
3/2/2015

1

Press Pre-Briefing
GDC 2015

Neil Trevett | Khronos President
NVIDIA Vice President Mobile Ecosystem

© Copyright Khronos Group 2015 - Page 1

All Materials Embargoed
Until Tuesday 3rd March, 12:01AM Pacific Time

Khronos Connects Software to Silicon

Open Consortium creating
ROYALTY-FREE, OPEN STANDARD
APIs for hardware acceleration

D fi i th d f Defining the roadmap for
low-level silicon interfaces
needed on every platform

Graphics, compute, rich media,
vision, sensor and camera

processing

Rigorous specifications AND
conformance tests for cross-

vendor portability

© Copyright Khronos Group 2015 - Page 2

p y

Acceleration APIs
BY the Industry

FOR the Industry

Well over a BILLION people use Khronos APIs
Every Day…

3/2/2015

2

Significant Khronos API Ecosystem Advances
• Reveal of Vulkan API – next generation graphics API

- Low overhead, high-efficiency graphics and compute on GPUs
- Formerly discussed as Next Generation OpenGL Initiative
- Reveal and demos at GDC – no formal specification yetReveal and demos at GDC no formal specification yet

• SPIR-V – paradigm shift to support both graphics and compute constructs
- Now will be used by both Vulkan AND OpenCL 2.1
- Provisional specification released

• OpenCL 2.1 provisional specification released
- C++ Kernel language, SPIR-V in core
- Provisional specification released

© Copyright Khronos Group 2015 - Page 3

- Provisional specification released

The Need for Vulkan

Ground-up design of a modern open
standard API for driving high-efficiency

graphics and compute on GPUs graphics and compute on GPUs
used across diverse devices

© Copyright Khronos Group 2015 - Page 4

In the twenty two years since OpenGL
was invented – the architecture of GPUs
and platforms has changed radically

GPUs being used for graphics, compute and vision
processing on a rapidly increasing diversity of platforms

– increasing the need for cross-platform standards

3/2/2015

3

Vulkan Explicit GPU Control

Application ApplicationComplex drivers lead to driver Simpler drivers for low-overhead

Traditional
graphics

drivers include
significant

context, memory
and error

management

pp

Direct GPU
Control

pp
responsible for

memory
allocation and

thread
management to

generate
command buffers

Error management is
always active

Layered architecture so validation
and debug layers can be unloaded

when not needed

Driver processes full
shading language source

Run-time only has to ingest SPIR-V
intermediate language

overhead and cross vendor
unpredictability

efficiency and cross vendor
portability

© Copyright Khronos Group 2015 - Page 5

GPU GPUSeparate APIs for desktop
and mobile markets

Unified API for mobile, desktop,
console and embedded platforms

Vulkan delivers the maximized performance and cross platform
portability needed by sophisticated engines, middleware and apps

Cross Platform Challenge
• An explicit API that is also cross-platform needs careful design

© Copyright Khronos Group 2015 - Page 6

One family
of GPUs

One GPU on
one OS

One OS All Modern Platforms and GPUs
A challenge that needs...
Participation of key players

Proven IP Framework
Battle-tested cooperative model

The drive to not let the 3D industry fragment

3/2/2015

4

Vulkan Multi-threading Efficiency

Command
Buffer

CPU
Thread

1. Multiple threads can construct Command Buffers in parallel
Application is responsible for thread management and synch

GPU

Command
Buffer

Command
Buffer

Command
Queue

CPU
Thread

CPU
Thread

CPU
Thread

© Copyright Khronos Group 2015 - Page 7

Command
Buffer

Command
Buffer

CPU
Thread

CPU
Thread 2. Command Buffers placed in Command

Queue by separate submission thread

Vulkan – Enhancing Driver Reliability

Streamlined API is
easier to implement

Cross-
vendor

Portability

and test

SPIR-V intermediate
language improves shader

Open source
conformance test source

© Copyright Khronos Group 2015 - Page 8

language improves shader
program portability and

reduces driver complexity

conformance test source
components for

community engagement

3/2/2015

5

Vulkan Tools Architecture
• Layered design for cross-vendor tools innovation and flexibility

