
4/22/2009

1

Bump Mapping

Mike Bailey

Oregon State University

mjb – April 24, 2007
Oregon State University

Computer Graphics

Bump Mapping:
Surface Local Coordinate System

mjb – April 24, 2007
Oregon State University

Computer Graphics

• N is the surface normal

• T is the tangent, which must be
consistently oriented from
vertex to vertex (glman does this
automatically in the Sphere
primitive)

• B is the Binormal

4/22/2009

2

Bump Mapping:
A Problem

The problem is that lighting information is in Eye Coordinates,
but the bump information is in Surface Local Coordinates !

We need to:We need to:

1. Figure out how to convert from one to the other, and,

2. Decide which of light information or bump information
gets converted to the other’s coordinate system

mjb – April 24, 2007
Oregon State University

Computer Graphics

While we are at it, let’s also rename the Surface Local coordinates
to (s,t,h) for (texture_s, texture_t, bump_height). This is the
same as (B,T,N), but uses terminology that is more bump-specific.

Bump Mapping:
Converting Between Coordinate Systems

x y zs B B B x
t T T T

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪

⎨ ⎬ ⎨ ⎬⎢ ⎥

Converting from Eye Coordinates to Surface Local Coordinates:

x y z

x y z

t T T T y
h N N N z

⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

Converting from Surface Local Coordinates to Eye Coordinates:

(The “Orange Book” uses this to convert the light vector to Surface Local Coordinates.)

mjb – April 24, 2007
Oregon State University

Computer Graphics

x x x

y y y

z z z

x B T N s
y B T N t
z B T N h

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

(I prefer to use this one to convert the bump normal to Eye Coordinates.)

4/22/2009

3

Bump Mapping:
Two Ways to Establish the Surface Local Coordinate System

1. Have the Tangent already defined (glman's Sphere does this)
2. Pick a general rule, e.g., "Tangent ≈ up“

2a. Use Gram-Schmidt to correctly orthogonalize it wrt the Normal
2b. Use two cross-products to correctly orthogonalize it wrt the Normal

There are 2 good ways to get the tangent and binormal vectors:

// the vectors B-T-N form an X-Y-Z-looking right handed coordinate system:

vec3 N = normalize(gl_NormalMatrix * gl_Normal);
vec3 T;
vec3 B;

#define GRAM_SCHMIDT_METHOD

#ifdef HAVE_TANGENT_METHOD
T = normalize(vec3(gl_ModelViewMatrix*vec4(Tangent,0.)));
B = normalize(cross(T,N));
#endif

Note: 2a and 2b give the same result, but
some people find 2b easier to understand

mjb – April 24, 2007
Oregon State University

Computer Graphics

#ifdef GRAM_SCHMIDT_METHOD
T = vec3(0.,1.,0.);
float d = dot(T, N);
T = normalize(T - d*N);
B = normalize(cross(T,N));
#endif

#ifdef CROSS_PRODUCT_METHOD
T = vec3(0.,1.,0.);
B = normalize(cross(T,N));
T = normalize(cross(N,B));
#endif

Gram-Schmidt Orthoganalization

T = vec3(0.,1.,0.);
float d = dot(T, N);
T = normalize(T - d*N);
B = normalize(cross(T,N));

(3) How much of T to get
rid of so that none of it is
in the same direction as N

N̂ T
'T

ˆdN−(1) Given that N is correct,
how do we change T to be

exactly perpendicular to N?

