Bump Mapping

What is Bump-Mapping?
Bump-mapping is the process of creating the illusion of 3D depth by using a manipulated surface normal in the lighting, rather than actually creating the extra surface detail.

Displacement-mapped
Bump-mapped

This is a good trick! Displacement-mapping is per-vertex and requires a lot of triangles. Bump-mapping is per-fragment and since you needed to process all those fragments anyway, you might as well do slightly more.

The Most Straightforward Type of Bump-Mapping is Height Fields

Definition of Height Fields -- Think of the Pin Box!

The Vector Cross Product

\[A \times B = (A_yB_z - A_zB_y, A_zB_x - A_xB_z, A_xB_y - A_yB_x) \]

\[||A \times B|| = ||A|| ||B|| \sin \theta \]

Because it produces a vector result (i.e., three numbers), this is also called the Vector Product.
The Perpendicular Property of the Vector Cross Product

The vector \(A \times B \) is both perpendicular to \(A \) and perpendicular to \(B \).

The Right-Hand-Rule Property of the Cross Product

Curl the fingers of your right hand in the direction that starts at \(A \) and heads towards \(B \). Your thumb points in the direction of \(A \times B \).

\[
\begin{align*}
\text{terrain.frag} 1 & \text{ - Terrain Height Bump-mapping: Exaggerating the Height} \\
\text{terrain.frag} 2 & \text{ - Terrain Height Bump-mapping: Coloring by Height}
\end{align*}
\]

Remember that the cross product of two vectors gives you a vector that is perpendicular to both. So, the cross product of two tangent vectors gives you a good approximation to the surface normal.

\[
\begin{align*}
\text{terrain.frag} 1 & \text{ - Terrain Height Bump-mapping: Exaggerating the Height} \\
\text{terrain.frag} 2 & \text{ - Terrain Height Bump-mapping: Coloring by Height}
\end{align*}
\]

It turns out that textures are a great place to “hide” data. They are allowed to be very large and they are fast to lookup values in.
Terrain Height Bump-mapping: Even Zooming-in Looks Good

![Terrain Height Bump-mapping](image)

Crater Lake
- Corvallis
- Salem
- Portland
- Eugene

Visualization by Nick Gebbie

Terrain Height Bump-Mapping on a Globe

Several textures are being mixed onto the surface of the globe.

Visualization by Nick Gebbie

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

This is the coordinate system we will be using. The plane is X-Y with Z pointing up.

![Height Field Equations](image)

The plane is X-Y with Z pointing up.

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

This is the coordinate system we will be using. The plane is X-Y with Z pointing up.

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

Rock Dropped

This is the coordinate system we will be using. The plane is X-Y with Z pointing up.

Radial-ripple height equation with decay

If we get the two tangent vectors, then their cross product will give us the surface normal.

$x_tangent = vec3(1.0, 0.0, \frac{\partial z}{\partial x})$

$y_tangent = vec3(0.0, 1.0, \frac{\partial z}{\partial y})$

Radial-ripple height equation with decay

$z = A \cos(2\pi Br + C)e^{-Dr}$

(normal = $x_tangent \times y_tangent$)

If we can get the two tangent vectors, then their cross product will give us the surface normal.

$x_tangent = vec3(1.0, 0.0, \frac{\partial z}{\partial x})$

$y_tangent = vec3(0.0, 1.0, \frac{\partial z}{\partial y})$

Radial-ripple height equation with decay

$\frac{\partial z}{\partial r} = -A \sin(2\pi Br + C)(2\pi B)e^{-Dr} + A \cos(2\pi Br + C)(-D)e^{-Dr}$

Radial-ripple height equation with decay

$2r \frac{\partial r}{\partial x} = 2x$

$2r \frac{\partial r}{\partial y} = 2y$

$\frac{\partial r}{\partial x} = \frac{x}{r}$

$\frac{\partial r}{\partial y} = \frac{y}{r}$

Radial-ripple height equation with decay

θ, ϕ, and ψ are actually the cosine and one of the polar angle.

The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

$z = A \cos(2\pi Br + C)e^{-Dr}$

(normal = $x_tangent \times y_tangent$)

If we can get the two tangent vectors, then their cross product will give us the surface normal.