- IHVs plug into a common, extensible architecture for code validation, debugging
and profiling during development without impacting production performance

Common Loader used to enable use of tools layers during debug• Common Loader used to enable use of tools layers during debug
- Cross-vendor API calls provide debug data

Vulkan-based Title

Production Path
(Performance)

Debug Layers can be
installed during Development

Interactive
Debugger

© Copyright Khronos Group 2015 - Page 9

IHV’s Installable Client
Driver

Vulkan’s Common Loader

Validation Layers

Debug Layers

Debug information via
standardized API calls

Vulkan Tools Ecosystem
• Extensible modular architecture

encourages many fine-grained layers - new
layers can be added easily

• Khronos encouraging open community of

Prototype Vulkan Debugger from Valve and LunarG

Khronos encouraging open community of
tools e.g. shader debugging

• Valve, LunarG, Codeplay and others are
already driving the development of open
source Vulkan tools

• Customized interactive debugging and
validation layers will be available together
with first drivers

© Copyright Khronos Group 2015 - Page 10

with first drivers

3/2/2015

6

SPIR-V Unleashes Language Innovation
• First open standard cross-API intermediate language for parallel compute and graphics

- Can natively represent Vulkan and OpenCL source languages
- Including full flow control, graphics and parallel constructs not in LLVM

• Fully specified Khronos-defined standardy p
- Khronos is working on creating SPIR-V <-> LLVM conversion tools

• Splitting the Compiler Chain enables parallel software/hardware innovation
- Front-ends for languages can access multiple production quality backends
- Back-ends using multicore, GPU, vector, VLIW or other technologies can reuse production

quality language frontends and abstractions
- Tooling – encourages innovation in advanced

program analysis and optimization of Front-end Languages

© Copyright Khronos Group 2015 - Page 11

program analysis and optimization of
programs in SPIR form

and Frameworks

Multiple Hardware
Architectures Backends

Tools

Standard
Portable
Intermediate
Representation

SPIR-V for Developers
• Developers can use same front-end compiler across multiple platforms

- Eliminating major source of cross-vendor portability

• Reduces runtime shader compilation time
Driver only has to process SPIR V not full source language- Driver only has to process SPIR-V not full source language

• Don’t have to ship shader source code
- Provides a measure of IP protection

• SPIR-V is core in OpenCL 2.1 AND Vulkan
- Exposes machine model for OpenCL 1.2, 2.0, 2.1 and Vulkan
- Supports OpenCL 1.2, 2.0, 2.1 kernel languages

S t GLSL h d l g g (d d l t)

© Copyright Khronos Group 2015 - Page 12

- Supports GLSL shader language (under development)

SIGNIFICANT OPPORTUNITY TO LEVERAGE AND CONVERGE
LANGUAGES FOR GRAPHICS AND COMPUTE

3/2/2015

7

Vulkan Language Ecosystem

GLSL
Shader Source

Future diversity in domain-
specific languages

Game Engines
Can flexibly target
SPIR-V and Vulkan

back-ends
GLSL will be first
shading language
supported by Vulkan

GLSL to SPIR-V
Translator

specific languages,
frameworks and tools

Khronos is considering
open sourcing compiler

front-ends

E.g. C++
Shading Language

supported by Vulkan

d

© Copyright Khronos Group 2015 - Page 13

Device X Device Y Device Z

Vulkan Runtime

SPIR-V supported in
Vulkan core

Ground-up Explicit API Redesign

Originally architected for graphics workstations
with direct renderers and split memory

Matches architecture of modern platforms
including mobile platforms with unified memory, tiled rendering

Driver does lots of work: state validation, dependency tracking,
error checking. Limits and randomizes performance

Explicit API – the application has direct, predictable control
over the operation of the GPU

Threading model doesn’t enable generation of graphics
commands in parallel to command execution

