-invasive training
testbed. The field of computer graphics is well positioned to
contribute to this activity, given its vested interest in mod-
eling virtual materials and digital models of anatomy. This
application area, however, presents a unique set of challenges
which may be uncharacteristic for traditional graphics appli-
cations. In particular, clinical measures of success (does the
product improve quality of patient care?) may well differ
from visual quality metrics in graphics. Additionally, given
that computer-based surgical training is still an exploratory
proposition, practical solutions need to be concerned with
longevity, extensibility, deployment cost and ease of use.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Figure 2: Top: Simulation of Z-Plasty, a basic maneuver resulting in anisotropic scaling along two perpendicular directions.
Z-Plasty is a common building block leveraged in more elaborate repairs. Bottom: Rhomboid flap procedure for closing a
quadrilateral aperture of excised tissue on the scalp. The embedded simulation grids are shown on the right.

Surgical skills targeted by computer-based training solutions
have been classified [Gallagher et al. 2005] in two major cat-
egories. Psychomotor skills refer to the dexterous use of the
surgeon’s hands to manipulate instruments in the course of
an operation. In plastic surgery, psychomotor training in-
volves mechanical aspects of surgical tasks, such as the “feel”
of tissue being cut or the nuances of manipulating a scalpel
to enact a curved incision. For example, training for laparo-
scopic procedures requires a clinician to be familiar with the
tactile response of pushing and pulling on organs and to
practice coordination skills required for suturing and cau-
terization. A number of computer-based solutions focus on
psychomotor training [Mendoza and Laugier 2003; De et al.
2005; Kim et al. 2007; Lindblad and Turkiyyah 2007]. In
contrast to psychomotor training, cognitive skills and train-
ing are largely mental rather than dexterous exercises. For
example, in the procedure shown in Figure 1, the surgeon
needs to contemplate how to best repair a large square skin
defect (i.e. area of excised tissue) by making auxiliary inci-
sions that create properly shaped “puzzle pieces” which can
be sutured together without creating excessive stress. Chen-
tanez et al. [2009] described a cognitive training system for
steerable needle insertion, where the mental challenge lies in
planning a sequence of actions involving needle flexion and
torsion, in order to achieve a desired insertion trajectory.

Cognitive training is paramount in plastic surgery and ac-
quired through many years of practical experience. Most
reconstructive procedures are not envisioned or taught as
monolithic operations; instead, they are composed as a se-
quence of fundamental building blocks. Graphics practition-
ers would associate these elementary actions with geometric
transforms: shear, rotation, uniform or anisotropic scaling.
Of course, applying such transformation on live tissue is very
different than their application on a geometric model. When
stretching a tissue patch in one direction to 125% of its orig-
inal length while contracting it in the transverse direction
down to 80%, squeezing-and-stretching in-place is typically
not the desired way to execute this transform. Real skin
might not stretch that far or buckle in the transverse di-
rection during the process. A maneuver called the Z-plasty
(see Figure 2, top) achieves the same net effect, with a more
graceful stress distribution and a smooth blend to the sur-

rounding tissues. In plastic surgery, cognitive training ad-
dresses the mental challenge of how these elemental surgi-
cal puzzle-pieces are sequenced and adapted to craft a com-
plex operation. Unfortunately, 3D computer-based cognitive
training solutions for facial reconstructive surgery are virtu-
ally nonexistent; common educational materials are limited
to 2D sketches and still photographs of procedures.

We present an interactive virtual surgery simulation frame-
work using lattice-based embedded discretizations of elastic
tissue, which can be used to author plastic surgery proce-
dures and serve as a cognitive training tool for novice sur-
geons. Our system integrates a number of mature discretiza-
tion and numerical solution techniques with new data struc-
tures, aggressive parallelization practices and a remote deliv-
ery mechanism for computation, in order to improve fidelity,
interactivity and ease-of-use. Although we focus on surgical
simulation, we believe the utility of our methods transcends
the scope of this clinical application and can be leveraged in
broader scenarios of interactive simulation.

Our key technical contributions include:
• A geometric data structure that hybridizes a grid-based

discretization with an explicit hexahedral mesh in order
to resolve non-manifold topological features, such as
narrow incisions, while preserving as much regularity
and parallel potential of uniform grids as possible.

• An object-oriented programming paradigm via which
Cartesian grid-based embedded discretizations of elas-
tic models can be systematically mapped on a spectrum
of multithreaded and SIMD-oriented platforms. This is
demonstrated on both the x86 SSE/AVX instruction
set, as well as on the Intel Xeon Phi platform.

• A tiered deployment strategy where the interactive
front-end is mapped to a lightweight client device, ge-
ometrical modeling is handled by a remote server, and
numerical solver by a many-core accelerator.

In addition to the technical merit of our methodology, we
hope that our work serves to improve awareness of a highly
rewarding emerging application which can greatly benefit
from innovations in graphics and visual computing.

43:2 • N. Mitchell et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

2 Related Work
Computer graphics research has produced several diverse
techniques for model deformation. Procedural techniques
[Joshi et al. 2007; Wang and Phillips 2002; Kavan et al. 2008]
offer real-time performance for certain animation tasks but
lack the physical accuracy needed in surgical simulations.
Consequently, some research ventures into surgical simula-
tion turned to elastic deformation models [Terzopoulos et al.
1987] that responded more realistically to scenarios of prob-
ing and cutting [Bro-nielsen and Cotin 1996; Mendoza and
Laugier 2003; Nienhuys and van der Stappen 2001]. How-
ever, these early works were limited in their scope and ef-
fectiveness due to computational cost, geometric constraints
and oversimplified material models. In this section we out-
line prior contributions that help address these limitations,
and review a number of existing surgical simulation systems.

Virtual materials and anatomy modeling Approaches
based on the Finite Element Method (FEM) have been par-
ticularly popular in the medical simulation community [Mar-
chal et al. 2008] where the need for biologically accurate ma-
terials is more pronounced. In one of the earliest uses of ad-
vanced materials in computer animation, Chen and Zeltzer
[1992] focused on anatomical structures such as muscles.
FEM techniques were further leveraged in the animation
literature for the discretization of linear elasticity for frac-
ture modeling in a small-strain regime [O’Brien and Hodgins
1999]. Highly nonlinear materials such as active musculature
[Teran et al. 2003] exposed challenges in robustness and nu-
merical stability of FEM discretizations. Invertible FEM
[Irving et al. 2004] improved simulation robustness in sce-
narios involving extreme compression, while modified New-
ton methods [Teran et al. 2005a] reduced the cost of implicit
schemes with large time steps. Several of these algorithms
have been incorporated in open-source modeling and simula-
tion packages [Sin et al. 2013]. Solutions have also been pro-
posed for material behaviors such as incompressibility [Irving
et al. 2007] and viscoelasticity [Goktekin et al. 2004; Woj-
tan and Turk 2008], both of which can be found in typical
biomaterials. Recent results in coupled Lagrangian-Eulerian
simulation of solids have also facilitated the inclusion of in-
tricate contact and collision handling in biomechanical mod-
eling tasks [Sueda et al. 2008; Li et al. 2013; Fan et al. 2014].

