
mjb – December 24, 2023

1

Computer Graphics

OpenGL Compute Shaders

compute.shader.pptx

Mike Bailey

mjb@cs.oregonstate.edu

mjb – December 24, 2023

2

Computer Graphics

Application Invokes OpenGL Rendering
which Reads the Buffer Data

OpenGL Compute Shader – the Basic Idea

Application Invokes the Compute Shader
to Modify the OpenGL Buffer Data

A Shader Program, with only a Compute Shader in it

Another Shader Program, with pipeline rendering in it

mjb – December 24, 2023

3

Computer Graphics

OpenGL Compute Shader – the Basic Idea

Recent graphics hardware has become extremely powerful. A strong desire to harness
this power for work that does not fit the traditional graphics pipeline has emerged. To
address this, Compute Shaders are a new single-stage program. They are launched in a
manner that is essentially stateless. This allows arbitrary workloads to be sent to the
graphics hardware with minimal disturbance to the GL state machine.

In most respects, a Compute Shader is identical to all other OpenGL shaders, with
similar status, uniforms, and other such properties. It has access to many of the same
data as all other shader types, such as textures, image textures, atomic counters, and
so on. However, the Compute Shader has no predefined inputs, nor any fixed-function
outputs. It cannot be part of a rendering pipeline and its visible side effects are through
its actions on shader storage buffers, image textures, and atomic counters.

Paraphrased from the ARB_compute_shader spec:

mjb – December 24, 2023

4

Computer Graphics

If We Know GLSL (and you do),
What Do We Need to Do Differently to Write a Compute Shader?

Not much!

1. A Compute Shader is created just like any other GLSL shader, except that its type is
GL_COMPUTE_SHADER (duh…). You compile it and link it just like any other GLSL
shader program.

2. A Compute Shader must be in a shader program all by itself. There cannot be vertex,
fragment, etc. shaders in there with it. (I don’t understand why this is necessary.)

3. A Compute Shader has access to uniform variables and buffer objects but cannot access
any pipeline variables such as attributes or variables from other stages. It stands alone.

4. A Compute Shader needs to declare the number of work-items in each of its work-groups
in a special GLSL layout statement.

More information on item 4 is coming up . . .

mjb – December 24, 2023

5

Computer Graphics

The tricky part is getting data into and out of the Compute Shader. The trickiness comes from the
specification phrase: “In most respects, a Compute Shader is identical to all other OpenGL shaders, with
similar status, uniforms, and other such properties. It has access to many of the same data as all other
shader types, such as textures, image textures, atomic counters, and so on.”

Compute Shaders, looking like other shaders, haven’t had direct access to general arrays of data (hacked
access, yes; direct access, no). But, because Compute Shaders represent opportunities for massive data-
parallel computations, that is exactly what you want them to have access to.

Thus, OpenGL 4.3 introduced the Shader Storage Buffer Object. This is very cool, and has been
needed for a long time!

Passing Data to the Compute Shader Happens with a Cool
New Buffer Type – the Shader Storage Buffer Object

Shader Storage
Buffer Object

Arbitrary data,
including Arrays
of Structures

Shader Storage Buffer Objects are created
with arbitrary data (same as other buffer
objects), but what is new is that the
shaders can read and write them in the
same C-like way as they were created,
including treating parts of the buffer as an
array of structures – perfect for data-
parallel computing!

mjb – December 24, 2023

6

Computer Graphics

The OpenGL Rendering Draws the Particles
by Reading the Position Buffer

The Example We Are Going to Use Here is a Particle System

The Compute Shader Moves the Particles by
Recomputing the Position and Velocity Buffers

mjb – December 24, 2023

7

Computer Graphics

#define NUM_PARTICLES 1024*1024 // total number of particles to move
#define WORK_GROUP_SIZE 128 // # work-items per work-group

struct pos
{

float x, y, z, w; // positions
};

struct vel
{

float vx, vy, vz, vw; // velocities
};

struct color
{

float r, g, b, a; // colors
};

// need to do the following for both position, velocity, and colors of the particles:

GLuint posSSbo;
GLuint velSSbo
GLuint colSSbo;

Note that .w and .vw are not actually needed. But, by making these structure sizes a multiple of 4 floats,
it doesn’t matter if they are declared with the std140 or the std430 qualifier. I think this is a good thing.