Multi‐core friendly with multiple command buffers
that can be created in parallel

Syntax evolved over twenty years – complex API choices can
obscure optimal performance path

Removing legacy requirements simplifies API design,
reduces specification size and enables clear usage guidance

© Copyright Khronos Group 2015 - Page 14

obscure optimal performance path reduces specification size and enables clear usage guidance

Shader language compiler built into driver.
Only GLSL supported. Have to ship shader source

SPIR‐V as compiler target simplifies driver and enables front‐end
language flexibility and reliability

Despite conformance testing developers must often handle
implementation variability between vendors

Simpler API, common language front‐ends, more rigorous
testing increase cross vendor functional/performance portability

3/2/2015

8

Vulkan Status
• Rapid progress since June 2014

- Significant proposals and IP contributions received from members

• Participants come from all segments of the graphics industry
Including an unprecedented level of participation from game engine ISVs- Including an unprecedented level of participation from game engine ISVs

• Initial specs and implementations expected this year
- Will work on any platform that supports OpenGL ES 3.1 and up

© Copyright Khronos Group 2015 - Page 15
Working Group Participants

OpenCL – Portable Heterogeneous Computing
• Portable Heterogeneous programming of diverse compute resources

- Targeting supercomputers -> embedded systems -> mobile devices

• One code tree can be executed on CPUs, GPUs, DSPs, FPGA and hardware
D i ll i t t t l d d b l k il bl - Dynamically interrogate system load and balance work across available processors

• OpenCL = Two APIs and Kernel language
- C Platform Layer API to query, select and initialize compute devices
- C Runtime API to build and execute kernels across multiple devices

OpenCL
Kernel
Code

OpenCL
Kernel
C d

OpenCL

© Copyright Khronos Group 2015 - Page 16

CodeKernel
Code

OpenCL
Kernel
Code

GPU

DSP CPU

CPUFPGA

HW

3/2/2015

9

OpenCL 2.1 Provisional Released!
• New OpenCL C++ kernel language based on a subset of C++14

- Significantly enhanced programmer productivity
- OpenCL C still supported to preserve kernel code investment

Support for the new Khronos SPIR V intermediate language in core• Support for the new Khronos SPIR-V intermediate language in core
- SPIR-V now used by both OpenCL 2.1 and the new Vulkan graphics API
- OpenCL 1.2 and 2.0 kernel languages also supported by SPIR-V

for backwards compatibility

D i titi i
Shared Virtual Memory

O d i di t h
3-component vectors

Additi l i f t
OpenCL C++ Shading language

© Copyright Khronos Group 2015 - Page 17

OpenCL 1.0
Specification

Dec08 Jun10
OpenCL 1.1

Specification

Nov11
OpenCL 1.2

Specification
OpenCL 2.0
Specification

Nov13

Device partitioning
Separate compilation and linking

Enhanced image support
Built-in kernels / custom devices
Enhanced DX and OpenGL Interop

On-device dispatch
Generic Address Space

Enhanced Image Support
C11 Atomics

Pipes
Android ICD

Additional image formats
Multiple hosts and devices
Buffer region operations

Enhanced event-driven execution
Additional OpenCL C built-ins

Improved OpenGL data/event interop

18 months 18 months 24 months

OpenCL 2.1
Specification
(Provisional)

Mar1516 months

Ope C C S ad g la guage
SPIR-V in Core

Subgroups into core
Subgroup query operations

clCloneKernel
Low-latency device timer queries

New OpenCL 2.1 Compiler Ecosystem
OpenCL C

Kernel Source
Alternative Language

for KernelsAlternative Language
for Kernels

Diverse, domain-
specific Languages,

frameworks and tools

OpenCL C++
Kernel Source

SPIR Generator
(e.g. patched Clang)