Simulation of topology change A number of techniques
have targetted topology change during simulation, due to
cutting or fracture. Early work [Terzopoulos and Fleischer
1988] resorted to breaking connectivity of elements when
stress limits were exceeded. Later methods [Nienhuys and
van der Stappen 2001] split tetrahedra near cut boundaries
and then used vertex snapping to more accurately approxi-
mate the cut. Local remeshing was also employed to simu-
late cracks in brittle materials [O’Brien and Hodgins 1999].
An issue with such subdivision schemes is the possible cre-
ation of poorly conditioned elements, which prompted a
number of authors to pursue embedded simulation schemes
[Molino et al. 2004; Teran et al. 2005b]. These techniques
use non-conforming meshes with elements which are only
partially covered by material, in lieu of conforming remesh-
ing. Embedded simulation can provide a great degree of flex-
ibility in cutting and fracture scenarios [Sifakis et al. 2007],
although cutting meshes along arbitrary surfaces requires
delicate book-keeping and careful handling of degeneracies.

Embedded simulation The use of non-conforming meshes
has valuable benefits for fracture modeling, but embedded
techniques have also been used in their own right for rea-

sons of simplicity and performance. Mueller et al. [2004]
employed an embedding scheme to perform volumetric sim-
ulation of objects described by their boundary mesh. The
regularity of lattice embeddings has also been exploited
in shape matching techniques [Rivers and James 2007] to
achieve significant performance accelerations. Embedding
has been combined with homogenization [Nesme et al. 2006;
Kharevych et al. 2009] to resolve sub-element variation of
material parameters, optionally with the use of non-manifold
embedding lattices to support objects with a branching
structure [Nesme et al. 2009]. Jerabkova et al. [2010] em-
ployed a method similar to our own, using a finer voxel grid
to capture material topology to be embedded in a coarser,
non-manifold voxel grid. Finally, Zhao and Barbič [2013]
demonstrated the use of multiple voxel grid domains to seg-
ment a model hierarchically, which they used to simulate
plants at interactive rates. Extended FEM (XFEM) formu-
lations have also been explored [Jeřábková and Kuhlen 2009],
where discontinuities are introduced into the element’s shape
functions, to model cutting. In a similar vein, Kaufmann et
al. [2009] used discontinuous Galerkin FEM formulations.
Others have dispensed with mesh based discretizations com-
pletely, preferring meshless methods [De and Bathe 2000]
which were also used for surgical simulation [De et al. 2005].

Surgery simulation While much of the previously dis-
cussed work is geared towards general elastic body simula-
tion in computer graphics, many relevant results originated
in surgery-specific work. Pieper et al. [1995] demonstrated a
very early surgical simulation platform for facial procedures,
using FEM elastic shells. Many surgical simulation projects
focus on the mechanical manipulation of organs and other
soft internal objects [Nienhuys and van der Stappen 2001;
Kim et al. 2007]. Even expensive commercial simulators like
the Lap Mentor and GI Mentor primarily focus on push-
ing and cutting simulated internal organs [Simbionix USA
Corporation 2002–2014b; Simbionix USA Corporation 2002–
2014a]. These types of simulations are so common that sev-
eral open source frameworks have been built to specifically
support further development [Allard et al. 2007; Cavusoglu
et al. 2006]. These provide easy access to common com-
ponents like haptic feedback and APIs to connect multiple
simulated components. Certain surgical simulation systems
are tailored to specific skills, including interactive simula-
tions of needle insertion [Chentanez et al. 2009].

Performance optimizations Improving simulation rates
is a common challenge for many interactive modeling tasks,
and even more so for accuracy-conscious applications such
as virtual surgery. Attempts to improve performance have
either relied on new data structures, faster solvers, or aggres-
sive use of parallelization. The Boundary Element Method
[James and Pai 1999] has been used to achieve interactive
deformation rates for objects manipulated via their surface.
Hermann et al. [2009] analyzed data flow in their simula-
tions to inform a parallel scheduler for multicore systems.
To avoid write hazards during parallel code execution, Kim
et al. [2011] proposed a system of computation phases with
coalesced memory writes, which allowed them to parallelize
force computation. Related efforts by Courtecuisse and Al-
lard [2009], developed a parallel version of the Gauss-Seidel
algorithm that can run on GPUs. Regular discretizations
have also been coupled with multigrid solvers to facilitate
GPU accelerations for elastic skinning techniques [McAdams
et al. 2010]. However, in spite of the efficiency of multigrid
schemes, adapting them to the presence of incisions or other
intricate topological features can be a nontrivial proposition.

GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures • 43:3

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

3 Project scope and design decisions

Our target application carries a unique set of requirements
related to accuracy, usability and effectiveness. We sought
to produce a robust and usable prototype, appropriate for
a pilot deployment (Figure 3). As a consequence, our de-
sign goals represent a balance between facilitating future
extensions and leveraging all opportunities for optimizing
performance and interactivity now. This section discusses
the factors influencing our design decisions, including both
long-term principles and short-term opportunities.

3.1 Clinical scope

In the current iteration of our framework, we focused on
the virtual simulation of local flaps, as well as anatomical
flaps on the human cranium. Local flaps are surgical de-
signs defined on a flat tissue layer with uniform thickness,
which is not attached to underlying bone or cartilage (Fig-
ure 2, top). Cranial flaps (Figure 2, bottom) are somewhat
similar in that the tissue has relatively uniform thickness
(of a few millimeters) and is not attached to the underlying
bone. Of course, cranial flaps are not flat, and similar inci-
sion shapes can produce different end results, depending on
the curvature of the cranium. Procedures on the cranium
are a significant (and nontrivial) part of the clinical curricu-
lum in a plastic surgery residency program.
Geometry of repairs Due to the small, uniform thickness
of tissue in local and cranial flaps, incisions can be designed
purely as curves on the skin surface, with the assumption
that any incision will proceed through the entire thickness of
the tissue (perpendicular to the surface). This specific scope
greatly simplifies user interface, as cuts can be drawn on the
tissue surface. In contrast, surgical procedures on anatom-
ical parts with greater volumetric extent would necessitate
complex input devices to prescribe 3D incision paths.
Contact scenarios Surgical repairs on the cranium cer-
tainly depend on proper contact between the elastic tissue
and the underlying bone, but do not strictly require static
contact between different tissue parts, as all incisions are
thoroughly sutured after manipulation (not the case for op-
erations in other parts of the body). Accordingly, our system
only performs collisions between tissue and bone, forgoing
expensive self-collision processing. We designed our system
to be extensible to self-collision handling, but optimized our
current deployment with the knowledge that only collisions
with external bodies are needed at this juncture.
Timeline of incisions A large majority of surgical repairs
on the cranium can be designed with all incisions made at
once, in the beginning of the procedure. This allows us to
improve the efficiency and robustness of incision modeling
dramatically, applying all topological change at a single in-
stance in time. This is certainly not the case for other proce-
dures (e.g. cleft lip and palate repair or other procedures on
the lower face) where incisions have to be applied in distinct
time instances, while tissue is actively manipulated.

