Vulkan Ray Tracing – 5 New Shader Types!

Digital Ray Tracing Examples

In a Raytracing, each ray typically hits a lot of Things

Analog Ray Tracing Example
Parametrizing a Ray

Given:
- S is the (x,y,z) starting point
- Q is the (x,y,z) direction of travel

Then, the (x,y,z) position of a point p at some position along its direction of travel is:

$$p = S + tQ$$

$t \geq 0$.

Example: The Ray Intersection Process for a Sphere

Sphere equation: $(x-x_c)^2 + (y-y_c)^2 + (z-z_c)^2 = R^2$

Ray equation: $(x,y,z) = (x_0, y_0, z_0) + t(dx, dy, dz)$

Plugging (x,y,z) from the second equation into the first equation and multiplying-through and simplifying gives:

$$At^2 + Bt + C = 0$$

Solve for t_1, t_2 and analyze the solution like this:

1. If both t_1 and t_2 are complex (i.e., have an imaginary component), then the ray missed the sphere completely.
2. If both t_1 and t_2 are real and identical, then the ray brushed the sphere at a tangent point.
3. If both t_1 and t_2 are real and different, then the ray entered and exited the sphere.

Parameterizing a Triangle

It’s often useful to be able to parameterize a triangle into (u,v), like this:

$$p = P_0 + u(P_1-P_0) + v(P_2-P_0)$$

Note! There is no place in this triangle where $u = 1$ and $v = 1$.

The Setup

We want to find out where the ray intersects the triangle. That is, where is the point p that is common to both the ray and the triangle?

Such that:

$$t \geq 0.$$ $0 \leq u \leq 1.$ $0 \leq v \leq 1-u$$
Equation Setup

Triangle: \(p = P_0 + u*(P_1-P_0) + v*(P_2-P_0) \)
Ray: \(p = S + tQ \)

Re-arranging:
\(P_0 + u*(P_1-P_0) + v*(P_2-P_0) = S + tQ \)
Re-arranging some more:
\(-tQ + u*(P_1-P_0) + v*(P_2-P_0) = S - P_0 \)

Then collecting terms, we get:
\(At + Bu + Cv = D \)

where:
\(A = -Q \)
\(B = P_1-P_0 \)
\(C = P_2-P_0 \)
\(D = S - P_0 \)

Solve for \((t^*, u^*, v^*)\) using Cramer’s Rule

\[
\begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z \\
\end{bmatrix}
\begin{bmatrix}
t \\
u \\
v \\
\end{bmatrix}
= \begin{bmatrix}
D_x \\
D_y \\
D_z \\
\end{bmatrix}
\]

\(D_0 = \det \begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z \\
\end{bmatrix} \)

\(D_t = \det \begin{bmatrix}
D_x & B_x & C_x \\
D_y & B_y & C_y \\
D_z & B_z & C_z \\
\end{bmatrix} \)

\(t^* = \frac{D_t}{D_0} \)

\(D_u = \det \begin{bmatrix}
A_x & D_x & C_x \\
A_y & D_y & C_y \\
A_z & D_z & C_z \\
\end{bmatrix} \)

\(u^* = \frac{D_u}{D_0} \)

\(D_v = \det \begin{bmatrix}
A_x & B_x & D_x \\
A_y & B_y & D_y \\
A_z & B_z & D_z \\
\end{bmatrix} \)

\(v^* = \frac{D_v}{D_0} \)

The Steps

1. Compute \(D_0 \)
2. If \(D_0 \approx 0 \), then the ray is parallel to the plane of the triangle
3. Compute \(D_t \)
4. Compute \(t^* \)
5. If \(t^* < 0 \), the ray goes away from the triangle
6. Compute \(D_u \)
7. Compute \(u^* \)
8. If \(u^* < 0 \) or \(u^* > 1 \), then the ray hits outside the triangle
9. Compute \(D_v \)
10. Compute \(v^* \)
11. If \(v^* < 0 \) or \(v^* > 1 - u^* \), then the ray hits outside the triangle
12. The intersection is at the point \(p = S + Qt^* \)

This is known as the Möller-Trumbore Triangle Intersection Algorithm
The Rasterization Shader Pipeline That You Are used to Doesn’t Apply to Vulkan Ray Tracing

- Fixed Function
- Programmable

The Vulkan Ray Tracing Pipeline Involves Five New Shader Types

- Ray Generation Shader (rgen)
- Any Hit Shader (rahit)
- Intersection Shader (rint)
- Closest Hit Shader (rchit)
- Miss Shader (rmiss)

Unlike the rasterization pipeline, there is no constant flow from one shader to the next. Rather, particular shaders are called to respond to particular events.

Acceleration Structures

- A Bottom-level Acceleration Structure (BLAS) reads the vertex data from vertex and index VkBuffers to determine bounding boxes.
- You can also supply your own bounding box information to a BLAS.
- A Top-level Acceleration Structure (TLAS) holds transformations and pointers to multiple BLASes.
- The BLAS is essentially used as a Model Coordinate bounding box, while the TLAS is used as a World Coordinate bounding box.

Check This Out!

https://www.youtube.com/watch?v=QL7sXc2INJ8