
5/7/2013

1

Performance Graphics Programming

Mike Bailey

mjb@cs.oregonstate.edu

mjb – May 7, 2013

Oregon State University
Computer Graphics

Oregon State University

Motivation

Why are we covering this?
There reaches a point where the amount of scientific data you are trying to
display overwhelms the graphics card’s abilities. At that point, you start to
wonder if there are ways you can speed-up your display without buying a new
graphics card. This puts you in the same league as game developers. 

Two Approaches

mjb – May 7, 2013

Oregon State University
Computer Graphics

There are two major approaches to performance graphics programming:

1. Eliminate large portions of the scene so that the graphics card never
sees them

2. Draw the scene faster

Eliminating Scene Detail: Bounding Volumes

Quickly pre-eliminate as much scenery as possible using the CPU.

Cull based on comparing bounding volumes with the viewing frustum
-- try to achieve quick trivial rejections.

mjb – May 7, 2013

Oregon State University
Computer Graphics

There is a dividing line here. If it takes too much computation time to eliminate a section of
the scene, it might be better to display it as-is and let the graphics hardware decide what’s
visible and what’s not.

The Cohen-Sutherland Algorithm

1. Determine a clip code for each of the 8 vertices of
the bounding box.

2. If you ‘inclusive-or’ (|) all 8 clip codes together

and get 0, then the bounding box is completely
inside the viewing volume

3. If you ‘and’ (&) all 8 clip codes together and get

!0 then the bounding box is completely outside

mjb – May 7, 2013

Oregon State University
Computer Graphics

!0, then the bounding box is completely outside
the viewing volume.

4. Sometimes a bounding sphere or bounding
cylinder makes more sense. It depends on what
bounding geometry most tightly fits your scene.

5. Hierarchical Culling -- break big things into
smaller things so that more can be cleanly culled.

1

2

2

Remove Parts of the Scene
While Making the Player Think it is Part of the Game

mjb – May 7, 2013

Oregon State University
Computer Graphics

Test if Something is within a Certain Angle of the Viewing Direction

V, the viewing vector

f, the Field of View angle

P, the point in question

mjb – May 7, 2013

Oregon State University
Computer Graphics

E, the eye position

P, is in the viewing volume if: ˆ ()
cos

2

V P E f

P E

      


This can be pre-computed

5/7/2013

2

Eliminating Scene Detail: Fog Tricks

• Use fog to cover up a close-in far clipping plane – fog and haze can hide the
fact that you are far-clipping away a lot of scene detail. And you thought it
was just part of the game… :-)

• Also, an object partly in the haze can be displayed with less scene detail

• Another way to get away with a close-in far clipping plane: bring distant
detail in with alpha blending (transparency).

mjb – May 7, 2013

Oregon State University
Computer Graphics

University of Michigan

Object’s
Real

Color

Fog’s
Color

Far Clipping
PlaneEye

Minimize How Much Data Needs to be Sent Across the Bus

• Use quad strips instead of quads – transform less points

• Use triangle strips instead of triangles, and instead of quad anythings. (The
vendors say this, but I am not sure it is true…)

• Better: use vertex arrays – only transform each vertex once

• Best: use vertex buffer objects – vertex data gets stored on the graphics card.

mjb – May 7, 2013

Oregon State University
Computer Graphics

• Maximize the size of vertex array/vertex buffer object blocks
Small batches of geometry can kill performance
100 triangles/batch should be a minimum
>= 500 would be better
Some say they try to use a size of 10,000 vertices or more

GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ -1., 1., -1. },
{ 1., 1., -1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ -1., 1., 1. },
{ 1., 1., 1. }

};

Vertex Buffers Store Arrays in GPU Memory

0 1

32

4 5

76

mjb – May 7, 2013

Oregon State University
Computer Graphics

};

GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
{ 1., 0., 0. },
{ 0., 1., 0. },
{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0., 1., 1. },
{ 1., 1., 1. },

};

GLuint CubeIndices[][4] =
{

{ 0, 2, 3, 1 },
{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0, 1, 5, 4 }

};

Using a Vertex Buffer Object Class

Blob.glBegin(GL_TRIANGLES); // can be any of the OpenGL topologies
Blob.glColor3f(r0, g0, b0);
Blob.glVertex3f(x0, y0, z0);
. . .