3.2 Physics-based modeling

Material properties of tissue Human tissue is a complex
heterogeneous nonlinear material, with anisotropic, elasto-
plastic and viscoelastic traits. Nevertheless, although plas-
ticity and viscoelasticity are important postoperative fac-
tors, our domain collaborators have suggested that these be-
haviors are of secondary importance within a surgical time-
frame in determining whether a given repair is mechanically

Figure 3: Pilot deployment of our interactive web-based
simulator with 14 Plastic & Reconstructive Surgery medical
residents at the University of Wisconsin-Madison.

feasible or not. As a consequence, our framework is designed
to accommodate heterogeneous hyperelastic materials, with
no explicit provisions at this point for plasticity or viscoelas-
ticity. Anisotropy is a much more pertinent trait; even on
the cranium, the bottom of the scalp is lined with a thin fi-
brous sheet that is a significant source of material anisotropy
(in-plane stiffness vs. normal to the scalp surface). Our de-
sign choice was to outfit our algorithmic framework with
full support for heterogeneity and substantial support for
anisotropy, including active anisotropic behaviors such as
contractile muscle fibers. However, our interactive surgical
examples were carried out with isotropic materials exclu-
sively, and our support for anisotropy and active muscle ele-
ments is only leveraged to offline musculoskeletal simulations
within our framework (see Section 7).
Dynamics As a cognitive training platform, our frame-
work’s main priority is to capture the stationary shape that
a given repair results in. As a consequence, an implicit or
even quasistatic time evolution scheme is very well toler-
ated for our application, and aligns well with the interac-
tivity requirements of our platform. The cost paid for this
compromise is that transient deformation states during high-
velocity maneuvers are not dynamically accurate, but merely
iterations towards the solution of the implicit/quasistatic
evolution scheme used.
Solvers, scalability and parallelization A number of au-
thors have been successful in leveraging multigrid schemes
[Dick et al. 2011; McAdams et al. 2011] in the simulation
of elastic solids. For our specific application, the geometry
of the computational domain (thin volumetric tissue sheets)
would complicate the design of multigrid transfer operators,
while future extensions to highly anisotropic and hetero-
geneous materials would require nontrivial adaptations to
a performance-tuned multigrid scheme. Thus, we avoided
committing to a multigrid solver at this point, and relied
on iterative solvers such as Conjugate Gradients. That be-
ing said, we could not afford to forego parallelism and vec-
torization, as the performance benefit over a scalar single-
threaded implementation would be dramatic. In light of this,
we adopted a Cartesian-grid based embedded discretization
that favors parallel accelerations while (i) designing a hybrid
embedded structure that reconciles lattice embeddings with
non-manifold topology near incisions and (ii) implementing
a programming paradigm to systematically generate multi-
threaded and vectorized versions of our algorithmic kernels
as material properties might be adapted and refined.

43:4 • N. Mitchell et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Figure 4: Dual S-Plasty procedure on the scalp; a large oval-shape defect is patched by transposing two S-shaped flaps.

3.3 User experience and ease of deployment

It is essential for the continued evolution of our framework to
establish a communication channel between computer graph-
ics developers and clinical end-users. Thus, we place great
emphasis on a system that can be deployed to our domain
testers quickly and inexpensively, provides a versatile up-
grade path, and is intuitive and enjoyable to use as to elicit
continued interest from our clinical collaborators.
Simple interface We aim to provide a simple, yet expres-
sive and intuitive interface to clinical users of our system.
Our current solution is centered around three basic interface
“tools”: (a) The incision tool is a drawing interface by which
cuts are sketched as spline curves on the tissue surface. (b)
The hook tool establishes soft spring-based constraints be-
tween a point on the visible surface of the tissue and a user-
movable point in space. (c) The suture tool enacts a suture
between two points on the tissue surface. The attachment
is enforced as a stiff zero-length spring.
Remote deployment In order to improve simulation per-
formance, we aggressively use parallel-optimized solvers on
multicore systems (our platform uses an SMP server, with
Intel Xeon Phi accelerators). It is, however, impractical to
deploy such a server at the location of our end-users (who
are surgical residents in teaching hospitals), and even more
challenging to push algorithmic upgrades as our framework
evolves. We have thus separated the graphical front-end
into a lightweight application that runs on web-based clients
(Figure 3), while the burden of numerical simulation is of-
floaded to a simulation server. This is possible as the front-
end only needs to dispatch user manipulations (movements
of hooks, placement of sutures) to the host simulator, and
only receive surface geometry updates from the simulation
server even if volumetric simulation is taking place.

4 Elasticity discretization

We start by describing our discretization of elastic forces
and the time evolution scheme used in our methodology.
We discretize the equations of elasticity on a regular Carte-
sian lattice, on which the simulated material is embedded.
Although we actually allow our grids to contain duplicate
cells and non-manifold features, as we detail in Section 5,
each individual cell is a regular cube element, as in previ-
ously published lattice-based discretizations [McAdams et al.
2011; Patterson et al. 2012]. We review the relevant theory
with a focus on exposing regular algorithmic kernels, which
we feed into a stream processing pipeline in Section 6.

Quasistatic evolution As we are primarily concerned with
the equilibrium shapes resulting from user manipulation and
flesh/bone collision, we implement a quasistatic evolution
based on a Newton-Raphson solver with Conjugate Gradi-
ents used to solve the linearized system at each step. For ev-

ery configuration of constraints or kinematically prescribed
degrees of freedom, we seek to solve for the nodal displace-
ments x such that the force equilibrium equation f(x) = 0
is satisfied. At each iteration k we aim to refine our solution
for x(k) by seeking a correction term dx such that:

0 = f(x(k) + dx) ≈ f(x(k)) + df

dx

∣∣∣
x(k)

dx⇒

(
− df

dx

∣∣∣
x(k)

)
︸ ︷︷ ︸

K

dx = f(x(k)) (1)

Equation 1 highlights the two terms we must be able to pro-
vide for each force component within our system, including
elastic and contact forces. The right hand side is the total
force as a function of the current position. If we had em-
ployed a direct method, the left hand side could have been
represented by extracting the tangent stiffness matrix df

dx
.

However, our iterative Krylov solver only requires an algo-
rithmic routine for computing products of the form Kw. We
transform our problem into one of this form by using the no-
tion of a differential. Interpreting w as a nodal displacement
δx, we rewrite the left hand side of equation 1 as:

− df

dx

∣∣∣
x(k)

δx := −δf [δx;x(k)] (2)

The left hand side is now in a form equivalent to Kw, suit-
able for use in our iterative solver. The following sections
detail how forces f(x(k)) and force differentials δf [δx;x(k)]
are computed for every different force type in our method.

4.1 Elastic Forces

Isotropic elasticity Our system models the underlying me-
chanical behavior of soft tissue with an isotropic substrate,
which is optionally augmented with additional anisotropic
force contributions (either from passive fibrous structures, or
active musculature). For the discretization of the isotropic
component we derive forces and force differentials using
FEM with trilinear shape functions and a one-point quadra-
ture [McAdams et al. 2011; Patterson et al. 2012; Sifakis and
Barbic 2012]. The exact process for forces and differentials
is reiterated in Algorithm 1. We note the existence of two
user-defined functions in the pseudocode:

DiagMatrix<3> P_Hat(DiagMatrix<3> Sigma, Params p)
Vector<12> dPdF_Hat(DiagMatrix<3> Sigma, Params p)

By providing a custom implementation of the above two
functions, we can implement any isotropic material model
without modifying any other part of the force computation
pipeline. This is a flexibility that we strive to retain, to sup-
port more complex biomaterials in the future. Note that the

GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures • 43:5

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Algorithm 1 Procedures for computing elastic force and force differentials. Sections highlighted in gray indicate values which
can be precomputed at the start of each Newton-Raphson iteration. The functions P_Hat and dPdF_Hat can be user-defined
to implement arbitrary isotropic materials. The reshape operation concatenates eight nodal vectors in a cell (positions,
displacements, forces, etc) into a 3 × 8 matrix and vice versa. G is a 3 × 8 gradient matrix, as defined in [McAdams et al.
2011]. V0 = h3 is the volume of the cartesian cell. T is a sparse 4th order tensor as defined in [Teran et al. 2005a]