$x_tangent = vec3(1.0, 0.0, \frac{\partial z}{\partial x})$

$y_tangent = vec3(0.0, 1.0, \frac{\partial z}{\partial y})$

Radial-ripple height equation with decay

$z = A \cos(2\pi Br + C)e^{-Dr}$

(normal = $x_tangent \times y_tangent$)

If we can get the two tangent vectors, then their cross product will give us the surface normal.

$x_tangent = vec3(1.0, 0.0, \frac{\partial z}{\partial x})$

$y_tangent = vec3(0.0, 1.0, \frac{\partial z}{\partial y})$

Radial-ripple height equation with decay

$\frac{\partial z}{\partial r} = -A \sin(2\pi Br + C)(2\pi B)e^{-Dr} + A \cos(2\pi Br + C)(-D)e^{-Dr}$

Radial-ripple height equation with decay

$2r \frac{\partial r}{\partial x} = 2x$

$2r \frac{\partial r}{\partial y} = 2y$

$\frac{\partial r}{\partial x} = \frac{x}{r}$

$\frac{\partial r}{\partial y} = \frac{y}{r}$

Radial-ripple height equation with decay

θ, ϕ, and ψ are actually the cosine and one of the polar angle.

The ripples Bump-Map Shader

ripples.glib

```glib
#OpenGL GLIB
Perspective 70
LookAt 0 0 0 0 1 0

Vertex ripples.vert
Fragment ripples.frag
Program: Ripples

uTime <0, 0, 10>
uPd <0.2, 1, 1.5>

QuadXY -.1 5.
```

The ripples Bump-Map Shader

ripples.glib

```glib
#OpenGL GLIB
Perspective 70
LookAt 0 0 0 0 1 0

Vertex ripples.vert
Fragment ripples.frag
Program: Ripples

uTime <0, 0, 10>
uPd <0.2, 1, 1.5>

QuadXY -.1 5.
```
#version 330 compatibility
out vec3 vMCposition;
out vec3 vECposition;

void main()
{
 vMCposition = gl_Vertex.xyz;
 vECposition = (gl_ModelViewMatrix * gl_Vertex).xyz;
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

uniform float uTime;
uniform float uAmp0, uAmp1;
uniform float uPhaseShift;
uniform float uPd;
uniform float uLightX, uLightY, uLightZ;
uniform vec4 uColor;
in vec3 vMCposition;
in vec3 vECposition;

const float TWOPI = 2.*3.14159265;
const vec3 C0 = vec3(-2.5, 0., 0.);
const vec3 C1 = vec3(2.5, 0., 0.);

void main()
{
 float rad0 = length(vMCposition - C0);
 float H0 = -uAmp0 * cos(TWOPI*rad0/uPd - TWOPI*uTime);
 float rad1 = length(vMCposition - C1);
 float H1 = -uAmp1 * cos(TWOPI*rad1/uPd - TWOPI*uTime - uPhaseShift);
 float u = -uAmp0 * (TWOPI/uPd) * sin(TWOPI*rad0/uPd - TWOPI*uTime);
 float v = 0.;
 float w = 1.;

 float ang = atan(vMCposition.y - C0.y, vMCposition.x - C0.x);
 float up = dot(vec2(u,v), vec2(cos(ang), -sin(ang)));
 float vp = dot(vec2(u,v), vec2(sin(ang), cos(ang)));
 float wp = 1.;
 u = -uAmp1 * (TWOPI/uPd) * sin(TWOPI*rad1/uPd - TWOPI*uTime - uPhaseShift);
 v = 0.;
 ang = atan(vMCposition.y - C1.y, vMCposition.x - C1.x);
 up += dot(vec2(u,v), vec2(cos(ang), -sin(ang)));
 vp += dot(vec2(u,v), vec2(sin(ang), cos(ang)));
 wp += 1.;

 vec3 normal = normalize(vec3(up, vp, wp));
 float LightIntensity = abs(dot(normalize(vec3(uLightX,uLightY,uLightZ) - vECposition), normal));
 if(LightIntensity < 0.1)
 LightIntensity = 0.1;
 gl_FragColor = vec4(LightIntensity*uColor.rgb, uColor.a);
}