(Vu likan.

Vulkan Ray Tracing — 5 New Shader Types!

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

OregonState

University
Computer Graphics
VulkanRayTracing.pptx

mjb — February 1, 2022

1

Analog Ray Tracing Example ©

T4
OregonState
University
Computer Graphics

mjb — February 1, 2022

2

2/1/2022

Digital Ray Tracing Examples 3

Blender

AN

T4

OregonState

University
Computer Graphics IronCad mib - February 1, 2022

3

The Rasterization Shader Pipeline Doesn’t Apply to Ray Tracing 4

_Primitive Assembly |

'3
~~--1 Tessellation Control Shader

Tessellation Primitive G A TR

----+ Tessellation Ef on Shader|| |

[] =ruedrunction | D Geometry Shader |
| !
I:I = Programmable QN | Primitive Assembly |A‘

AN

&
Oregon State || Fragment Shader !I

University
Computer Graphics

mjb — February 1, 2022

4

2/1/2022

The Ray-trace Pipeline Involves Five New Shader Types 5
Any Hit
Ray Generation Shader (rahit)
Shader (rgen)
trace()
Traversing the Intersection
Acceleration Structures Shader (rint)
- . Note: none of this lives in the graphics hardware pipeline.
?
l Ay hits found for this eav? I This is all built on top of the compute functionality.
No / \Yes
Miss Shader Closest Hit
(rmiss) Shader (rchit)
* ARay Generation Shader runs on a 2D grid of threads. It begins the entire ray-tracing operation.
* An Intersection Shader implements ray-primitive intersections.
* An Any Hit Shader is called when the Intersection Shader finds a hit.
* The Closest Hit Shader is called with the information about the hit that happened closest to the
viewer. Typically lighting is done here, or firing off new rays to handle reflection and refraction.
* A Miss Shader is called when no intersections are found for a given ray. Typically it just sets its
C pixel color to the background color.
o ="Teordary 1, 2022
5
6

The Ray Intersection Process for a Sphere

1. Sphere equation: (x-x.) 2 + (y-y,) 2 + (z-z;)2 = R?

2. Ray equation: (x,y,z) = (X,Yo,Zo) + t*(dx,dy,dz)

Plugging (x,y,z) from the second equation into the first equation and multiplying-

through and simplifying gives:

At2+Bt+C=0
Solve for ty, t,

A. If both t; and t, are complex, then the ray missed the sphere.
B. If t;==1,, then the ray brushed the sphere at a tangent point.

C. If both t; and t, are real and different, then the ray entered and exited the

sphere.

In Vulkan terms:
gl_WorldRayOrigin = (X,,Y,,20)
gl_Hit=t

gl_WorldRayDirection = (dx,dy,dz)

Computer GraprIic:

mjb — February 1, 2022

6

2/1/2022

The Ray Intersection Process for a Cube

1. Plane equation: Ax+ By + Cz+D =0
2. Ray equation: (x,y,z) = (X,Yo,Zo) + t*(dx,dy,dz)

Plugging (x,y,z) from the second equation into the first equation and multiplying-
through and simplifying gives:

At+B=0
Solve for t

A cube is actually the intersection of 6 half-space
planes (just 4 are shown here). Each of these
will produce its own t intersection value. Treat them

as pairs: (ty,to) , (ty1.t2) , (tts)

The ultimate entry and exit values are:
tmin = Max(min(ty, to), Min(ty, t2), Min(t, t2)) This works for all
trax = mMin(max(t,q t,o), max(t,q t,o), max(t,; t,2)) [convex solids

Oregon State
University
Computer Graphics
mijb — February 1, 2022

7

In a Raytracing, each ray typically hits a lot of Things

Oregon State
University
Computer Graphics

mjb — February 1, 2022

8

2/1/2022

Acceleration Structures

and index VkBuffers
in the original Model Coordinates.

transformation.
* The BLAS is used as a Model Coordinate bounding box.
* The TLAS is used as a World Coordinate bounding box.

* ATLAS can instance multiple BLAS’s.
’ Top Level Acceleration Structure ‘

« Bottom-level Acceleration Structure (BLAS) holds the vertex data and is built from vertex
* The BLAS can also hold transformations, but it looks like usually the BLAS holds vertices

« Top-level Acceleration Structure (TLAS) holds a pointer to elements of the BLAS and a

— 7 ~N 0 T~

Transform and Transform and Transform and
shading information shading information shading information

Transform and
shading information

2V 4 »
» \

4.
‘

Oregon State
University Bottom Level Bottom Level Bottom Level
Computer Graphics Acceleration Structure Acceleration Structure Acceleration Structure
g — 1 sy 1, 2022
9
Creating Bottom Level Acceleration Structures 10
vkCreateAccelerationStructure BottomLevelAccelerationStructure;