1: procedure FElastic(x, params p)
2: reshape x→ Ds

3: compute F← DsGT

4: compute [U,Σ, V]← SVD(F)
5: compute P̂← P_hat(Σ, p)
6: compute P← UP̂VT

7: set H← V0PG
8: reshape H→ f

P(F)

1: procedure δFElastic(x,δx, params p)
2: reshape x→ Ds , δx→ δDs

3: compute F← DsGT , δF← δDsGT

4: compute [U,Σ, V]← SVD(F)
5: compute T ← dPdF_hat(Σ, p)
6: compute δ̂F← UT δFV
7: compute ˆδP← T : δ̂F
8: compute δP← Uδ̂PVT

9: set δH← V0δPG
10: reshape δH→ δf

δP(F, δF)

second function returns a sparse 3×3×3×3 tensor, which has
21 nonzero entries out of which only 12 are unique (reflected
in the return type), as defined by Teran et al. [2005a]. Con-
crete formulas for the above functions have been previously
given [Patterson et al. 2012] for Corotated, Neohookean and
Mooney-Rivlin isotropic materials.

Anisotropy Our framework supports adding an anisotropic
response on top of the base isotropic substrate. We allow
custom anisotropic material definitions by accepting an al-
ternative implementation of the Piola Stress P(F) and its
differential δP(F;δF). Since our surgical examples do not
currently make use of this capability, we defer to the supple-
mental document for details on how the muscle constitutive
model of Teran et al [2003] can be cast in these terms. An
offline musculoskeletal simulation using this feature is dis-
cussed in Section 7.

Stabilization For performance, our discretization method
uses a single point quadrature scheme, which requires only
one Singular Value Decomposition per cell as opposed to
a more traditional Gauss quadrature which requires eight.
As detailed in McAdams et al [2011], left uncorrected, this
approach produces hourglass instabilities due to particular
deformation modes which do not affect the discrete energy,
and we employ their stabilization corrections to account for
this issue. If additional accuracy is desired, a four point
quadrature scheme proposed in Patterson et al [2012] could
easily be substituted, at an additional computation cost.

4.2 Interaction Forces

In addition to internal elastic forces, our system supports
interaction forces related to both user interaction and col-
lision with kinematic objects. User interaction consists of
manipulation hooks, which are spring attachments of mod-
erate stiffness between a tissue surface location and a user-
controlled point in space, as well as sutures which are sig-
nificantly more stiff springs attaching two locations on the
tissue surface. Both of these forces result in augmentation
of the internal elastic energy by spring terms of the form:

Espring =
∑ ki

2 ||p
(1)
i − p(2)

i ||
2
2

where ki is the spring constant and the endpoints can take
one of two forms:

p
(j)
i = Wx or p

(j)
i = const

In the first case, p(j)
i represents a embedded spring endpoint

where W is a 3× 24 weight matrix and x are the positions
of the vertices from the embedding cell. The second case
refers to a non-embedded target, where p(j)

i is simply a con-
stant position in space. Hook constraints use one embedded
and one fixed endpoint, while suture constraints have both
endpoints embedded. In either case, forces and differentials
are directly computed by differentiating the spring energy as
fspring = −∂Espring/∂x, δfspring = −∂2Espring/∂x2 : δx.

Collisions with kinematic bodies are handled using the
“hook” infrastructure; a number of collision proxies are
seeded on the model surface, and when collision is detected
their stiffness is set to a nonzero value, while their target end-
point is set to the projection on the surface of the colliding
body. The suture infrastructure can be used to support self-
collisions, following the paradigm of McAdams et al. [2011].
The only difference is that, for sutures, the embedding of
both spring endpoints is known at the moment the suture
is introduced. For self collisions, the embedding coordinates
of one endpoint for every “self-collision spring” can be de-
termined dynamically by the collision detection phase.

5 A hybrid embedding lattice structure

We employ an embedded simulation similar to other au-
thors, who used regular lattice embeddings for performance
[Müller et al. 2004; Rivers and James 2007; McAdams et al.
2011]. However, due to the presence of extremely thin in-
cisions in our surgical models, standard lattice embedding
would not be able to resolve the tissue topology, unless an
extremely high resolution embedding was used. We thus
adopt a non-manifold lattice-derived embedding discretiza-
tion in the spirit of Virtual Node or XFEM methods [Molino
et al. 2004; Sifakis et al. 2007; Nesme et al. 2009]. Although
the use of non-manifold embedding meshes recovers much
of the topological expressive ability of conforming meshes, it
jeopardizes one of the most attractive features of regular em-
bedding lattices, the fact that connectivity is implicit in the
lattice structure as opposed to explicitly stored in a mesh.
The performance impact of implicitly defined topology can
be profound; the memory footprint of explicitly stored con-
nectivity information can easily exceed the state variables
themselves (e.g. vertex positions) and reduce effective mem-
ory bandwidth by necessitating indirect memory access. In
our work, we strive to leverage the best of both worlds: We

43:6 • N. Mitchell et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Figure 5: Illustration of a cut generating a hybrid lattice. (a) A cut passing through the grid. (b) Mesh cells generated for the
top half of the cut. (c) Mesh cells generated for the bottom half of the cut. (d) Cut surface is colored to show cell assignment.

use an (implicit topology) Cartesian grid to capture the ma-
jority of the embedded model in regions where non-manifold
duplication is not needed. We retain the topological flexibil-
ity of non-manifold embedding lattices by hybridizing this
grid with an (explicit topology) hexahedral mesh used to
describe regions in the vicinity of narrow slits and incisions.

5.1 Surface Model

Prior to elasticity discretization, a watertight surface model
of the flesh, including any incisions, must be created. In our
system, incisions are generated from user specified line seg-
ment curves, which guide constructive solid geometry (CSG)
difference operations to produce cut surface meshes. We be-
gin from a user specified line segment curve from which we
construct prisms by thickening the line segments tangentially
and perpendicularly along the surface normal. We then ap-
ply these prisms in a subtraction operation with the surface,
resulting in a slightly thickened incision (Figure 6). Discon-
nected regions produced during this step can be marked and
removed by the user. Note that for scenarios involving ma-
lignant tissue, discarding of excised tissue is commonplace.

5.2 Rasterization

Given a cut surface mesh, we first create a fine rasteriza-
tion of the surface. The resolution of the rasterization is
selected to capture all desired topological detail (typically
an order of magnitude finer than simulation resolution). In
Figure 7, it is possible to see the fine rasterization grid in
contrast to the coarser simulation resolution. The raster-
ization is performed by detecting all voxels intersected by
the object surface and flood-filling to mark the volumetric
material region. Once the rasterization is complete, subse-
quent embedding operations are purely combinatorial, and
not sensitive to poor conditioning of surface mesh elements.
Additionally, this fine-grid embedding can also act as an in-
terface layer to more complex embedding schemes, such as
the non-manifold approach described next. We leverage this
by translating any deformation results back to the fine-grid
embedding prior to rendering, to hide non-manifold embed-

Figure 6: Incisions in the flesh surface model are created
by extruding and thickening user specified line segments.

ding or numerical solution details from the visual front-end.