(4) The resulting T’ is
exactly perpendicular to N

mjb – April 24, 2007
Oregon State University

Computer Graphics

ˆd T N= i

T

(2) How much of T is in the
same direction as N

4/22/2009

4

Bump Mapping:
Establishing the Surface Local Coordinate System

// Produce the transformation from Surface coords to Eye coords:

BTNx = vec3(B.x, T.x, N.x);
BTNy = vec3(B.y, T.y, N.y);
BTNz = vec3(B.z, T.z, N.z);

// where the light is coming from:

vec3 LightPosition = vec3(LightX, LightY, LightZ);
vec3 ECposition = (gl_ModelViewMatrix * gl_Vertex).xyz;
DirToLight = normalize(LightPosition - ECposition);

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

mjb – April 24, 2007
Oregon State University

Computer Graphics

Bump Mapping:
Using the Surface-Local-to-Eye-Coordinate Transform

vec3
ToXyz(vec3 sth)
{{

sth = normalize(sth);

vec3 xyz;
xyz.x = dot(BTNx, sth);
xyz.y = dot(BTNy, sth);
xyz.z = dot(BTNz, sth);
return normalize(xyz);

}

mjb – April 24, 2007
Oregon State University

Computer Graphics

4/22/2009

5

Bump Mapping:
Using the Surface Local Transform

void main()
{

const float PI = 3.14159265;

vec2 st = gl_TexCoord[0].st; // locate the bumps based on (s,t)

float Swidth = 1. / BumpDensity;
float Theight = 1. / BumpDensity;
float numInS = floor(st.s / Swidth);
float numInT = floor(st.t / Theight);

vec2 center;
center.s = numInS * Swidth + Swidth/2.;
center.t = numInT * Theight + Theight/2.;
vec3 stp = st - center; // st’ is now wrt the center of the bump

float theta = atan(stp.t, stp.s);

mjb – April 24, 2007
Oregon State University

Computer Graphics

Bump Mapping:
Using the Surface Local Transform

vec3 normal = ToXyz(vec3(0., 0., 1.)); // un-bumped normal

if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
{

normal = ToXyz(vec3(0., 0., 1.));
}
else
{

if(PI/4. <= theta && theta <= 3.*PI/4.)
{

normal = ToXyz(vec3(0., Height, Theight/4.));
}
else if(-PI/4. <= theta && theta <= PI/4.)
{

normal = ToXyz(vec3(Height, 0., Swidth/4.));
}
else if(-3.*PI/4. <= theta && theta <= -PI/4.)
{

mjb – April 24, 2007
Oregon State University

Computer Graphics

normal = ToXyz(vec3(0., -Height, Theight/4.));
}
else if(theta >= 3.*PI/4. || theta <= -3.*PI/4.)
{

normal = ToXyz(vec3(-Height, 0., Swidth/4.));
}

}

float intensity = Ambient + (1.-Ambient)*dot(normal, DirToLight);
vec3 litColor = SurfaceColor.rgb * intensity;
gl_FragColor = vec4(litColor, SurfaceColor.a);

}

4/22/2009

6

Changing the Bump Height

mjb – April 24, 2007
Oregon State University

Computer Graphics

Changing the Bump Density

mjb – April 24, 2007
Oregon State University

Computer Graphics

4/22/2009

7

It’s handy to not need a Program-supplied Tangent Vector

mjb – April 24, 2007
Oregon State University

Computer Graphics
Cow Pox? :-)

Combining Bump and Cube Mapping:
A Good Reason to Work in Eye Coordinates instead of Surface Local Coordinates

mjb – April 24, 2007
Oregon State University

Computer Graphics

4/22/2009

8

Combining Bump and Cube Mapping:
A Good Reason to Work in Eye Coordinates instead of Surface Local Coordinates

mjb – April 24, 2007
Oregon State University

Computer Graphics

Combining Bump and Cube Mapping:
A Good Reason to Work in Eye Coordinates instead of Surface Local Coordinates

mjb – April 24, 2007
Oregon State University

Computer Graphics

4/22/2009

9

It’s Even Easier When You Know the Bump Equation in World Coordinates:
Bump-mapping to Create Ripples

mjb – April 24, 2007
Oregon State University

Computer Graphics

Rock A Dropped Rock B Dropped Both Rocks Dropped

In 2D, a slope m = dy/dx. It can be expressed as the vector [1,m].

dy

dx

mdy/dx

1 11. 1.

