Generalized Bump-mapping with
Surface Local Coordinates

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

Computer Urdpnics
SurfaceL.ocalCoordinates.ppix mjb — December 24, 2023

The Most Straightforward Types of Bump-Mapping are Height Fields 2
Why?

Height Field bump-mapping is straightforward because the underlying coordinate
system is constant. Each fragment’s Z points up, each fragment’s X points right, etc.
Thus, the tangent vectors always involve % and Z_;'

[JIEEIJI TSaE"
University
Computer Graphics

mjb — December 24, 2023

12/28/2024

What if that is not the case? Here, the coordinate system is 3
constantly changing, depending on where you are on the sphere

Orego State
University
Computer Graphics

mjb — December 24, 2023

This is referred to as Surface Local Coordinates 4

To call these moving axes X-Y-Z would be
confusing. Rather than X-Y-Z, Surface Local
Coordinates are B-T-N:

* N is the surface Normal vector, which we
usually know already

» Tis a Tangent vector

+ B is the Bitangent, the other tangent vector

We will assume that we know the Normal everywhere because of how the
shape was modeled. Now, how do we find T and B? And, how do we convert
these to X-Y-Z?

Computer Graphics

mjb — December 24, 2023

12/28/2024

Generalized Bump Mapping: A Problem

The problem is that we need to do lighting, but the lighting needs to
be done in X-Y-Z, but the bump information is in B-T-N!

We need to:
1. Figure out how to determine T and B, and,

2. Figure out how to convert B-T-N coordinates to X-Y-Z for
lighting

’ We will refer to the coordinates in the B-T-N system as (b,t,n). ‘

et
<

4

OregonState

University
Computer Graphics

mjb — December 24, 2023

Bump Mapping:
Establishing the Surface Local Coordinate System
We need a second piece of information: Pick a general rule, e.g., “Tangent = up (0.,1.,0.)”

We then have two choices:
a. Use two cross-products to correctly orthogonalize it wrt the Normal /

b. Use the Gram-Schmidt rule to correctly orthogonalize it wrt the Nor

1l the vectors B-T-N form an X-Y-
I right handed coordinate syst:

vec3 N = normalize(gl_Nori
vec3 Tg, T; 1l Tgue:
vec3 B;

IMatrix * gl_Normal);
ang corrected T

#define CROSS_PRODUCT_METHOD

#ifdef CROSS_PRODUCT_METHOD

Tg = vec3(0.,1.,0.) Il guess at T
B = normalize(cross(Tg,N)); // correctB

T = normalize(cross(N,B)); // corrected T
#endif

#ifdef GRAM_SCHMIDT_METHOD

AR Tg = vec3(0.,1.,0.); Il guess at T
%@ float d = dot(Tg, N);
S T = normalize(Tg - d*N); Il corrected T
0 S
o B = normalize(cross(T,N)); // correct B
Computer Graphics #endif

mjb — December %

4, 2023

12/28/2024

vec3 Tg = vec3(0.,1.,0.); // initial guess
vec3 B = normalize(cross(Tg,N));
vec3 T = normalize(cross(N,B));

Cross Product Orthogonalization 7

Given that N is correct, how
1 do we change Tg to be
exactly perpendicular to N ?

T

Take the cross product of Tg

and N to get a Bector that
is perpendicul;‘%rh\

dva
il
Oregon State
Universil .
Computer Graphics

3 |
Take the cross product of N

and B to get a T vector that
is perpendiculakto both

T

mjb — December 24, 2023

vec3 Tg =vec3(0.,1.,0.); // initial guess

float d = dot(Tg, N);

vec3 T = normalize(Tg - d*N);
vec3 B = normalize(cross(T,N));

Given that N is correct, how

do we change Tg to be
exactly perpendicular to N?

T=T,

Orego| same direction as N?

A
% How much‘of Tg is in the

Universiy
Computer Graphics

Gram-Schmidt Orthogonalization 8

How much of Tg do we need

to get rid of so that none of it is
/in the same direction as N?

K]
—-dN

I
~ The resulting T is
perpendicular to N

—dN =T, — (T,-N)N

mjb — December 24, 2023

12/28/2024

12/28/2024

Bump Mapping: Converting Between Coordinate Systems 9

Converting from X-Y-Z to b-t-n:
b By By, B;|(x
te=|Tx T, T,y
n) [Ny N, N|\z

Converting from b-t-n to X-Y-Z:
X B, T

V= By Ty
z B, T,

b
t
n

==z

| prefer to use the second one so we can do lighting

Computos Ohphics in X-Y-Z like we are used to doing.

mjb — December 24, 2023

Generalized Bump Mapping: 10
Establishing the Surface Local Coordinate System

Vertex shader:

#version 330 compatibility

uniform vec3 uLightPosition;

outvec2 vST; 1/ texture coords

out vec3 VN; /I normal vector

out vec3 vL; /I vector from point to light

out vec3 VE; 1 vector from point to eye

out vec3 vBTNx, vBTNy, vBTNz;

void

main()