5.3 Non-Manifold mesh generation

We now seek to construct a coarser resolution explicit mesh
discretization, which is allowed to be non-manifold in re-
gions, as shown in Figure 5. We will extend the paradigm
of non-manifold embedding proposed by Teran et al. [2005b]
and Sifakis et al. [2007] using the precomputed fine grid ras-
terization to answer material connectivity predicates. Our
non-manifold mesh generation process is outlined in Algo-
rithm 2, and illustrated intuitively in Figure 5. Note that, in
the pseudocode provided, there are two geometric predicates
being used: (a) Determination of material components (line
3) requires the identification of all disconnected components
of material present in the intersection of our domain with a
given lattice cell. (b) Adjacent-element material continuity
(line 10) is a predicate invoked to determine if two material
fragments, associated with adjacent lattice cells, exhibit ma-
terial continuity across their common face. These two geo-
metric predicates are expressed in a fashion that is agnostic
to the underlying geometric representation of material; in
Teran et al. [2005b] the assumption is that a tetrahedralized
model of the material is available, while Sifakis et al. [2007]
define material fragments indirectly, by specifying cutting
surfaces instead. In our case, the availability of the fine-grid
rasterization makes both such operations purely combinato-
rial in nature. Material fragments within a coarse cell are
computed via flood-fill, and fragments on adjacent cells are
continuous if they contain adjacent fine cells on their ras-
terization. At the conclusion of this step, we have produced
a coarse mesh (with explicitly stored connectivity), whose
topology is as close as possible to the embedded geometry.

Figure 7: Fine grid rasterization of a cut. Fine cells within
the cut are empty, and colored to show material continuity.

GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures • 43:7

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Algorithm 2 Algorithm to Construct Non-Manifold Mesh
Input: Coarse Resolution

1: function Generate_Nonmanifold_Mesh
2: for all Coarse Cells: i do
3: C ← Determine_Material_Components(i)
4: for all Components in C do
5: Instance separate copy of i
6: Generate unique, separate DOFs
7: Assign descriptor of material content
8: for all Geometrically adjacent cell pairs: (i, j) do
9: for all Pairs of duplicates from i and j: (h, k) do

10: if Material_Is_Continuous(h, k) then
11: Mark shared vertices as equivalent
12: for all Coarse Cells: i do
13: Compare all duplicates of i
14: Collapse duplicates with equivalent DOF’s
Output: An explicit, possibly non-manifold mesh

5.4 Reduction and Remapping

For the final step in hybrid lattice construction, we attempt
to map as much of the explicit-connectivity mesh as possible
back onto an implicit-connectivity grid to recover regularity.
From the explicit mesh, we have two geometric primitives to
consider for remapping: nodes and cells. For simplicity, we
will first consider nodes and then cells. Figure 8 illustrates
the results of the remapping rules below:
• Nodes are mapped to the grid if and only if they possess

no duplicates.
• Cells are mapped to the grid if and only if all of their

vertices have been mapped to the grid.
Each mesh cell remaining in the hybrid lattice is associated
with a coordinate from the grid. This mapping will become
important later when we discuss the block-based acceleration
structures. After these rules are applied, the new structure
must adhere to several post-conditions.
• All grid cells are composed only of grid nodes.
• Mesh cells contain one or more mesh nodes.

(a) (b)
Figure 8: From an explicit mesh (top), we generate (a)
mesh mapped nodes in red, grid mapped nodes in black and
(b) mesh mapped cells in red, grid mapped cells in gray.

It should be noted that this set of rules is not strictly optimal
in the sense of mapping the most elements into the grid. A
more aggressive strategy would be to select one element from
each set of geometrically co-located items and map it to the
grid. We defer investigation of similar compaction heuristics
to future work. Note: In all our surgical examples (Figures
1,2 and 4) mesh-mapped embedding cells are indicated with
blue color, grid-mapped ones in red.Typically, only a minor-
ity of cells is mesh-mapped, allowing us to retain the bulk of
performance benefits of implicit grid-mapped embeddings.

6 Software engineering and deployment

6.1 Parallelization

Our framework relies on both multithreading and vectoriza-
tion (SIMD) to obtain the best possible performance. The
fact that our Cartesian-based discretization consists of iden-
tically shaped elements offers a great opportunity to leverage
both thread-level and data-level parallelism, due to the in-
herent regularity of the simulation kernels.

Blocking As described in Section 4 on discretization, forces
are computed on a per cell basis. A naive multithreaded
port would result in write hazards at nodal positions, un-
less expensive synchronization was used. Simple partition-
ing would eliminate this issue, but would not make efficient
use of modern SIMD-enabled processors. Instead, we employ
a blocking scheme to avoid write hazards while retaining a
memory layout favorable for vectorization. Our objective
is to redefine our “quantum” of computation from a single
lattice cell, to a geometric neighborhood (or block) that is
processed concurrently using vector operations. We adopt a
block size of eight cells arranged as a 2 × 2 × 2 cube. This
formation allows us to fit blocks into eight-wide vectors and
later we will demonstrate how we can adapt to larger and
smaller vector widths. In this way, each cell in the block can
be considered a “channel” in the vector. Blocks are tiled to-
gether to cover the extent of the lattice. However, restricting
the contents of a non-manifold hybrid lattice to the spatial

(a) (b)

(c)

Figure 9: Generating Blocks. (a) Block boundaries super-
imposed over hybrid lattice. (b) Non-manifold contents of
each block region. (c) Final manifold blocks for each region.

43:8 • N. Mitchell et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

extent of a single block could easily yield more than one cell
at each position in the block, as illustrated in Figure 9. To
create blocks without overlapping cells, we employ a greedy
algorithm which collects cells into manifold groupings along
block boundaries, as seen in (Figure 9c). The full algorithm
for this process is described in Algorithm 3.

We use the partitioning of our lattice into blocks to cir-
cumvent write dependencies during multithreaded execu-
tion. Prior to the execution of any kernel involving force
computation, we copy the state variables from either the grid
or mesh structures that natively store them, into duplicate
copies for every block. We label this process a Compaction
step, which is essentially a gather operation that yields a
representation of the state variables into a flattened array
of blocks (with shared variables duplicated across blocks).
Subsequently, force computation can be executed in parallel
on each block, without write dependencies, by allowing each
block to record its own force contribution to the lattice nodes
it touches. The reverse operation, labeled Uncompaction
scatters and accumulates the contents of the per-block forces
back to their native (non-duplicated) grid or mesh storage.
Write dependencies can be avoided at this stage by partition-
ing this parallel operation on the grid or mesh variables that
collect the per-block contributions. As a result, complex
force computations can fully enjoy the benefits of thread-
and SIMD-parallelism, without being concerned with data
dependencies arising from the non-manifold mesh structure.

Guided Vectorization The high degree of regularity ex-
posed by our blocking procedure naturally suggests using
modern processor’s SIMD capabilities to compute on all cells
of a given block simultaneously. Although the performance
potential is undeniable, porting code from a scalar imple-
mentation to a SIMD platform is a tedious task, one that
auto-vectorization features of compilers have been tradition-
ally ineffective in providing automatically. An example is the
highly optimized SVD routines, published with the work of
McAdams et al. [2011] which replicates almost instruction-
by-instruction identical SIMD intrinsics to implement scalar,
SSE and AVX versions; it can be easily verified that compiler
auto-vectorization cannot provide competitive performance
with these tediously hand-optimized kernels.

