
mjb – May 15, 2013 OpenGL Lighting 1

OpenGL Lighting Made (Somewhat) Easier

Mike Bailey
Oregon State University

If you’ve tried using the GLUT solid objects so far, you have noticed that they turn out to be big colored
blobs on the screen, like the left-most image shown here. This is because you have given them no
knowledge of lighting behaviors. What we need is a lighting model, that is, some mathematics that tells us
how bright or dim different parts of a surface will be given some scene lights. The typical computer graphics
lighting model is based on the diagram below:

L
E

  

n R

mjb – May 15, 2013 OpenGL Lighting 2

The light has 3 color components: red, green, and blue.
The object material’s ability to reflect light has 3
components: red, green, and blue. These are pair-wise
multiplied for ambient, diffuse, and specular to see how
much of each component is re-transmitted by the object.

Red = LR*MR
Green = LG*MG
Blue = LB*MB

These three equations are performed separately for
ambient, diffuse, and specular. The diffuse product is then
multiplied by cos() and the specular component is
multiplied by coss().

If there is one light and one material, the following things
can be set independently:

• Global scene ambient red, green, blue
• Light position: x, y, z
• Light ambient red, green, blue
• Light diffuse red, green, blue
• Light specular red, green, blue
• Material reaction to ambient red, green, blue
• Material reaction to diffuse red, green, blue
• Material reaction to specular red, green, blue
• Material specular shininess

This makes for 25 things that can be set for just one light and one material! While many combinations are
possible, some make more sense than others.

Ways to Simplify Too Many Options

1. Set the ambient light globally using glLightModelfv(GL_LIGHT_MODEL_AMBIENT, *). Set it to

some low intensity of white.

2. Set the light’s ambient component to zero.

3. Set the light’s diffuse and specular components to the full color of the light.

4. Set each material’s ambient and diffuse to the full color of the object.

5. Set each material’s specular component to some fraction of white.

mjb – May 15, 2013 OpenGL Lighting 3

Examples

Point light at the eye, smooth shading, shiny surfaces

Spot light (red), point lights (green, blue) bouncing through the scene

mjb – May 15, 2013 OpenGL Lighting 4

Recall that lighting really enhances the appearance of volume data

float White[] = { 1.,1.,1.,1. };

// utility to create an array from 3 separate values:

float *
Array3(float a, float b, float c)
{
 static float array[4];

 array[0] = a;
 array[1] = b;
 array[2] = c;
 array[3] = 1.;
 return array;
}

// utility to create an array from a multiplier and an array:

float *
MulArray3(float factor, float array0[3])
{
 static float array[4];

 array[0] = factor * array0[0];
 array[1] = factor * array0[1];
 array[2] = factor * array0[2];
 array[3] = 1.;
 return array;
}

void
Display(void)
{

<< set the viewport and the viewing volume as usual >>

 // define some of the lighting parameters:
 // (these could have gone in InitGraphics(), because they
 // do not change)

mjb – May 15, 2013 OpenGL Lighting 5

 glMaterialfv(GL_BACK, GL_AMBIENT, MulArray3(.4, White));
 glMaterialfv(GL_BACK, GL_DIFFUSE, MulArray3(1., White));
 glMaterialfv(GL_BACK, GL_SPECULAR, Array3(0., 0., 0.));
 glMaterialf (GL_BACK, GL_SHININESS, 5.);
 glMaterialfv(GL_BACK, GL_EMISSION, Array3(0., 0., 0.));

glMaterialfv(GL_FRONT, GL_EMISSION, Array3(0., 0., 0.));

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, MulArray3(.2, White));

 glLightfv(GL_LIGHT0, GL_AMBIENT, Array3(0., 0., 0.));
 glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.);
 glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.);

 // this is here because we are going to do object
 // (and thus normal) scaling:

 glEnable(GL_NORMALIZE);

 // these lighting calls need to be here since they
 // get changed via the pop-up menus:

 glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, TwoSide);
 if(Attenuate == NONE)
 glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.);
 else
 glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.20);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, LightColor);
 glLightfv(GL_LIGHT0, GL_SPECULAR, LightColor);
 if(Shiny == DULL)
 {
 glMaterialf (GL_FRONT, GL_SHININESS, 2.);
 glMaterialfv(GL_FRONT, GL_SPECULAR, MulArray3(.5, White));
 }
 else
 {
 glMaterialf (GL_FRONT, GL_SHININESS, 8.);
 glMaterialfv(GL_FRONT, GL_SPECULAR, MulArray3(.7, White));
 }

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // translate the object into the viewing volume:

 gluLookAt(XEYE, YEYE, ZEYE, 0., 0., 0., 0., 1., 0.);

 // if we do this, then the light will be at the eye:

 if(Light == AT_EYE)
 {
 glLightfv(GL_LIGHT0, GL_POSITION, Array3(XEYE, YEYE, ZEYE));
 }

 // if we do this, then the light will be stationary at the

// origin of the scene:

 if(Light == AT_ORIGIN)
 {
 glLightfv(GL_LIGHT0, GL_POSITION, Array3(0., 0., 0.));
 }

mjb – May 15, 2013 OpenGL Lighting 6

 // perform the rotations and scaling about the origin:

 glRotatef(Xrot, 1., 0., 0.);
 glRotatef(Yrot, 0., 1., 0.);
 glScalef(Scale, Scale, Scale);

 // if we do this, then the light will be at the

// origin of the scene and will move with the scene:

 if(Light == WITH_SCENE)
 {
 glLightfv(GL_LIGHT0, GL_POSITION, Array3(0., 0., 0.));
 }

 // possibly draw the axes:

if(AxesOnOff == ON)
{

glDisable(GL_LIGHTING);
glShadeModel(GL_FLAT);
glCallList(AxesList);

}

 // specify shading mode:

 glShadeModel(GL_SMOOTH);

 // enable hardware lighting:

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);

 // draw the objects:

 for(int i = 0; i < 8; i++)
 {
 glCallList(ObjectLists[i]);
 }

 // swap the double-buffered framebuffers:

 glutSwapBuffers();

 // be sure the graphics buffer has been sent:

 glFlush();
}

mjb – May 15, 2013 OpenGL Lighting 7

void
InitLists()
{
 float rgb[3]; // the object color

 if(Debug)
 fprintf(stderr, "InitLists\n");

 // create the objects:

 ObjectLists[0] = glGenLists(1);
 glNewList(ObjectLists[0], GL_COMPILE);

 << set the rgb[] array here >>

 glMaterialfv(GL_FRONT, GL_AMBIENT, MulArray3(1., rgb));
 glMaterialfv(GL_FRONT, GL_DIFFUSE, MulArray3(1., rgb));
 glPushMatrix();
 glTranslatef(x, y, z);
 glutSolidSphere(1.0, 20, 20);
 glPopMatrix();
 glEndList();

 . . .

Notes:

 The light positions are in homogeneous coordinates, that is, the positions are expressed as
4-element arrays: x, y, z, w

 As homogeneous coordinates, the actual light position is
x/w, y/w, z/w

 For a light position at infinity (that is, a directional, or parallel, light source), set its w = 0.

 The light position gets multiplied by the current ModelView matrix before it is used. This is

so that lights can be attached to objects (e.g., headlights) and transformed in the same way.

