
1

Oregon State
University mjb – February 26, 2008

The OpenGL Shading Language (GLSL)

Mike Bailey

Oregon State University

Oregon State
University mjb – February 26, 2008

• Created ~1983 by Rob Cook and Loren Carpenter from LucasFilm (later
spun off as Pixar)

• Big novelty – shaders! Refers to a piece of user-written code that gets
embedded in the rendering process somewhere.

• You have seen these many times already. E.g., a checkerboard pattern
on a surface, treads on a bicycle tire, light shining through windowpanes
projected on the floor, procedural marble textures. The Beauty and the
Beast ballroom scene has hundreds of shaders in it.

• The name comes from a take-off on “Walkman”

• Won a Technical Academy Award in 2001

In the Beginning:
RenderMan Shaders

PrmanScene
Description

Shaders

Image(s)

2

Oregon State
University mjb – February 26, 2008

The Goal : Place Olympic Rings on a Sphere

How could you do this in stock OpenGL?

Oregon State
University mjb – February 26, 2008

surface
olympicsurf(

float radius = 0.160, /* outer radius */
thick = 0.050 /* dist to inner radius */

)
{

float r; /* radius to center of ring */
point Nf; /* norward-facing surface norma l*/
point V; /* vector toward eye */
color C; /* new color */
color O; /* new opacity */

/* transparency possibilities: */

color clear = color (0., 0., 0.);
color opaque = color (1., 1., 1.);

/* colors of the circles: */

color blue = color "rgb" (0,0,1);
color yellow = color "rgb" (1,1,0);
color black = color "rgb" (0,0,0);
color green = color "rgb" (0,1,0);
color red = color "rgb" (1,0,0);
color white = color "rgb" (1,1,1);

/* centers of the circles in (s,t) space: */

point pblue = point (0.250, 0.600, 0.0);
point pyellow = point (0.375, 0.400, 0.0);
point pblack = point (0.500, 0.600, 0.0);
point pgreen = point (0.625, 0.400, 0.0);
point pred = point (0.750, 0.600, 0.0);

3

Oregon State
University mjb – February 26, 2008

/* where we are right now in (s,t) space: */

point here = point (s, t, 0.0);

/* default: color & opacity are whatever was given by the program: */

C = Cs;
O = Os;

/* are we within the blue ring? */

r = distance(here, pblue);
if((radius-thick) <= r && r <= radius)
{

C = blue;
O = opaque;

}

/* are we within the yellow ring? */

r = distance(here, pyellow);
if((radius-thick) <= r && r <= radius)
{

C = yellow;
O = opaque;

}

. . .

Oregon State
University mjb – February 26, 2008

Surface shader only

Surface and displacement shaders

4

Oregon State
University mjb – February 26, 2008

Vertex Uniform Variables:
gl_ModelViewMatrix mat4
gl_ModelViewProjectionMatrix mat4
gl_Projectionmatrix mat4
gl_NormalMatrix mat4
gl_TextureMatrix mat4

Per-Vertex Attribute Variables:
gl_Vertex vec4
gl_Normal vec3
gl_Color vec4
gl_MultiTexCoord0 vec4
gl_MultiTexCoord1 vec4
. . .
Per-Vertex Output Variables:
gl_Position vec4
gl_PointSize float
gl_ClipVertex vec4

Fragment Varying Input Variables:
gl_Color vec4
gl_SecondaryColor vec4
gl_TexCoord vec4 []
gl_FogFragCoord float

Fragment Output Variables:
gl_FragColor vec4
gl_FragDepth float

How you expose OpenGL-isms: The Built-In Variables

Oregon State
University mjb – February 26, 2008

sin(radians);
cos(radians);
atan(y, x);
pow(x, toTheY);
log2(x);
sqrt(x);
inversesqrt(x);
abs(x);
sign(x);
fract(x);
mod(x, y);
min(x, y);
max(x, y);
clamp(x, min, max);
mix(x, y, t);
step(edge, x);
smoothstep(edge0, edge1, x);
length(x);
distance(p0, p1);
dot(x, y);
cross(x, y);
normalize(x);
ftransform();
faceforward(N, I, Nref);
reflect(I, N);
noise(x);