{
vN = normalize(gl_NormalMatrix * gl_Normal); /I normal vector
vec3 Tg = vec3(0.,1.,0.); 1l guess
vec3 B = normalize(cross(Tg,vN));
vec3 T = normalize(cross(vN,B));
1 produce the transformation from Surface coords to Eye coctrt ; b
VBTNx = vec3(B.x, T.x, VN.x); P t
vBTNy = vec3(B.y, T.y, VN.y);
VBTNz = vec3(B.z, T.z, WN.z); T ; n
vST = gI_MultiTexCoord0.st; [“'{Z__Z_/
vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; 1] eye coordinate pasition
vL = uLightPosition - ECposition.xyz; I vector from the point to the light position
VE =vec3(0., 0., 0.) - ECposition.xyz; 1 vector from the point to the eye position
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Oregon State
University

Computer Graphics

mjb — December 24, 2023

Generalized Bump Mapping: 1
Using the s-t-h to X-Y-Z Transform

Fragment shader:

#version 330 compatibility
uniform vec3 uColor;
uniform vec3 uSpecularColor;

uniform float uKa, uKd, uKs; 1/ coefficients of each type of lighting
uniform float uShininess; /I specular exponent

uniform float uBumpDensity; // density of bumps

invec2 VST; /I texture cords

in vec3 VN; /I normal vector

in vec3 vL; /I vector from point to light

in vec3 VE; /I vector from point to eye

in vec3 vBTNx, vBTNy, vBTNz;

vec3
ToXyz(vec3 btn)
{

btn = normalize(btn);

vec3 xyz; B T, N

xyz.x = dot(vVBTNX, btn); X x x x| (b

xyz.y = dot(vBTNy, btn); Y= By Ty Ny t

xyz.z = dot(vBTNz, btn); z B T N n
z z z

return normalize(xyz);

| Look at this closely. It is actually a matrix-multiply!

University
Computer Graphics

mjb — December 24, 2023

Matrix Multiplication is Really Row-by-Row Dot Products 12

The basic operation of matrix multiplication is to pair-wise
multiply a single row by a single column

<—|\

4
|) 3 * S5 Y —a1+52+63—> 32
6 C

\

J
B
e
1x3 3x1 1x1

OregonState
Universil

ity
Computer Graphics
mjb — December 24, 2023

12/28/2024

12/28/2024

Generalized Bump Mapping: Using the Surface Local Transform, | 13

void
main()

vec3 Normal = normalize(vN);
vec3 Light = normalize(vL);
vec3 Eye = normalize(VE);
vec3 myColor = uColor; /I default color

/' locate the bumps based on (s,t):

float Swidth = (1.-0.) / uBumpDensity; /I s distance between bumps

float Theight = (1.-0.) / uBumpDensity; // t distance between bumps

float numInS = int(vST.s / Swidth); /I which "checker" square we are in
float numInT = int(vST.t / Theight); /I which "checker" square we are in

vec2 center;

center.s = numInS * Swidth + Swidth/2.; // center of that bump checker
center.t = numInT * Theight + Theight/2.; // center of that bump checker

vec2 st = vST - center; /I st is now wrt the center of the bump

float theta = atan(st.t, st.s);

T 4

OregonState

University
Computer Graphics

mjb — December 24, 2023

Generalized Bump Mapping: Using the Surface Local Transform, Il 14
vec3 normal = ToXyz(Normal)); // un-bumped normal
if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
{
normal = ToXyz(vec3(0.,0.,1.));
}
else
{
if(Pl/4. <= theta && theta <= 3.*Pl/4.)
{
normal = ToXyz(vec3(0., Height, Theight/4.));
}
else if(-Pl/4. <= theta && theta <=Pl/4.)
{
normal = ToXyz(vec3(Height, 0., Swidth/4.));
}
else if(-3.*Pl/4. <= theta && theta <=-Pl/4.)
{
normal = ToXyz(vec3(0., -Height, Theight/4.));
}
else if(theta >= 3.*Pl/4. || theta <= -3.*Pl/4.)
{
normal = ToXyz(vec3(-Height, 0., Swidth/4.));
}
}
Computer Graphics
mjb — December 24, 2023

Generalized Bump Mapping: Using the Surface Local Transform, Il 15

vec3 ambient = uKa * myColor;

floatd =0.;

float s = 0.

if(dot(normal,Light) > 0. // only do specular if the light can see the point

d = dot(normal,Light);
vec3 R = normalize(reflect(-Light, normal)); /I reflection vector
s = pow(max(dot(Eye,R), 0.), uShininess);

vec3 diffuse = uKd * d * myColor;
vec3 specular = uKs * s * uSpecularColor;
gl_FragColor = vec4(ambient + diffuse + specular, 1.);

OregonState
Universil .
Computer Graphics
mjb — December 24, 2023

16

Changing the Bump Height

OregonState
University
Computer Graphics

mjb — December 24, 2023

12/28/2024

12/28/2024

17

Changing the Bump Density

Oregon State

University
Computer Graphics

mjb — December 24, 2023

18

Different Objects

a4

Liriedd 499 4994344,

Cow Pox? :-)

Oregon State
University
Computer Graphics

mjb — December 24, 2023

Combining Bump and Cube Mapping: 19
A Good Reason to Work in X-Y-Z instead of B-T-N

Dreg_o State

University
Computer Graphics

mjb — December 24, 2023

Combining Bump and Cube Mapping: 20
A Good Reason to Work in X-Y-Z instead of B-T-N

Dreg_o State

University
Computer Graphics

mjb — December 24, 2023

12/28/2024

10

