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G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

History of GPU Performance vs. CPU Performance

Source: NVIDIA
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Due to the nature of graphics computations, GPU chips are customized to 
handle streaming data.  This means that the data is already sequential, or 
cache-coherent, and thus the GPU chips do not need the significant amount 
of cache space that dominates CPU chips.  The GPU die real estate can 
then be re-targeted to produce more processing power.

Why are GPUs Outpacing CPUs?

For example. while Intel and AMD are now shipping CPU chips with 4 
cores, NVIDIA is shipping GPU chips with 128.  Overall, in four years, 
GPUs have achieved a 17.5-fold increase in performance, a compound 
annual increase of 2.05X, which exceeds Moore’s Law.
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In computer science, a cache is a collection of data duplicating original values 
stored elsewhere or computed earlier, where the original data is expensive to 
fetch (due to longer access time) or to compute, compared to the cost of reading 
the cache. In other words, a cache is a temporary storage area where frequently 
accessed data can be stored for rapid access. Once the data is stored in the 
cache, future use can be made by accessing the cached copy rather than re-
fetching or recomputing the original data, so that the average access time is 
shorter. Cache, therefore, helps expedite data access that the CPU would 
otherwise need to fetch from main memory.

-- Wikipedia

What is Cache Memory?
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How Can You Gain Access to that GPU Power?

1. Write a graphics display 
program (≥ 1985)

2. Write an application that looks 
like a graphics display 
program (≥ 2002)

3. Write in CUDA, which looks 
like C++ (≥ 2006)
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CUDA Architecture

• The GPU has some number of MultiProcessors (MPs), depending on the model

• The NVIDIA 8800 comes in 2 models: either 12 or 16 MPs

• The NVIDIA 8600 has 4 MPs

• Each MP has 8 independent processors

• There are 16 KB of Shared Memory per MP, arranged in 16 banks

• There are 64 KB of Constant Memory



4

mjb – November 26, 2007
Oregon State University

Computer Graphics

The CUDA Paradigm

C++ Program 
with CUDA 

directives in it

Compiler 
and Linker

CPU binary CUDA binary 
on the GPU

CUDA is an NVIDIA-
only product, but it is 
likely that eventually all 
graphics cards will have 
something similar
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If GPUs have so Little Cache,
how can they Execute General C++ Code Efficiently?

1. Multiple Multiprocessors

2. Threads – lots and lots of threads

• CUDA expects you to not just have a few threads, but to have thousands of them!

• All threads execute the same code (called the kernel), but operates on different 
data

• Each thread can determine which one it is

•Think of all the threads as living in a “pool”, waiting to be executed

• All processors start by grabbing a thread from the pool

• When a thread gets blocked somehow (a memory access, waiting for information 
from another thread, etc.), the processor quickly returns the thread to the pool and 
grabs another one to work on.

• This thread-swap happens within a single cycle

A full memory access requires 200 instruction cycles to complete
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So, the Trick is to Break your Problem
into Many, Many Small Pieces

Particle Systems are a great example.

1. Have one thread per each particle.

2. Put all of the initial parameters into an array in 
GPU memory.

3. Tell each thread what the current Time is.

4. Each thread then computes its particle’s position, 
color, etc. and writes it into arrays in GPU 
memory.

5. The CPU program then initiates drawing of the 
information in those arrays.

Note: once setup, the data never leaves GPU memory

Ben Weiss, CS 519
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• A Thread Block has:
– Size: 1 to 512 concurrent threads
– Shape: 1D, 2D, or 3D (really just a convenience)

• Threads have Thread ID numbers within the Block

• The program uses these Thread IDs to select work and pull data from 
memory

• Threads share data and synchronize while doing their share of the work

• A Thread Block is a batch of threads that can cooperate with each other 
by:
– Synchronizing their execution
– Efficiently sharing data through a low latency shared memory

• Two threads from two different blocks cannot cooperate

Organization: Threads are Arranged in Blocks
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A CUDA program is organized as a Grid of Thread Blocks

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Organization: Blocks are Arranged in Grids
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• Each thread has access to:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read-only per-grid constant memory
– Read-only per-grid texture memory

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

• The CPU can read and write 
global, constant, and texture
memories

Threads Can Access Various Types of Storage
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Rules

• You can have at most 512 Threads per Block

• Threads can share memory with the other Threads in the same Block

• Threads can synchronize with other Threads in the same Block

• Global, Constant, and Texture memory is accessible by all Threads in all Blocks

• Each Thread has registers and local memory

• Each Block can use at most 8,192 registers, divided equally among all Threads

• You can be executing up to 8 Blocks and 768 Threads simultaneously per MP

• A Block is run on only one MP (i.e., cannot switch to another MP)

• A Block can be run on any of the 8 processors of its MP
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CPUCPU__host__ float HostFunc()

CPUGPU__global__ void  KernelFunc()

GPUGPU__device__ float DeviceFunc()

Only callable 
from the:

Executed 
on the:

__global__ defines a kernel function – it must return void

Types of CUDA Functions
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One threadRead/writeNoOff-chipLocal
All threads in a 
block

Read/writeN/A -
resident

On-chipShared

All threads + CPURead/writeNoOff-chipGlobal
All threads + CPUReadYesOff-chipConstant
All threads + CPUReadYesOff-chipTexture

WhoAccessCachedLocationMemory

Different Types of CUDA Memory
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• Declarations
– global, device, shared, 

local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol, 

execution management

• CUDA function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  
{

__shared__ float region[M];
... 

region[threadIdx] = image[i]; 

__syncthreads();  
... 

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Types of CUDA Variables
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• dim3 blockDim;

– Dimensions of the block in threads

• dim3 threadIdx;

– Thread index within the block

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z is not used)

• dim3 blockIdx;

– Block index within the grid

A CUDA Thread can Query Where it Fits in its “Community”
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CPU Serial Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Serial Code

GPU Parallel Kernel 
KernelB<<< nBlk, nTid >>>(args);

The CPU Invokes the CUDA Kernel using a Special Syntax

CUDAFunction<<<  NumBlocks, NumThreadsPerBlock >>>( arg1, arg2, … )
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Rules of Thumb

• OpenGL Buffer Objects can be mapped into CUDA space

• CUDA kernel is asynchronous

• Can call cudaThreadSynchronize( ) from the application

• At least 16/12/4 Blocks must be run to fill the device

• The number of Blocks should be at least twice the number of MPs

• The number of Threads per Block should be a multiple of 64

• 192 or 256 are good numbers of Threads per Block
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An Example: Recomputing Particle Positions
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An Example: Static Image De-noising

mjb – November 26, 2007
Oregon State University

Computer Graphics

An Example: Dynamic Scene Blurring
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An Example: Realtime Fluids

512x512 pixels, 76 FPS