We have designed a programming paradigm called guided
vectorization, with which we practically achieve the perfor-
mance of hand-vectorized kernels, while only providing a
single specification for scalar and vector variants. Our solu-
tion is object-oriented and based on the observation that the

Algorithm 3 Algorithm to Construct Blocks
Input: Block region i

1: function GenerateBlocks
2: for all Cell c in i do
3: Create new empty block
4: Copy c into new block
5: Build connectivity graph between blocks
6: repeat
7: for all Symmetric connected block pairs do
8: Find pair with fewest neighbor mismatches
9: if Suitable pair found then

10: Collapse, merging block contents
11: until No further collapses occurred
12: return All remaining blocks
Output: A collection of one or more manifold Blocks

semantics of fundamental data types are very similar across
scalar/vector platforms, even if the interface differs. Our
system is rooted on two templatized C++ classes:

template<class scalar_arch> class Number;
template<class boolean_arch> class Mask;

Class Number is an abstraction of a single floating point
number in a scalar platform (scalar_arch==float) or of
a 4/8/16-wide vector register in SSE/AVX/Xeon Phi plat-
forms (scalar_arch:=__mm128|__mm256|__mm512). Simi-
larly, class Mask is an abstraction of the result of a com-
parison operation, in a form that can be used to per-
form a conditional assignment; thus Mask<bool> encapsu-
lates a single C++ boolean variable, Mask<__mm256> cap-
tures a 256-bit mask usable in AVX BLEND instructions, while
Mask<__mmask16> encapsulates the special concept in Intel
Xeon Phi of a 16-bit mask register that is used in compar-
isons and conditional assignments. We provide enough over-
loaded operators in the interface of these classes to allow
them to be used in algebraic expressions regardless of the
encapsulating vector width. Ultimately we use them to con-
struct macroscopic kernels of the form:

template<class scalar_arch,class T_DATA>
void Add_Force_Differential(

const T_DATA (&dx)[3][8], ...
const T_DATA (&V)[9],
const T_DATA (&dPdF)[12],
T_DATA (&df)[3][8]);

In this paradigm, we have separated the programmatic data
width (type T_DATA, which could be float, for scalar code
that computes forces on individual cells, or float[8], for
the force computation of all 8 cells of a block at once) from
the architectural vector width. This allows us to design all
of these kernels with the same semantics that would be fol-
lowed for scalar execution, and automatically generate code
that works on geometric blocks of any size, and vector archi-
tectures of different vector widths. For example the function
call Add_Force_Differential<__m128,float[16]>(....)
would use SSE instructions to compute force differentials of
geometric blocks containing 16 cells each (e.g. blocks shaped
like 4×2×2 grid cells). A benchmark suite of all vectorized
kernels in our solver is available from our project website.

6.2 3-Tier Architecture

Our surgical platform is structured as a three-tier solution,
with a web-based client (Tier 1), an SMP server for modeling
(Tier 2), and a many-core accelerator for numerics (Tier 3).
The front-end client serves primarily as the user interface to
the system. The client is responsible for acquiring user input
and visualizing the simulation results. Our initial client was
written in C++ and continues to see use as a development
platform. In order to support a wide variety of hardware at
the client level, we have implemented a web browser client in
HTML, Javascript, and WebGL. The web client is ideal for
platform independence and does not require preinstallation.
Communication is performed via the WebSockets standard,
where a TCP connection is encapsulated by HTTP, which
allows the client to operate under a push data model. Thus,
the remote server sends updates to clients when they become
available instead of requiring clients to poll for updates.

We refer to the second-tier platform as the CPU host. Its pri-
mary task is to perform all non-simulation computation that

GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures • 43:9

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

can be offloaded from the client level. The host manages user
sessions, stores and loads scene data from disk, performs ge-
ometric manipulations (non-manifold meshing and incision
modeling) as a result of user actions, and runs collision de-
tection. This tier requires large amounts of memory, beyond
what is natively offered on a GPU or Many-Core accelerator.
The third tier is the numerical solver, which executes all low-
level compute intensive kernels (but not combinatorial tasks
such as mesh generation). We have implementations that
allow this layer to either run on the same CPU platform as
the 2nd-tier code or run natively on a Xeon Phi accelerator,
interfacing with the host over MPI.

7 Examples

For our clinical examples, we provided our senior domain
collaborators with a brief tutorial of our authoring interface
and asked them to craft typical repair scenarios on a pre-
pared model of the human scalp, as well as on a stock model
of a flat tissue sample. Our system captured a script of
surgical manipulations, which was then re-run in an offline
setting using a higher resolution embedding lattice, with the
intent to re-enact the same manipulation with higher detail.
As a proof of concept, we bench-marked our system with a
high resolution human body model with anisotropic active
musculature; details of the anisotropic material discretiza-
tion can be found in the supplemental technical document.
We report detail timings, including time taken at the indi-
vidual kernels of our solver, in Table 1.

8 Evaluation and Discussion

Deployment To evaluate our system, we conducted a pi-
lot deployment for the medical residents in the University of
Wisconsin-Madison Plastic & Reconstructive Surgery pro-
gram, as part of a workshop on craniofacial reconstruction
techniques. We set up a local switched network at the lo-
cation of the workshop, with a portable desktop-grade com-
puter (with a 4-core Intel 4770R processor and 16GB RAM)
acting as the Tier 2/3 simulation server, and a collection of
eight Chromebox web-based thin clients as the user stations
(our setup can be seen in Figure 3). Although our modest
portable server did not have the computing power available
to our many-core accelerated server systems which we used
for our large-scale offline simulations, its (AVX-accelerated)
performance was more than adequate to deliver an interac-
tive user experience. Total cost of the entire deployment,
including server, networking and client stations was $4,000.

Participants were initially given an extremely brief orien-
tation on visual navigation within the application and its
interface. In first part of the deployment exercise, the work-
shop instructor (a seasoned user of the system) authored sev-
eral different reconstructive procedures on different anatom-
ical models, while the participants were invited to follow
the manipulations as they were taking place (without affect-
ing them) by adjusting the view of the dynamic model on
their own station. Subsequently, individual participants who
had no prior exposure to the system were invited to drive
the authoring process, which their colleagues would virtu-
ally follow. The workshop instructor provided guidance on
clinical aspects of the repair being authored, while questions
about the user interface would be recorded and addressed
by the system developers. At the conclusion of the exercise,
the participants were debriefed and given the opportunity to
evaluate their experience and propose improvements.

Findings We found that our participants were extremely
comfortable with aspects of 3D visual navigation, even with
the very rudimentary orientation that was provided. Most
participants found the visual examples of procedures demon-
strated to be very enlightening, with many of them com-
menting that this visual illustration was the most infor-
mative exposure they had for procedures they only knew
from reference literature (most of them had not witnessed
these procedures in the operating room). Almost no par-
ticipant volunteered the lack of self-collision processing as
an observed omission, until the interviewer explicitly asked
them about this aspect (all demonstrations in our workshop
entailed full suturing of wound closure). On the contrary,
several participants identified inaccuracies in the elastic be-
havior of the virtual tissues, finding that our models ap-
peared to be more “permissive” to manipulation than real
flesh tissue. An interface feature that was pointed out as
lacking, is the inability to appreciate (simply by looking at
the final sutured result) the deformation patterns that have
resulted from a certain repair; it was suggested that adding a
texture (grid lines or checkerboard patterns) on the skin sur-
face would be much more useful in evaluating tissue strain
and deformation. We also received requests for biologically
inspired aids - in particular a visualization of anatomical el-
ements such as blood vessels in the tissue being cut. Several
users requested more traditional animation features, such as
timeline scrubbing and history undo, as well as side-by-side
views of different repair approaches for visual comparison.