VkAccelerationStructurelnfo
vasi.sType = VK_ACCELERATION_STI
vasi.flags = 0;
vasi.pNext = nullptr;
vasi.instanceCount = 0;
vasi.geometryCount = << numbgfr of vertex buffers >>
vasi.pGeometries = << vertelbuffer pointers >>

UCTORE_TYPE_BOTTOM_LEVEL;

VkAccelerationStructureCreatejifo
vasci.sType = VK_STRYCTURE_TYPE_A ERATION_STRUCTURE_CREATE_INFO;
vasci.pNext = nullptr;
vasci.info = &vasi;
vasci.compactedSize = 0;

result = vkCreateAccelerationStructure(LogicalDevice, IN &vasci, PALLOCATOR, OUT &BottomLevelAcceleraionrStructure);

| Top Level Acceleration Structure |

Transform and

Transform and H Transform and I ‘ Transform and ‘

shading shading

1 |
4 » -
»’ Vﬂ »

) " Acceleration Structure Acceleration Structure
University
Computer Graphics

Batom Level Bottom Level Bottom Level
Oregon State Acceleration Structure

mjb — February 1, 2022

10

2/1/2022

Creating Top Level Acceleration Structures

vkCreateAccelerationStructure

VkAccelerationStructurelnfo
vasi.sType = VK_ACCELERATION_S
vasi.flags = 0;

vasci.sType = VK
vasci.pNext = ni
vasci.info = &vasi;
vasci.compactedSize = 0;

TopLevelAccelerationStructure;

result = vkCreateAccelerationStructure(LogicalDevice, &vasci, PALLOCATOR, &TopLevelAcceleraionrStructure);

| Top Level Acceleration Structure |

shading

Transform and H Transform and I ‘ Transform and ‘

Transform and
shading

Acceleration Structure

University

Computer Graphics

| I
W » ﬂ -«
- > v
OregonState Botior: | wvel Bottom Level

Acceleration Structure Acceleration Structure

Bottom Level

mjb — February 1, 2022

11

Ray Generation Shader

12

’ Gets all of the rays going and writes the final color to the pixel

layout(location @ rayPayload myPayLoad
{

k

vec4 color;

void
main()

{

trace(topLevel, ..., 1

imageStore(framebu@ gl_GloballnvocationID.xy, cglor),

A “payload” is information that keeps getting passed
through the process. Different stages can add to it. It
is finally consumed at the very end, in this case by
writing color into the pixel being worked on.

Oregon State
University

Computer Graphics

Any Hit
Shader (rahit)

Ray Generation
Shader (rgen)

trace(}

Intersection
Shader (rint)

Traversing the
Acceleration Structures

ngyﬁhﬁmgp

No Yes
Miss Shader Closest Hit
(rmiss) Shader (rchit)

mjb — February 1, 2022

12

2/1/2022

A New Built-in Function

13

void trace
(

accelerationStructure

uint

uint

uint

uint

uint

vec3

float

vec3

float

int

topLevel,
rayFlags,
cullMask,
sbtRecordOffset,
sbtRecordStride,
missindex,
origin,

tmin,

direction,

tmax,

payload

In Vulkan terms:
gl_WorldRayOrigin = (X,,Y,.2;)
gl_Hit=t
gl_WorldRayDirection = (dx,dy,dz)
Oregon State
University
Computer Graphics

mjb — February 1, 2022

13

Intersection Shader

14

hitAttribute vec3 attribs

Intersect a ray with an arbitrary 3D object.
Passes data to the Any Hit shader.
There is a built-in ray-triangle Intersection Shader.

void main()

{
vec3 orig = gl_WorldRayOrigin;
vec3 dir = normalize(gl_WorldRayDirection);
float discr = b*b — 4.*a*c;
if(discr<0.)

SpherePrimitive sph = spheres[gl_PrimitivelD];

return;

float tmp = (-b - sqrt(discr)) / (2.*a);

{
vec3 p = orig + tmp * dir;
attribs = p;
reportintersection(tmp, 0);
return;

}

tmp = (-b + sqrt(discr)) / (2.*a);
if(gl_RayTmin <tmp && tmp <gl_RayT]

{
vec3 p = orig + tmp * dir;
attribs = p;
reportintersection(trfip, 0);
return;

}

Org

if(gI_RayTmin <tmp && tmp <gl_RayTmax)

e

Any Hit
Shader (rahit)

Ray Generation
Shader (rgen)

trace()

Intersection
Shader (rint)

Traversing the
Acceleration Structures

Any hits found for this ray?