Setting up the Shader Storage Buffer Objects in Your C/C++ Program

mjb – December 24, 2023

8

Computer Graphics

glGenBuffers(1, &posSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, posSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_PARTICLES * sizeof(struct pos), NULL, GL_STATIC_DRAW);

GLint bufMask = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT ; // the invalidate makes a big difference when re-writing

struct pos *points = (struct pos *) glMapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, NUM_PARTICLES * sizeof(struct pos), bufMask);
for(int i = 0; i < NUM_PARTICLES; i++)
{

points[i].x = Ranf(XMIN, XMAX);
points[i].y = Ranf(YMIN, YMAX);
points[i].z = Ranf(ZMIN, ZMAX);
points[i].w = 1.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

glGenBuffers(1, &velSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, velSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_PARTICLES * sizeof(struct vel), NULL, GL_STATIC_DRAW);

struct vel *vels = (struct vel *) glMapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, NUM_PARTICLES * sizeof(struct vel), bufMask);
for(int i = 0; i < NUM_PARTICLES; i++)
{

vels[i].vx = Ranf(VXMIN, VXMAX);
vels[i].vy = Ranf(VYMIN, VYMAX);
vels[i].vz = Ranf(VZMIN, VZMAX);
vels[i].vw = 0.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

The same would possibly need to be done for the color shader storage buffer object

Setting up the Shader Storage Buffer Objects in Your C Program

mjb – December 24, 2023

9

Computer Graphics http://news.cision.com

“Streaming Multiprocessor”

“CUDA Cores”

“Data”

A Mechanical Equivalent of a GPU

mjb – December 24, 2023

10

Computer Graphics

4 Work-Items

5 Work Groups

#
GlobalInvocationSize

WorkGroups
WorkGroupSize



The Data Needs to be Divided into Large Quantities call Work-Groups, each of
which is further Divided into Smaller Units Called Work-Items

20 total items to compute:
The Invocation Space can be 1D,
2D, or 3D. This one is 1D.

mjb – December 24, 2023

11

Computer Graphics

4 Work-Items

3
 W

o
rk

-I
te

m
s

5 Work-Groups

4
 W

o
rk

-G
ro

up
s

The Data Needs to be Divided into Large Quantities call Work-Groups, each of
which is further Divided into Smaller Units Called Work-Items

The Invocation Space can be 1D,
2D, or 3D. This one is 2D.

#
GlobalInvocationSize

WorkGroups
WorkGroupSize



20 12
5 4

4 3

x
x

x


20x12 (=240) total items to compute:

mjb – December 24, 2023

12

Computer Graphics

Running the Compute Shader from the Application

void glDispatchCompute(num_groups_x, num_groups_y, num_groups_z);

num_groups_x

n
u

m
_g

ro
u

p
s

_y

If the problem is 2D, then:
num_groups_z = 1

If the problem is 1D, then:
num_groups_y = 1 and
num_groups_z = 1

mjb – December 24, 2023

13

Computer Graphics

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 4, posSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 5, velSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 6, colSSbo);

. . .

glUseProgram(MyComputeShaderProgram);
glDispatchCompute(NUM_PARTICLES / WORK_GROUP_SIZE, 1, 1);
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);

. . .

glUseProgram(MyRenderingShaderProgram);
glBindBuffer(GL_ARRAY_BUFFER, posSSbo);
glVertexPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, NUM_PARTICLES);
glDisableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);

Invoking the Compute Shader in Your C Program

mjb – December 24, 2023

14

Computer Graphics

Using the glslprogram C++ Class to Handle Everything

GLSLProgram Particles, Render; // global variables

. . .

