
1

mjb – November 26, 2007
Oregon State University

Computer Graphics

CUDA
(Compute Unified Device Architecture)

Mike Bailey

Oregon State University

mjb – November 26, 2007
Oregon State University

Computer Graphics

G
FL

O
PS

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

History of GPU Performance vs. CPU Performance

Source: NVIDIA

2

mjb – November 26, 2007
Oregon State University

Computer Graphics

Due to the nature of graphics computations, GPU chips are customized to
handle streaming data. This means that the data is already sequential, or
cache-coherent, and thus the GPU chips do not need the significant amount
of cache space that dominates CPU chips. The GPU die real estate can
then be re-targeted to produce more processing power.

Why are GPUs Outpacing CPUs?

For example. while Intel and AMD are now shipping CPU chips with 4
cores, NVIDIA is shipping GPU chips with 128. Overall, in four years,
GPUs have achieved a 17.5-fold increase in performance, a compound
annual increase of 2.05X, which exceeds Moore’s Law.

mjb – November 26, 2007
Oregon State University

Computer Graphics

In computer science, a cache is a collection of data duplicating original values
stored elsewhere or computed earlier, where the original data is expensive to
fetch (due to longer access time) or to compute, compared to the cost of reading
the cache. In other words, a cache is a temporary storage area where frequently
accessed data can be stored for rapid access. Once the data is stored in the
cache, future use can be made by accessing the cached copy rather than re-
fetching or recomputing the original data, so that the average access time is
shorter. Cache, therefore, helps expedite data access that the CPU would
otherwise need to fetch from main memory.

-- Wikipedia

What is Cache Memory?

3

mjb – November 26, 2007
Oregon State University

Computer Graphics

How Can You Gain Access to that GPU Power?

1. Write a graphics display
program (≥ 1985)

2. Write an application that looks
like a graphics display
program (≥ 2002)

3. Write in CUDA, which looks
like C++ (≥ 2006)

mjb – November 26, 2007
Oregon State University

Computer Graphics

CUDA Architecture

• The GPU has some number of MultiProcessors (MPs), depending on the model

• The NVIDIA 8800 comes in 2 models: either 12 or 16 MPs

• The NVIDIA 8600 has 4 MPs

• Each MP has 8 independent processors

• There are 16 KB of Shared Memory per MP, arranged in 16 banks

• There are 64 KB of Constant Memory

4

mjb – November 26, 2007
Oregon State University

Computer Graphics

The CUDA Paradigm

C++ Program
with CUDA

directives in it

Compiler
and Linker

CPU binary CUDA binary
on the GPU

CUDA is an NVIDIA-
only product, but it is
likely that eventually all
graphics cards will have
something similar

mjb – November 26, 2007
Oregon State University

Computer Graphics

If GPUs have so Little Cache,
how can they Execute General C++ Code Efficiently?

1. Multiple Multiprocessors

2. Threads – lots and lots of threads

• CUDA expects you to not just have a few threads, but to have thousands of them!

• All threads execute the same code (called the kernel), but operates on different
data

• Each thread can determine which one it is

•Think of all the threads as living in a “pool”, waiting to be executed

• All processors start by grabbing a thread from the pool

• When a thread gets blocked somehow (a memory access, waiting for information
from another thread, etc.), the processor quickly returns the thread to the pool and
grabs another one to work on.

• This thread-swap happens within a single cycle

A full memory access requires 200 instruction cycles to complete

5

mjb – November 26, 2007
Oregon State University

Computer Graphics

So, the Trick is to Break your Problem
into Many, Many Small Pieces

Particle Systems are a great example.