Neo Yes

Miss Shader
(rmiss)

Closest Hit
Shader (rchit)

U
Computer Graphics

mjb — February 1, 2022

14

2/1/2022

Miss Shader 15

Handle a ray that doesn't hit any objects

rayPayload myPaylLoad
{
vec4 color;

b
void
main()
{

Ccolor¥ vec4(0., 0., 0., 1.);
}

Any Hit
Shader (rahit)

Ray Generation
Shader (rgen)

trace()

Traversing the
Acceleration Structures

Intersection
Shader {rint)

No Yes
> Miss Shader Closest Hit
Oregon State (rmiss) Shader (rchit)
University

Computer Graphics

mjb — February 1, 2022

15
Any Hit Shader 16
Handle a ray that hits anything.
Store information on each hit.
Can reject a hit.
layout(binding = 4, set = 0) buffer outputProperties
float outputValues]];
} outputData;
layout(location = Q) rayPayloadIn uint outputld;
layout(location = 1) rayPayloadIn uint hitCounter;
hitAttribute vec3 attribs;
void
main()
{
outputData.outputValues| outputld + hitCounter] = gl_PrimitivelD;
hitCounter = hitCounter + 1; Any Hit
} S Gineion /E
trace()
Acceleration Structures. Shader (rint)
Oregon State = -
Uni 5l Misrs':::der cins;rslr:m
Compﬁltgr%?aphics ‘ frmlef) ‘Sh o (rehid
mjb — February 1, 2022

16

2/1/2022

Closest Hit Shader

17

Collects data from the Any Hit shader.
Can spawn more rays.

Handle the intersection closest to the viewer.

rayPayload myPaylLoad
{
vec4 color;
h
void
main()
{
vead stp = gl_WorldRayOrigin + gl_Hit * gl_WorldRayDirection;
exture(MaterialUnit, stp); /I material properties lookup
}

Ray Generation
Shader (rgen)

traceNV{)

In Vulkan terms:
gl_WorldRayOrigin = (X,,Y,.2;)

Traversing the
Acceleration

Any Hit
Shader (rahit)

Intersection
Shader (rint)

gl_Hit =t
i Aoy =
gl_WorldRayDirection = (dx,dy,dz) o e
Oregon State | Miss Shader | | Closest Hit
(rmiss) Shader (rchit)

University
Computer Graphics

mjb — February 1, 2022

17

Other New Built-in Functions

’ void terminateRay(); ‘

’ void ignorelntersection(); ‘

’ void reportintersection(float hit, uint hitKind);

Oregon State
University
Computer Graphics

18

Loosely equivalent to “discard”

mjb — February 1, 2022

18

2/1/2022

VkPipelineLayoutCreatelnfo

vplci.sType =VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
vplci.pNext = nullptr;

vplci.flags =0;

vplci.setLayoutCount =1;

vplci.pSetLayouts = &descriptor$etLayout;

vplci.pushConstantRangeCount = 0;

vplci.pPushConstantRanges = nullptr;

VkRayTracingPipelineCreatelnfo
vrtpci.sType =VK_STRUCTU
vrtpci.pNext = nullptr;
vrtpci.flags =
vrtpci.stageCount =
vrtpci.pStages = << what those shader s}
vrtpci.groupCount =

vrtpci.pGroups = << pointer to the grg Ris a combination of shader programs >>
vrtpci.maxRecursionDepth = << how many recdrsion layers deeR the ray tracing is allowed to go >>;
vrtpci.layout = PipelineLayout;

vrtpci.basePipelineHandle = VK_NULL_HANDLE;

vrtpci.basePipelinelndex = 0;

result = vkCreateRayTracingPipelines(LogicalDevice, PALLOCATOR, 1, IN &rvrtpci, nullptr, OUT &RaytracePipeline);

Ray Trace Pipeline Data Structure 19
VkPipeline RaytracePipeline;
VkPipelineLayout PipelineLayout;

Oregon State
University
Computer Graphics

mjb — February 1, 2022

19

The Trigger comes from the Command Buffer: 20
viCmdBindPipeline() and vkCmdTraceRays()

vkCmdBindPipeline(CommandBuffer, VK_PIPELINE_BIND_POINT_RAYTRACING, RaytracePipeline);

vkCmdTraceRays(CommandBuffer.

raygenShaderBindingTableBuffer, raygenShaderBindingOffset,
missShaderBindingTableBuffer, missShaderBindingOffset, missShaderBindingStride,
hitShaderBindingTableBuffer, hitShaderBindingOffset, hitShaderBindingStride,

callableShaderBindingTableBuffer, callableShaderBindingOffset, callableShaderBindingStride
width, height, depth);,

Oregon State
University
Computer Graphics

mjb — February 1, 2022

20

2/1/2022

10

2/1/2022

Check This Out! 2

E ¢ @ © a

&

youtube.com/watch?y=0L7=Xc2 N3 ?r| | @ searc

= @ Voulube Search a

Omg?,, State https://www.youtube.com/watch?v=QL7sXc2iNJ8
University
Computer Graphics

mjb — February 1, 2022

21

11