Bl b lE d()

VertexBufferObject Blob();
Blob.CollapseCommonVertices(true);

Setting Up:

Filling:

mjb – May 7, 2013

Oregon State University
Computer Graphics

Blob.glEnd();

Blob.Draw();

Drawing:

Eliminating Scene Detail: Level of Detail

• How far away is the object from the viewer? If it’s far away, you don’t need to use as
much geometric detail to display it. Occlusion querying can help. (Occlusion query lets
you pretend-render a bounding box, and the graphics processor will tell you how many
pixels it would have occupied.)

• Don’t use up your “polygon budget” if you
don’t need to

• Keep several representations for different
components of the scene and switch between

mjb – May 7, 2013

Oregon State University
Computer Graphics

them.

• Example #1: Different resolutions of spheres

• Example #2: Polygon mesh decimation

Drawing the Scene Faster:
Four Major Performance Bottleneck Locations

mjb – May 7, 2013

Oregon State University
Computer Graphics

5/7/2013

3

1. The computer – if the CPU cannot compute the data, read
the data, uncompress the data, or call the graphics
routines fast enough, then it doesn’t matter how fast your
graphics card is.

2. The bus – a slow bus will choke down transmission of
graphics from the CPU to the graphics card.

Drawing the Scene Faster:
Four Major Performance Bottleneck Locations

mjb – May 7, 2013

Oregon State University
Computer Graphics

Type of
Board

Speed to
the Board

Speed from
the Board

PCI 132 Mb/sec 132 Mb/sec

AGP 8X 2 Gb/sec 264 Mb/sec

PCI Express 4 Gb/sec 4 Gb/sec

The Graphics Pipeline

Model
Transform

View
Transform

Projection
Transform

Viewport
Transform

Homogeneous
Division

Fragment

Per-vertex
Lighting

NDC

ECWC

MC

SC

CC

SC
SCSC

EC

Vertex Processing

mjb – May 7, 2013

Oregon State University
Computer Graphics

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates

Fragment
Processing,
Texturing,

Per-fragment
Lighting

Rasters
Ops

Rasterization

Framebuffer

SCSC

Rasterizer and Fragment Processing

3. The vertex processing – a graphics scene will bottleneck
here if it has lots of small primitives. This is often how
CAD-type applications are characterized.

4 Th t i d f t i (i i l

Drawing the Scene Faster:
Four Major Performance Bottleneck Locations

mjb – May 7, 2013

Oregon State University
Computer Graphics

4. The rasterizer and fragment processing (i.e., per-pixel
operations) – a graphics scene will bottleneck here if it has
a small number of large primitives. Games and flight
simulators generally work this way.

KnifeEdge

http://www.spec.org

Vertex Input

Vertex
Processing

Vertex
Processing

Vertex
Processing

Vertex
Processing

Vertex
Processing

Primitive Assembly

There is a Lot of Parallelism on a Graphics Card

mjb – May 7, 2013

Oregon State University
Computer Graphics

Rasterization

Fragment
Processing

Fragment
Processing

Fragment
Processing

Fragment
Processing

Fragment
Processing

Framebuffer

Drawing the Scene Faster: Minimize State Changes

• Minimize all state changes. Group similar-attribute
primitives (e.g., color) together.

• State: current setting of all OpenGL attributes, such as
color, lighting, texture, transformation, etc.

• Pipeline: graphics hardware is a multi-step process. It
is good for performance if you can keep all steps busy.

mjb – May 7, 2013

Oregon State University
Computer Graphics

• Changing state often causes the pipeline to
completely clear out before any new geometry can
enter, which kills performance.

Note: this sometimes contradicts the goals of object-oriented programming.

• Group like primitives in the same glBegin() – glEnd() or the same vertex buffer

• Disable lighting, or simulate it in a texture

• Use as few light sources as you can

• Use directional lights, not positional or spot

D ’t tt t li ht

Drawing the Scene Faster: Vertex Processing

mjb – May 7, 2013

Oregon State University
Computer Graphics

• Don’t attenuate light sources

• Use pre-unitized normals, call glDisable(GL_NORMALIZE), and don’t use glScalef()

• Use multiple levels of detail, depending on how much of the screen a set of primitives
occupies. Use occlusion testing to determine if this is necessary.

5/7/2013

4

Drawing the Scene Faster: Vertex Processing

• Pre-transform objects which are undergoing constant (“static”)
transformations. Don’t use a pile of glPushMatrix() - glRotatef() –
glCallList() – glPopMatrix() calls. E.g., your vector cloud.

Arrow() is setup correctly for this.

• Pre-compute as much geometry as you can, especially objects
involving trigonometry (e.g., spheres)

mjb – May 7, 2013

Oregon State University
Computer Graphics

g g y (g , p)

• Use display lists (some drivers implement them in host memory,
some in graphics card memory)

• Let one frame finish drawing while setting up to draw the next one,
i.e., don’t use glFinish().

sample.cpp is setup correctly for this.

