

Vulkan Ray Tracing – 5 New Shader Types!

mjb@cs.oregonstate.edu

This work is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial-NoDerivatives 4.0</u> <u>International License</u>

Oregon State University Computer Graphics

VulkanRayTracing457557.pptx

mjb – December 29, 2024

1

Analog Ray Tracing Example ③

2

Digital Ray Tracing Examples

Blender

IronCad

In a Raytracing, each ray typically hits a lot of Things

Oregon State University Computer Graphics

Parametrizing a Ray

Given: S is the (x,y,z) starting point **Q** is the (x,y,z) direction of travel

Then, the (x,y,z) position of a point p at some position along its direction of travel is:

mjb - December 29, 2024

Example: The Ray Intersection Process for a Sphere

Sphere equation: $(x-x_c)^2 + (y-y_c)^2 + (z-z_c)^2 = R^2$ Ray equation: $(x,y,z) = (x_0,y_0,z_0) + t^*(dx,dy,dz)$

Plugging (x,y,z) from the second equation into the first equation and multiplying-through and simplifying gives:

At² + Bt + C = 0
$$\implies$$
 $t_1, t_2 = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$

Solve for t_1 , t_2 and analyze the solution like this:

- 1. If both t_1 and t_2 are complex (i.e., have an imaginary component), then the ray missed the sphere completely.
- 2. If both t_1 and t_2 are real and identical, then the ray brushed the sphere at a tangent point.
- 3. If both t_1 and t_2 are real and different, then the ray entered and exited the sphere.

University Computer Graphics

Parameterizing a Triangle

It's often useful to be able to parameterize a triangle into (u,v), like this:

The Setup

We want to find out where the ray intersects the triangle.

That is, where is the point p that is common to both the ray and the triangle?

mjb - December 29, 2024

Equation Setup

Re-arranging:

$$P0 + u^{*}(P1-P0) + v^{*}(P2-P0) = S + tQ$$

Re-arranging some more:

$$-tQ + u^{*}(P1-P0) + v^{*}(P2-P0) = S - P0$$

Then collecting terms, we get:

$$At + Bu + Cv = D$$

where:

A = -QB = P1-P0C = P2-P0D = S - P0

Oregon State University Computer Graphics

Three Equations, Three Unknowns

Remembering that this equation is really 3 equations in (x,y,z):

$$At + Bu + Cv = D$$

we have 3 equations with 3 unknowns, which can be cast into a matrix form

$$\begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_z & B_z & C_z \end{bmatrix} \begin{pmatrix} t \\ u \\ v \end{pmatrix} = \begin{cases} D_x \\ D_y \\ D_z \end{pmatrix}$$

Our goal is to solve this for t*, u*, and v*

Computer Graphics

Solve for (t*,u*,v*) using Cramer's Rule

$$\begin{split} B_{x} & C_{x} \\ B_{y} & C_{y} \\ B_{z} & C_{z} \end{split} \begin{cases} t \\ u \\ v \end{cases} = \begin{cases} D_{x} \\ D_{y} \\ D_{z} \end{cases} \\ D_{z} \end{cases} \\ D_{0} = det \begin{bmatrix} A_{x} & B_{x} & C_{x} \\ A_{y} & B_{y} & C_{y} \\ A_{z} & B_{z} & C_{z} \end{bmatrix} \\ D_{t} = det \begin{bmatrix} D_{x} \\ A_{y} & B_{y} & C_{y} \\ D_{z} & B_{z} & C_{z} \end{bmatrix} \\ D_{u} = det \begin{bmatrix} A_{x} & D_{x} & C_{x} \\ D_{y} & D_{z} & C_{z} \end{bmatrix} \\ D_{u} = det \begin{bmatrix} A_{x} & D_{x} & C_{x} \\ A_{y} & D_{y} & C_{y} \\ A_{z} & D_{z} & C_{z} \end{bmatrix} \\ D_{v} = det \begin{bmatrix} A_{x} & B_{x} & D_{x} \\ A_{y} & B_{y} & D_{y} \\ A_{z} & B_{z} & D_{z} \end{bmatrix} \\ v^{*} = \frac{D_{v}}{D_{0}} \end{split}$$

 $\begin{bmatrix} A_x \\ A_z \\ A_z \end{bmatrix}$

mjb – December 29, 2024

The Steps

- 6. Compute D_{II}
- 7. Compute u*

1. Compute D_0

3. Compute D_t

4. Compute t*

- 8. If $u^* < 0$. or $u^* > 1$., then the ray hits outside the triangle
- 9. Compute D_v 10. Compute v*
- 11. If $v^* < 0$. or $v^* > 1$.- u^* , then the ray hits outside the triangle
- 12. The intersection is at the point $p = S + Qt^*$

5. If $t^* < 0$., the ray goes away from the triangle

This is known as the Möller-Trumbore Triangle Intersection Algorithm

Oregon State University **Computer Graphics**

12

The Rasterization Shader Pipeline That You Are Used to Doesn't Apply to 13 Vulkan Ray Tracing

mjb - December 29, 2024

The Vulkan Ray Tracing Pipeline Involves Five New Shader Types

- A Ray Generation Shader runs on a 2D grid of threads. It begins the entire ray-tracing operation.
- An Intersection Shader implements ray-primitive intersections.
- An **Any Hit Shader** is called when the Intersection Shader finds a hit. It decides if that intersection should be accepted or ignored.
- The **Closest Hit Shader** is called with the information about the hit that happened closest to the viewer. Typically, lighting is done here, or firing off new rays to handle shadows, reflections, and refractions.
- A **Miss Shader** is called when no intersections are found for a given ray. Typically, it just sets its pixel color to the background color.

Acceleration Structures

- A Bottom-level Acceleration Structure (BLAS) reads the vertex data from vertex and index VkBuffers to determine bounding boxes.
- You can also supply your own bounding box information to a BLAS.
- A Top-level Acceleration Structure (TLAS) holds transformations and pointers to multiple BLASes.
- The BLAS is essentially used as a Model Coordinate bounding box, while the TLAS is used as a World Coordinate bounding box.

Check This Out!

mjb – December 29, 2024