Particles.Init();
bool valid = Particles.Create("particles.cs");
if(! valid) { . . . }

Particles.Use(); // compute the particles
Particles.DispatchCompute(NUM_PARTICLES / WORK_GROUP_SIZE, 1, 1);
Particles.UnUse();

Render.Use(); // draw the particles
. . .
Render.UnUse();

The Setup:

The Use:

mjb – December 24, 2023

15

Computer Graphics

Special Pre-set Variables in the Compute Shader

in uvec3 gl_NumWorkGroups ;

const uvec3 gl_WorkGroupSize ;

in uvec3 gl_WorkGroupID ;

in uvec3 gl_LocalInvocationID ;

in uvec3 gl_GlobalInvocationID ;

in uint gl_LocalInvocationIndex ;

Same numbers as in the glDispatchCompute call

Same numbers as in the layout local_size_*

Which workgroup this thread is in

Where this thread is in the current workgroup

Where this thread is in all the work items

1D representation of the gl_LocalInvocationID
(used for indexing into a shared array)

0 ≤ gl_WorkGroupID ≤ gl_NumWorkGroups – 1

0 ≤ gl_LocalInvocationID ≤ gl_WorkGroupSize – 1

gl_GlobalInvocationID = gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID

gl_LocalInvocationIndex = gl_LocalInvocationID.z * gl_WorkGroupSize.y * gl_WorkGroupSize.x +
gl_LocalInvocationID.y * gl_WorkGroupSize.x +
gl_LocalInvocationID.x

mjb – December 24, 2023

16

Computer Graphics

#version 430 compatibility
#extension GL_ARB_compute_shader : enable
#extension GL_ARB_shader_storage_buffer_object : enable;

layout(std140, binding=4) buffer Pos
{

vec4 Positions[]; // array of structures
};

layout(std140, binding=5) buffer Vel
{

vec4 Velocities[]; // array of structures
};

layout(std140, binding=6) buffer Col
{

vec4 Colors[]; // array of structures
};

layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;

The Particle System Compute Shader -- Setup

You can use the empty
brackets, but only on the last
element of the buffer. The
actual dimension will be
determined for you when
OpenGL examines the size of
this buffer’s data store.

mjb – December 24, 2023

17

Computer Graphics

const vec3 G = vec3(0., -9.8, 0.);
const float DT = 0.1;

. . .

uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1 in this case

vec3 p = Positions[gid].xyz;
vec3 v = Velocities[gid].xyz;

vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;

Positions[gid].xyz = pp;
Velocities[gid].xyz = vp;

21
'

2
'

p p v t G t

v v G t

    

  

The Particle System Compute Shader – The Physics

mjb – December 24, 2023

18

Computer Graphics

const vec4 Sphere = vec4(-100., -800., 0., 600.); // x, y, z, r
// (could also have passed this in)

vec3
Bounce(vec3 vin, vec3 n)
{

vec3 vout = reflect(vin, n);
return vout;

}

vec3
BounceSphere(vec3 p, vec3 v, vec4 s)
{

vec3 n = normalize(p - s.xyz);
return Bounce(v, n);

}

bool
IsInsideSphere(vec3 p, vec4 s)
{

float r = length(p - s.xyz);
return (r < s.w);

}

The Particle System Compute Shader –
How About Introducing a Bounce?

in out
n

mjb – December 24, 2023

19

Computer Graphics

uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1 in this case

vec3 p = Positions[gid].xyz;
vec3 v = Velocities[gid].xyz;

vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;

if(IsInsideSphere(pp, Sphere))
{

vp = BounceSphere(p, v, Sphere);
pp = p + vp*DT + .5*DT*DT*G;

}

Positions[gid].xyz = pp;
Velocities[gid].xyz = vp;

The Particle System Compute Shader –
How About Introducing a Bounce?

21
'

2
'

p p v t G t

v v G t

    

  

Graphics Trick Alert: Making the bounce
happen from the surface of the sphere is
time-consuming. Instead, bounce from the
previous position in space. If DT is small
enough, nobody will ever know…

mjb – December 24, 2023

20

Computer Graphics

The Bouncing Particle System Compute Shader –
What Does It Look Like?