Drawing the Scene Faster: Creative Texturing

• Reduces polygon count without apparent loss of detail

• Textures can be used in Level of Detail analysis

• Make “plywood sets” instead of 3D scene detail
E.g., a distant forest or mountains

mjb – May 7, 2013

Oregon State University
Computer Graphics

E.g., a distant forest or mountains

• Can bring in full 3D detail as you get closer

• Build lighting into the texture image, and then display it as a GL_REPLACE texture

• Render 3D scenes into an image and use it as a texture
This is referred to as “render-to-texture”.
E.g., creating the distant forest or mountains

Drawing the Scene Faster: Fragment Processing

• The fragment processing step in the pipeline takes all the information about a
specific pixel, and computes the final color of that pixel. Given the sheer number of
pixels in many scenes, this is a place that usually needs some speed-up.

• Use GL_FLAT shading

• Use unsigned bytes for pixel formats (not floating point, even though you can do
more with floating point pixel formats).

mjb – May 7, 2013

Oregon State University
Computer Graphics

g p p)

• Use Texture Objects (this pre-loads textures into graphics card memory)

• For fog and textures, use a glHint() of GL_FASTEST.

• Use fragment shaders

Drawing the Scene Faster: Shaders

Be aware that you can place your own code in the per-vertex, geometry-creating,
and per-fragment parts of the graphics hardware. This can allow you to move
operations to the graphics card that used to need to be on the CPU.

mjb – May 7, 2013

Oregon State University
Computer Graphics

If want to learn more about this, take the Shaders class!

Drawing the Scene Faster: Vertex Shaders

Create geometry from an equation. That is, start with a mesh of
points and displace each one according to a displacement equation.

mjb – May 7, 2013

Oregon State University
Computer Graphics

Add detail to geometry. Start with a simple object and add detail
depending on what is needed for how far you are zoomed in.

Drawing the Scene Faster: Geometry and Tessellation Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

5/7/2013

5

Create apparent geometry from an equation. Perturb the normals so that the
lighting makes it look like there is bumpy geometry (= “bump mapping”). This
has been used for mountains on a globe, ripples in a pond, etc.

Drawing the Scene Faster: Fragment Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

Create special surface effects, such as clouds, wood grain, marble, a screen, or corrosion

Drawing the Scene Faster: Fragment Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

You can also do interesting visualization things in shaders
and take advantage of GPU speed-ups:

Drawing the Scene Faster: Fragment Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

Edge detection for biological visualization Toon rendering for architectural visualization

You can also do interesting visualization things in shaders
and take advantage of GPU speed-ups:

Drawing the Scene Faster: Fragment Shaders

Mash-up of interpolated colors and contour lines

mjb – May 7, 2013

Oregon State University
Computer Graphics Volume rendering

You can also do interesting visualization things in shaders
and take advantage of GPU speed-ups:

Drawing the Scene Faster: Fragment Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

2D Line Integral Convolution

3D Line Integral Convolution

Streamtube

Drawing the Scene Faster: Benchmarking

• Sometimes, you just have to run your own timing tests

• Run timing tests by calling glFinish() before the drawing you wish to benchmark to completely
clear out the pipeline, and again right after the drawing you wish to benchmark (and before the
call to glutSwapBuffers()) to wait until all graphics have been processed.

• Definitely remove this for production runs !!

• Graphics cards today are really fast. Make your test size big so that the precision of the
system clock is not an issue.

glClear(. . .);

mjb – May 7, 2013

Oregon State University
Computer Graphics

• Be careful about just putting a for() loop around a set of code. Some compilers will optimize
that down to just one loop. If the time seems to be independent of the number of loops, fool
the compiler by translating the scene based on the loop index.

g ();
. . .
glFinish();
int t0 = glutGet(GLUT_ELAPSED_TIME);

<< All Graphics Calls except Swapping the Double Buffers>>

glFinish();
int t1 = glutGet(GLUT_ELAPSED_TIME);
. . .
glutSwapBuffers();
fprintf(stderr, "One display frame took %d milliseconds\n", t1 – t0);

5/7/2013

6

Benchmarking is worthwhile to do. You sometimes get exactly what you thought you’d
get. But, sometimes you get wildly unexpected results, such as this

Drawing the Scene Faster: Benchmarking

mjb – May 7, 2013

Oregon State University
Computer Graphics

Be sure to hold everything constant except for the one thing you are testing!

Daniel New