https://github.com/KhronosGroup/SPIR

SPIR-V is more rigorous
compiler target than OpenCL C

OpenCL C++ to
SPIR-V Compiler

Khronos considering
open source project for

OpenCL C++ front-end

© Copyright Khronos Group 2015 - Page 18

Device X Device Y Device Z

OpenCL
Runtime

OpenCL 2.1 runtime can
ingest OpenCL C OR SPIR-V

3/2/2015

10

OpenCL as Parallel Language Backend
Approaching 200 languages, framework an

projects using OpenCL as a back-end

JavaScript
binding for
initiation of
OpenCL C
kernels

River Trail
Language

extensions to
JavaScript

MulticoreWare
open source
project on
Bitbucket

Harlan
High level
language
for GPU

programming

Compiler
directives for

Fortran,
C and C++

Java language
extensions

for
parallelism

PyOpenCL
Python

wrapper
around
OpenCL

Language for
image

processing and
computational
photography

Embedded
array

language for
Haskell

© Copyright Khronos Group 2015 - Page 19

OpenCL provides vendor optimized,
cross-platform, cross-vendor access to

heterogeneous compute resources

Support for SPIR-V in OpenCL core
will accelerate this trend as it is a
more rigorously defined compiler

target than OpenCL C

OpenCL C++
• The OpenCL C++ kernel language is a static subset of C++14

- Frees developers from low-level coding details without sacrificing performance

• C++14 featured removed from OpenCL C++ for parallel programming
Throwing and catching exceptions (throw catch)- Throwing and catching exceptions (throw, catch)

- Allocation and release of memory (new, delete)
- Virtual functions and abstract classes (virtual)
- Function pointers, Recursion and goto

• Classes, lambda functions, templates, operator overloading etc..
- Fast and elegant sharable code - reusable device libraries and containers
- Compile-time polymorphism via template meta-programming

© Copyright Khronos Group 2015 - Page 20

- Compile time polymorphism via template meta programming
for highly adaptive software that delivers tuned performance
across diverse platforms

3/2/2015

11

OpenCL 2.1 API Enhancements
• Subgroup functionality moved into core with additional subgroup query operations

- Expose hardware threads/warps/wavefronts and their cross-lane operations
- Host queries for forward progress extension, and workgroup->subgroup mapping

• clCloneKernel enables copying of kernel objects and statepy g j
- Safe implementation of copy constructors in wrapper classes
- Used to pass kernel to second host thread, or for C++ wrappers for kernel objects

• Low-latency device timer queries
- Support alignment of profiling data between device and host code

• clCreateProgramWithIL
- Enables ingestion of SPIR-V code by the runtime

P i i d h l hi i f

© Copyright Khronos Group 2015 - Page 21

• Priority and throttle hint extensions for queues
- Specify execution priority on a per-queue basis

• Zero-size enqueue
- Zero-sized dispatches are valid from the host

Khronos Open Standards for Graphics and Compute

Workhorse cross-platform API for professional 3D apps and gaming

A comprehensive family of APIs to address the full spectrum of developer requirements

1990’s

Portable intermediate representation
for graphics and parallel compute

Ubiquitous API for mobile gaming and general purpose graphics

Heterogeneous parallel computation

2000’s

2008

2014

© Copyright Khronos Group 2015 - Page 22

High-efficiency GPU graphics and compute
API for performance critical apps 2015

All APIs will be evolved and maintained to meet industry needs.
Rich mix of open technologies for future innovation

3/2/2015

12

Call to Action
• Special Khronos sessions at GDC for more details:

- Details in press releases and here:
- https://www.khronos.org/news/events/gdc-2015

Khronos seeking feedback on Vulkan SPIR and OpenCL 2 1• Khronos seeking feedback on Vulkan, SPIR and OpenCL 2.1
- Links provided on Khronos forums
- https://www.khronos.org/opencl/opencl_feedback_forum
- https://www.khronos.org/spir_v_feedback_forum
- https://www.khronos.org/vulkan/vulkan_feedback_forum

• Any company or organization is welcome to join Khronos for a voice and a vote
in any of these standards

© Copyright Khronos Group 2015 - Page 23

in any of these standards
- www.khronos.org
- ntrevett@nvidia.com