How you expose OpenGL-isms: The Built-In Functions

5

Oregon State
University mjb – February 26, 2008

Stripes Shader Example
varying vec4 Color;
varying float X;

void
main(void)
{

Color = gl_Color;
X = gl_Vertex.x;
LightIntensity = … ;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

varying float X;
varying vec4 Color;
uniform float A;
uniform float P;

void
main(void)
{

vec4 WHITE = vec4(1., 1., 1., 1.);
float f = fract(A*X);
gl_FragColor = Color;
if(f < P)

glFragColor = WHITE;

gl_FragColor.rgb *= LightIntensity;
}

Stripes.vert

Stripes.frag

Oregon State
University mjb – February 26, 2008

Color, X

Color, X; Color, X; Color, X; Color, X; Color, X; Color, X; Color, X;
Color, X; Color, X; Color, X; Color, X; Color, X; Color, X; Color, X;
Color, X; Color, X; Color, X; Color, X; Color, X; Color, X; Color, X;
Color, X; Color, X; Color, X; Color, X; Color, X; Color, X; Color, X;
Color, X; Color, X; Color, X; Color, X; Color, X; Color, X; Color, X;

Varying Variables are Interpolated
by the Rasterizer

Fragment
Processor

Rasterizer

6

Oregon State
University mjb – February 26, 2008

Stripes Shader Example

A = 2.
P = 0.25

A = 1.
P = 0.1

A = 1.
P = 0.25

Oregon State
University mjb – February 26, 2008

Smoothly Transitioning the Stripes

float t = smoothstep(0.5-P-Tol, 0.5-P+Tol, f) - smoothstep(0.5+P-Tol, 0.5+P+Tol, f);
gl_FragColor = mix(WHITE, Color, t);
gl_FragColor.rgb *= LightIntensity;

7

Oregon State
University mjb – February 26, 2008

Hyperbolic Geometry

Oregon State
University mjb – February 26, 2008

Examples

8

Oregon State
University mjb – February 26, 2008

What Does All of This Have to do
with Visualization?

Oregon State
University mjb – February 26, 2008

Cartesian: Dome:

Dome Shader Example:

9

Oregon State
University mjb – February 26, 2008

Dome:

Oregon State
University mjb – February 26, 2008

10

Oregon State
University mjb – February 26, 2008

Don’t Send Colors to the GPU,
Send the Raw Data and let the GPU Assign the Colors

Use the GPU turn the data into graphics on-the-fly

Visualization by Chris Janik

Oregon State
University mjb – February 26, 2008

Bump-mapping to Create Apparent Surface Detail

Rock A Dropped Rock B Dropped Both Rocks Dropped

Use the GPU to create the appearance of height without geometrically creating height

11

Oregon State
University mjb – February 26, 2008

Terrain Height Bump-Mapping

Visualization by Nick Gebbie

Oregon State
University mjb – February 26, 2008

GPU-Based Dynamic Image Decompression plus Pan and Zoom

Use the GPU to work with aerial and satellite images that were
originally larger than what will fit in graphics card memory

Visualization by Dan Moffitt

12

Oregon State
University mjb – February 26, 2008

Visualization by Dan Moffitt

GPU-Based Dynamic Image Decompression plus Pan and Zoom

Oregon State
University mjb – February 26, 2008

Sharpening

13

Oregon State
University mjb – February 26, 2008

Edge Detection

Oregon State
University mjb – February 26, 2008

Non-photorealistic Rendering

Use the GPU to enhance scientific
and engineering illustration

14

Oregon State
University mjb – February 26, 2008

Image Manipulation Example – Where is it Likely to Snow?

Visible Infrared Water vapor

Oregon State
University mjb – February 26, 2008

Visualization: Point Clouds

Can
change:

• Color

• Alpha

• Pointsize

Use the GPU to interactively change the appearance of 3D data

15

Oregon State
University mjb – February 26, 2008

Visualization: Cutting Planes

Oregon State
University mjb – February 26, 2008

Visualization: Volume Rendering

16

Oregon State
University mjb – February 26, 2008

Visualization: Extruding Shapes Along Flow Lines

Use the GPU to show flow information

Add moving “humps” to
create a peristaltic effect

Oregon State
University mjb – February 26, 2008

Visualization: 2D Line Integral Convolution

At each fragment:
1. Find the flow field

velocity vector there

2. Follow that vector in
both directions

3. Blend in the colors at the
other fragments along
that vector

17

Oregon State
University mjb – February 26, 2008

Visualization: 3D Line Integral Convolution

Visualizations by Vasu Lakshmanan

Oregon State
University mjb – February 26, 2008

Finite Automata Computations in the GPU

We implemented John Conway’s Game of
Life – and achieved 300M computed
pixels per second

Use the GPU as a general-purpose
computer to compute the time steps of

a simulation

18

Oregon State
University mjb – February 26, 2008

Conclusions

• GPU programming is one of the most exciting things that has ever happened to CG

• It enables application developers to have very tight control over graphics effects
without sacrificing display performance

• It was really made for game development, but it has significant applications in
visualization, imaging, and scientific computing

• OSU is one of the few universities that has an organized course in GPU Programming –
CS 519 – next offered in Spring Quarter 2008. The prerequisite is having taken any of
the other CS graphics classes. (We jump right into the graphics pipeline.)