Limitations and future work Section 3 discusses a num-
ber of conscious limitations in the interest of balancing per-
formance and extensibility. From a research standpoint, our
biggest perceived challenge is improving the accuracy of the
constitutive models for the biomaterials involved. Full self-
collision support will be essential for extending our work to
procedures that rely on contact, in addition to sutures, to
model properly. Finally, a large class of reconstructive pro-
cedures cannot be modeled with all incisions performed at
the beginning of time; a flexible topology change modeling
system would be necessary to incorporate a seamless ability
for topology change, concurrent with deformation.

Acknowledgements
The authors are grateful to Dr. Timothy King, the medi-
cal residents of the Plastic & Reconstructive Surgery pro-
gram, and the School of Medicine and Public Health at the
University of Wisconsin-Madison for their support and par-
ticipation in this activity. We would like to acknowledge
Aaron Oliker and BioDigital Systems for supplying the mod-
els used in this project. Primary funding for this work was
provided by the NSF/NIH Smart and Connected Health pro-
gram (IIS-1407282). E.S.is supported in part by NSF Grants
IIS-1253598, CNS-1218432, CCF-1423064, CCF-1438992.

References
Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J.,

Poyer, F., Duriez, C., Delingette, H., Grisoni, L.,
et al. 2007. SOFA - an Open Source Framework for
Medical Simulation. In MMVR 15, IOS Press.

Baker, S. R. 2014. Local Flaps in Facial Reconstruction
(3rd ed.). Saunders.

Bro-nielsen, M., and Cotin, S. 1996. Real-time Volu-
metric Deformable Models for Surgery Simulation using

43:10 • N. Mitchell et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Example Plat.
Total
Voxels

Grid
Voxels

Mesh
Voxels

Blocks
Newton
Iteration
(s)

Update
State
(ms)

Add
Force
(ms)

Add
Differ.
(ms)

Compact
(ms)

UnCompact
(ms)

Dufourmentel
Mouly

Xeon 47689 47206 483 8821 0.3630 1.5 1.4 1.6 0.4 0.6
294248 294015 233 47681 2.0648 7.8 5.1 4.2 2.1 3.0

Phi 47689 47206 483 8821 0.4259 1.3 1.5 0.9 0.1 2.0
294248 294015 233 47681 0.7349 2.8 3.3 2.2 0.7 4.7

Rhomboid
Flap

Xeon 48529 47203 1326 6909 0.1620 1.1 0.9 0.7 0.2 0.4
879571 877362 2209 112302 2.4131 18.4 9.6 9.0 3.2 4.0

Phi 48529 47203 1326 6909 0.3735 1.3 1.4 1.0 0.1 1.5
879571 877362 2209 112302 1.1323 5.3 6.2 3.9 1.2 9.6

ZPlasty
Xeon 54003 49306 3697 6943 0.2293 1.2 0.5 0.9 0.3 0.5

960810 957908 2902 127070 2.7707 20.5 9.3 10.1 3.6 4.5

Phi 54003 49306 3697 6943 0.3814 1.3 1.4 1.1 0.1 1.5
960810 957908 2902 127070 1.2401 5.9 6.8 4.3 1.3 10.8

Human Xeon 2006903 2006903 0 265078 12.112 35.9 21.5 20.8 8.4 12.0
Phi 2006903 2006903 0 265078 3.9608 11.4 16.3 7.8 3.3 16.2

Table 1: Performance results for various examples. Examples run on the Xeon platform used a 6-core Intel Xeon CPU
E5-1650 machine with 64 GB of memory, while the Phi examples ran on a 60-core Xeon Phi 5110P card with 8GB of memory.
All surgical examples were run with 50 conjugate gradient iterations while the human example was run with 100 iterations.

Finite Elements and Condensation. In Computer Graph-
ics Forum, 57–66.

Cavusoglu, M. C., Goktekin, T. G., and Tendick, F.
2006. GiPSi: A Framework for Open Source/Open Ar-
chitecture Software Development for Organ-Level Surgi-
cal Simulation. Information Technology in Biomedicine,
IEEE Transactions on 10, 2, 312–322.

Chen, D. T., and Zeltzer, D. 1992. Pump It Up: Com-
puter Animation of a Biomechanically Based Model of
Muscle Using the Finite Element Method. SIGGRAPH
Comput. Graph. 26, 2 (July), 89–98.

Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L.,
Hauser, K. K., Goldberg, K., Shewchuk, J. R., and
O’Brien, J. F. 2009. Interactive Simulation of Surgical
Needle Insertion and Steering. ACM Trans. Graph. 28, 3
(July), 88:1–88:10.

Courtecuisse, H., and Allard, J. 2009. Parallel Dense
Gauss-Seidel Algorithm on Many-Core Processors. IEEE
CS Press, HPCC ’09, 139–147.

De, S., and Bathe, K. 2000. The method of finite spheres.
Computational Mechanics 25 , 329–345.

De, S., Kim, J., Lim, Y.-J., and Srinivasan, M. A.
2005. The point collocation-based method of finite spheres
(PCMFS) for real time surgery simulation. Computers &
Structures 83, 17 - 18, 1515 – 1525.

Dick, C., Georgii, J., and Westermann, R. 2011. A
Hexahedral Multigrid Approach for Simulating Cuts in
Deformable Objects. IEEE Transactions on Visualization
and Computer Graphics 17, 11, 1663–1675.

Fan, Y., Litven, J., and Pai, D. K. 2014. Active Volu-
metric Musculoskeletal Systems. ACM Trans. Graph. 33,
4 (July), 152:1–152:9.

Gallagher, A. G., Ritter, E. M., Champion, H., Hig-
gins, G., Fried, M. P., Moses, G., Smith, C. D.,
and Satava, R. M. 2005. Virtual Reality Simulation

for the Operating Room: Proficiency-Based Training as
a Paradigm Shift in Surgical Skills Training. Annals of
Surgery 241, 2.

Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F.
2004. A Method for Animating Viscoelastic Fluids. ACM
Trans. Graph. 23, 3 (Aug.), 463–468.

Hermann, E., Raffin, B., and Faure, F. 2009. Interac-
tive Physical Simulation on Multicore Architectures. Eu-
rographics Association, EG PGV’09, 1–8.

Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible
Finite Elements for Robust Simulation of Large Deforma-
tion. Eurographics Association, SCA ’04, 131–140.

Irving, G., Schroeder, C., and Fedkiw, R. 2007.
Volume Conserving Finite Element Simulations of De-
formable Models. ACM Transactions on Graphics (SIG-
GRAPH Proc.) 26, 3.

James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate
Real Time Deformable Objects. ACM Press/Addison-
Wesley Publishing Co., SIGGRAPH ’99, 65–72.

Jerabkova, L., Bousquet, G., Barbier, S., Faure, F.,
and Allard, J. 2010. Volumetric modeling and interac-
tive cutting of deformable bodies. Progress in Biophysics
and Molecular Biology 103, 2-3 (Dec.), 217–224. Special
Issue on Biomechanical Modelling of Soft Tissue Motion.

Jeřábková, L., and Kuhlen, T. 2009. Stable Cutting
of Deformable Objects in Virtual Environments Using
XFEM. IEEE Comput. Graph. Appl. 29, 2, 61–71.

