Dome Projection using a Vertex Shader

I believe that it's only a matter of time until it becomes a routine visualization tool.

Programming a Dome display is easier when only a single projector is used.

A fisheye lens in the projector distorts the image so that it spreads out across the dome. The trick is pre-distorting the image in the other direction so that it looks correct after being projected.

One Night at the Reuben H. Fleet Science Center in San Diego...
Dome Distortion

Move the teapot so it surrounds the audience

A fisheye lens in the projector distorts the image so that it spreads out across the dome. The trick is pre-distorting the image in the other direction so that it looks correct after being projected.

Dome Projection

Viewing Volume = (-1,-1) to (1,1)

The edge of the circle represents the edge of the dome projection = your left, right, bottom, top as you are sitting in the theater.

Dome Vertex Shader:

\[
\text{const float PI} = 3.14159265;\\
\text{void main() \{}\\
\quad \text{vec4 pos = gl_ModelViewMatrix * gl_Vertex;}\\
\quad \text{float lenxy = length(pos.xy);}\\
\quad \text{float phi = atan(lenxy, -pos.z);}\\
\quad \text{pos.xy = (phi / (PI/2.)) * (pos.xy / lenxy);}\\
\quad \text{gl_Position = gl_ProjectionMatrix * pos;}\\
\}\n\]

Note: \(\text{(pos.xy / lenxy)} = (\cos\Theta, \sin\Theta) \)
Dome Vertex Shader:

Flow Visualization in the Dome

Mars Panoram in the Dome

Large Lines and Polygons Need to be Tessellated

Note: This edge does not pass through the flow vectors!

Note: This edge does pass through the flow vectors!

Bounding Box edges were not tessellated. Curved lines on the monitor produced straight lines on the dome.

Bounding Box edges were tessellated. Curved lines on the monitor produced straight lines on the dome.