1. Have one thread per each particle.

2. Put all of the initial parameters into an array in
GPU memory.

3. Tell each thread what the current Time is.

4. Each thread then computes its particle’s position,
color, etc. and writes it into arrays in GPU
memory.

5. The CPU program then initiates drawing of the
information in those arrays.

Note: once setup, the data never leaves GPU memory

Ben Weiss, CS 519

mjb – November 26, 2007
Oregon State University

Computer Graphics

• A Thread Block has:
– Size: 1 to 512 concurrent threads
– Shape: 1D, 2D, or 3D (really just a convenience)

• Threads have Thread ID numbers within the Block

• The program uses these Thread IDs to select work and pull data from
memory

• Threads share data and synchronize while doing their share of the work

• A Thread Block is a batch of threads that can cooperate with each other
by:
– Synchronizing their execution
– Efficiently sharing data through a low latency shared memory

• Two threads from two different blocks cannot cooperate

Organization: Threads are Arranged in Blocks

6

mjb – November 26, 2007
Oregon State University

Computer Graphics

A CUDA program is organized as a Grid of Thread Blocks

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Organization: Blocks are Arranged in Grids

mjb – November 26, 2007
Oregon State University

Computer Graphics

• Each thread has access to:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read-only per-grid constant memory
– Read-only per-grid texture memory

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

• The CPU can read and write
global, constant, and texture
memories

Threads Can Access Various Types of Storage

7

mjb – November 26, 2007
Oregon State University

Computer Graphics

Rules

• You can have at most 512 Threads per Block

• Threads can share memory with the other Threads in the same Block

• Threads can synchronize with other Threads in the same Block

• Global, Constant, and Texture memory is accessible by all Threads in all Blocks

• Each Thread has registers and local memory

• Each Block can use at most 8,192 registers, divided equally among all Threads

• You can be executing up to 8 Blocks and 768 Threads simultaneously per MP

• A Block is run on only one MP (i.e., cannot switch to another MP)

• A Block can be run on any of the 8 processors of its MP

mjb – November 26, 2007
Oregon State University

Computer Graphics

CPUCPU__host__ float HostFunc()

CPUGPU__global__ void KernelFunc()

GPUGPU__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

__global__ defines a kernel function – it must return void

Types of CUDA Functions

8

mjb – November 26, 2007
Oregon State University

Computer Graphics

One threadRead/writeNoOff-chipLocal
All threads in a
block

Read/writeN/A -
resident

On-chipShared

All threads + CPURead/writeNoOff-chipGlobal
All threads + CPUReadYesOff-chipConstant
All threads + CPUReadYesOff-chipTexture

WhoAccessCachedLocationMemory

Different Types of CUDA Memory

mjb – November 26, 2007
Oregon State University

Computer Graphics

• Declarations
– global, device, shared,

local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• CUDA function launch

__device__ float filter[N];

__global__ void convolve (float *image)
{

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads();
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Types of CUDA Variables

9

mjb – November 26, 2007
Oregon State University

Computer Graphics

• dim3 blockDim;

– Dimensions of the block in threads

• dim3 threadIdx;

– Thread index within the block

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z is not used)

• dim3 blockIdx;

– Block index within the grid

A CUDA Thread can Query Where it Fits in its “Community”

mjb – November 26, 2007
Oregon State University

Computer Graphics

CPU Serial Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Serial Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

The CPU Invokes the CUDA Kernel using a Special Syntax

CUDAFunction<<< NumBlocks, NumThreadsPerBlock >>>(arg1, arg2, …)

10

mjb – November 26, 2007
Oregon State University

Computer Graphics

Rules of Thumb

• OpenGL Buffer Objects can be mapped into CUDA space

• CUDA kernel is asynchronous

• Can call cudaThreadSynchronize() from the application

• At least 16/12/4 Blocks must be run to fill the device

• The number of Blocks should be at least twice the number of MPs

• The number of Threads per Block should be a multiple of 64

• 192 or 256 are good numbers of Threads per Block

mjb – November 26, 2007
Oregon State University

Computer Graphics

An Example: Recomputing Particle Positions

11

mjb – November 26, 2007
Oregon State University

Computer Graphics

An Example: Static Image De-noising

mjb – November 26, 2007
Oregon State University

Computer Graphics

An Example: Dynamic Scene Blurring

12

mjb – November 26, 2007
Oregon State University

Computer Graphics

An Example: Realtime Fluids

512x512 pixels, 76 FPS