The normal to the shape is the vector perpendicular to the vector slope:

[-m,1]
Note that [1,m] · [-m,1] = 0, as it must be.

mjb – April 24, 2007
Oregon State University

Computer Graphics

So, if z = -Amp * cos(2πx/Pd - 2πTime), then the slope dz/dx is:

dz/dx = Amp * 2π/Pd * sin(2πx/Pd - 2πTime), and the vector slope is:

Slope = [1., 0., Amp * 2π/Pd * sin(2πx/Pd - 2πTime)]

4/22/2009

10

Following the pattern from before, the normal vector is:

[Normal] = [-Amp * 2π/Pd * sin(2πx/Pd - 2πTime), 0., 1.]

This is true along just the X axis. The trick now is to rotate the normal vector
into where we really are Because we are just talking about a rotation theinto where we really are. Because we are just talking about a rotation, the
transformation is the same as if we were rotating a vertex.

X

Y

Θ

Nx’ = Nx * cosΘ - Ny * sinΘ = Nx * cosΘ

Ny’ = Nx * sinΘ + Ny * cosΘ = Nx * sinΘ
R

mjb – April 24, 2007
Oregon State University

Computer Graphics

X
Nz’ = Nz = 1.

(Note that in the final version, you will
substitute R for x in the slope equation)

Because each linear ripple has an angle Θ, we can think of its direction
and perpendicular normal like this:

sinΘ

cosΘ
Θ

[-sinΘ,cosΘ]C

(Note that slope · normal = 0, as it must be.)

The linear ripple goes through the
point C in the direction [cosΘ, sinΘ]

The normal is then [-sinΘ, cosΘ]

MCposition

mjb – April 24, 2007
Oregon State University

Computer Graphics

[-sinΘ,cosΘ]

p

s
The distance, s, of a Model Coordinate
position perpendicular to the linear ripple is:
s = (MCposition-C) · (sinΘ, cosΘ)C

4/22/2009

11

z = - Amp * cos(2πs/P - 2πTime)
The amplitude of the wave, z, is:

And the slope dz/ds is:

(where P is the wave period)

dz/ds = Amp * 2π/P * sin(2πs/P - 2πTime)

slope = [0., 1., dz/dy]
= [0., 1., Amp * 2π/P * sin(2πs/P - 2πTime)]

And the slope dz/ds is:

If we start by assuming that the ripple angle is 0º (i.e., the wave is
propagating in y), then the vector slope of the wave is:

mjb – April 24, 2007
Oregon State University

Computer Graphics

normal = [0., -Amp * 2π/P * sin(2πs/P - 2πTime), 1.]

So the wave’s vector normal while propagating in y is:
Θ = 0º

N

This is true if the wave is propagating in y, i.e., the ripple angle is 0º. The trick
now is to rotate the normal vector into where we really are. Because we are
just talking about a rotation, the transformation is the same as if we were
rotating a vertex.

Nx’ = Nx * cosΘ - Ny * sinΘNN

Ny’ = Nx * sinΘ + Ny * cosΘ

Nz’ = Nz
X

Θ = 45ºΘ = 0º

vec3 normal = normalize(vec3(Nx’,Ny’,Nz’));

mjb – April 24, 2007
Oregon State University

Computer Graphics

So, for any MCposition of a fragment, we compute the normal vector to the
simulated rippled surface. We then make this interact with the light source
location to make variations in intensity give the rippled appearance.

4/22/2009

12

Combining Bump and Cube Mapping:
A Good Reason to Work in Eye Coordinates instead of Surface Local Coordinates

mjb – April 24, 2007
Oregon State University

Computer Graphics

Visualization:
Terrain Height Bump-Mapping

mjb – April 24, 2007
Oregon State University

Computer Graphics

Visualization by Nick Gebbie