Joshi, P., Meyer, M., DeRose, T., Green, B., and
Sanocki, T. 2007. Harmonic Coordinates for Charac-
ter Articulation. ACM Trans. Graph. 26, 3 (July).

Kaufmann, P., Martin, S., Botsch, M., and Gross,
M. 2009. Flexible Simulation of Deformable Models Using
Discontinuous Galerkin FEM. Graph. Models 71, 4 (July),
153–167.

GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures • 43:11

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

Kavan, L., Collins, S., Žára, J., and O’Sullivan,
C. 2008. Geometric Skinning with Approximate Dual
Quaternion Blending. ACM Trans. Graph. 27, 4 (Nov.),
105:1–105:23.

Kharevych, L., Mullen, P., Owhadi, H., and Desbrun,
M. 2009. Numerical Coarsening of Inhomogeneous Elastic
Materials. ACM Trans. Graph. 28, 3 (July), 51:1–51:8.

Kim, J., and Pollard, N. S. 2011. Fast Simulation
of Skeleton-driven Deformable Body Characters. ACM
Trans. Graph. 30, 5 (Oct.), 121:1–121:19.

Kim, J., Choi, C., De, S., and Srinivasan, M. A. 2007.
Virtual surgery simulation for medical training using
multi-resolution organ models. The International Jour-
nal of Medical Robotics and Computer Assisted Surgery 3,
2, 149–158.

Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013.
Thin Skin Elastodynamics. ACM Trans. Graph. 32, 4
(July), 49:1–49:10.

Lindblad, A., and Turkiyyah, G. 2007. A Physically-
based Framework for Real-time Haptic Cutting and In-
teraction with 3D Continuum Models. ACM, SPM ’07,
421–429.

Marchal, M., Allard, J., Duriez, C., and Cotin, S.
2008. Towards a Framework for Assessing Deformable
Models in Medical Simulation. In ISBMS ’08, P. J. E.
Fernando Bello, Ed., vol. 5104 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 176–184.

McAdams, A., Sifakis, E., and Teran, J. 2010. A Par-
allel Multigrid Poisson Solver for Fluids Simulation on
Large Grids. Eurographics Association, SCA ’10, 65–74.

McAdams, A., Zhu, Y., Selle, A., Empey, M., Tam-
storf, R., Teran, J., and Sifakis, E. 2011. Efficient
Elasticity for Character Skinning with Contact and Col-
lisions. ACM Trans. Graph. 30, 4 (July), 37:1–37:12.

Mendoza, C., and Laugier, C. 2003. Simulating Soft
Tissue Cutting using Finite Element Models. vol. 1 of
ICRA ’03, IEEE, 1109–1114.

Molino, N., Bao, Z., and Fedkiw, R. 2004. A Vir-
tual Node Algorithm for Changing Mesh Topology During
Simulation. ACM Trans. Graph. 23, 3 (Aug.), 385–392.

Müller, M., Teschner, M., and Gross, M. 2004.
Physically-Based simulation of Objects Represented by
Surface Meshes. CGI ’04, 156–165.

Nesme, M., Payan, Y., and Faure, F. 2006. Animating
Shapes at Arbitrary Resolution with Non-Uniform Stiff-
ness. EG VRIPHYS ’06, Eurographics.

Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F.
2009. Preserving Topology and Elasticity for Embedded
Deformable Models. ACM Trans. Graph. 28, 3 (July),
52:1–52:9.

Nienhuys, H.-W., and van der Stappen, A. F. 2001. A
Surgery Simulation Supporting Cuts and Finite Element
Deformation. MICCAI ’01, Springer, 145–152.

O’Brien, J., and Hodgins, J. 1999. Graphical Model-
ing and Animation of Brittle Fracture. In Proc. of SIG-
GRAPH 1999, 137–146.

Patterson, T., Mitchell, N., and Sifakis, E. 2012. Sim-
ulation of Complex Nonlinear Elastic Bodies Using Lat-
tice Deformers. ACM Trans. Graph. 31, 6 (Nov.), 197:1–
197:10.

Pieper, S. D., Laub Jr, D. R., and Rosen, J. M. 1995.
A Finite-Element Facial Model for Simulating Plastic
Surgery. Plastic and Reconstructive Surgery 96, 5, 1100–
1105.

Rivers, A., and James, D. 2007. FastLSM: Fast lattice
shape matching for robust real-time deformation. ACM
Transactions on Graphics (SIGGRAPH Proc.) 26, 3.

Sifakis, E., and Barbic, J. 2012. FEM Simulation of
3D Deformable Solids: A Practitioner’s Guide to Theory,
Discretization and Model Reduction. In ACM SIG. 2012
Courses, ACM, SIGGRAPH ’12, 20:1–20:50.

Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Ar-
bitrary Cutting of Deformable Tetrahedralized Objects.
Eurographics Association, SCA ’07, 73–80.

Simbionix USA Corporation, 2002–2014. Gastrointesti-
nal Simulator - GI Mentor Simbionix. http://simbionix.
com/simulators/gi-bronch-gi-mentor.

Simbionix USA Corporation, 2002–2014. Laparoscopic
Simulator - LAP Mentor Simbionix. http://simbionix.
com/simulators/lap-mentor.

Sin, F., Schroeder, D., and Barbic, J. 2013. Vega:
Non-Linear FEM Deformable Object Simulator. Comput.
Graph. Forum 32, 1, 36–48.

Sueda, S., Kaufman, A., and Pai, D. K. 2008. Muscu-
lotendon Simulation for Hand Animation. ACM Trans.
Graph. 27, 3 (Aug.), 83:1–83:8.

Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw,
R. 2003. Finite Volume Methods for the Simulation of
Skeletal Muscle. SCA ’03, 68–74.

Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005.
Robust Quasistatic Finite Elements and Flesh Simulation.
Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp.
on Comput. Anim., 181–190.

Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing,
V., Lau, C., and Fedkiw, R. 2005. Creating and
Simulating Skeletal Muscle from the Visible Human Data
Set. Visualization and Computer Graphics, IEEE Trans-
actions on 11, 3, 317–328.

Terzopoulos, D., and Fleischer, K. 1988. Modeling In-
elastic Deformation: Viscolelasticity, Plasticity, Fracture.
SIGGRAPH Comput. Graph. 22, 4 (June), 269–278.

Terzopoulos, D., Platt, J., Barr, A., and Fleischer,
K. 1987. Elastically Deformable Models. SIGGRAPH
Comput. Graph. 21, 4 (Aug.), 205–214.

Wang, X. C., and Phillips, C. 2002. Multi-weight En-
veloping: Least-squares Approximation Techniques for
Skin Animation. ACM, SCA ’02, 129–138.

Wojtan, C., and Turk, G. 2008. Fast Viscoelastic Behav-
ior with Thin Features. ACM Trans. Graph. 27, 3 (Aug.),
47:1–47:8.

Zhao, Y., and Barbič, J. 2013. Interactive Authoring
of Simulation-Ready Plants. ACM Trans. on Graphics
(SIGGRAPH 2013) 32, 4, 84:1–84:12.

43:12 • N. Mitchell et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 43, Publication Date: August 2015

http://simbionix.com/simulators/gi-bronch-gi-mentor
http://simbionix.com/simulators/gi-bronch-gi-mentor
http://simbionix.com/simulators/lap-mentor
http://simbionix.com/simulators/lap-mentor

